
Carlos Moreno
cmoreno@uwaterloo.ca

E5-4111

POSIX / System Programming

ECE650 – Methods and Tools for Software Eng.
Guest lecture – 20171006

Outline
● During today's lecture, we'll look at:

● Some of POSIX facilities
● Main focus on processes, concurrency,

communication, threads and synchronization.
● Issues with concurrency: race conditions, deadlock,

starvation.
● Tools and techniques to deal with the above: critical

sections, mutual exclusion / atomicity, semaphores,
pipes, message queues, shared memory.

2

Systems Programming
● One of the most important notions is that of a

Process.

● Possible definitions:
● A program in execution / An instance of a program running

on a computer
● Not really: execution of a program can involve multiple

processes!

● A unit of activity characterized by the execution of a
sequence of instructions, a current state, and an associated
set of system instructions

3

Process
● An entity representing activity consisting on three

components:

● An executable program
● Associated data needed by the program
● Execution context of the program (registers, PC,

pending I/O operations, etc.)

● OS assigns a unique identifier (PID)

● See command ps.
● Processes can create other processes (denoted “child

process” in that context)

● See ps --forest

4

Multiprogramming
● Concurrent execution of multiple tasks (e.g.,

processes)
● Each task runs as if it was the only task running on the

CPU.

● Benefits:
● When one task needs to wait for I/O, the processor can

switch to the another task.

● (why is this potentially a huge benefit?)

5

Multiprogramming
6

Multiprogramming
● Example / case-study:

● Demo of web-based app posting jobs and a
simple command-line program processing them.

● Can run multiple instances of the job processing
program.

● Or we can have the program use fork() to spawn
multiple processes that work concurrently

7

Multithreading
● Processes typically have their own “isolated” memory

space.
● Memory protection schemes prevent a process from

accessing memory of another process (more in general,
any memory outside its own space).

● The catch: if processes need to share data, then there
may be some overhead associated with it.

● Threads are a “lighter version” of processes:
● A process can have multiple threads of execution that all

share the same memory space.

● Sharing data between threads has little or no overhead

● Good news? Bad news? (both?)

8

Multithreading
● Example/demo:

● With the multithreading demo, we'll look at a different
application/motivation for the use of concurrency:
performance boost through parallelism.

● Possible when we have multiple CPUs (e.g., multicore
processors)

● Important to have multiple CPUs when the application
is CPU-bound.

9

Concurrency Issues
● Race condition:

A situation where concurrent operations access data
in a way that the outcome depends on the order (the
timing) in which operations execute.

● Doesn't necessarily mean a bug! (like in the threads
example with the linked list)

● In general it constitutes a bug when the programmer
makes any assumptions (explicit or otherwise) about an
order of execution or relative timing between operations in
the various threads.

10

Concurrency Issues
● Race condition:

Example (x is a shared variable):

Thread 1: Thread 2:

x = x + 1; x = x – 1;

(what's the implicit assumption a programmer could
make?)

11

Concurrency Issues
● Race condition:

Thread 1: Thread 2:

x = x + 1; x = x – 1;

● In assembly code:

R1 ← x R1 ← x
inc R1 dec R1
R1 → x R1 → x

12

Concurrency Issues
● And this is how it could go wrong:

Thread 1: Thread 2:

x = x + 1; x = x – 1;

● In assembly code:

R1 ← x R1 ← x

inc R1 dec R1

R1 → x R1 → x

13

Concurrency Issues
● Atomicity / Atomic operation:

Atomicity is a characteristic of a fragment of a
program that exhibits an observable behaviour that is
non-interruptible – it behaves as if it can only execute
entirely or not execute at all, such that no other
threads deal with any intermediate outcome of the
atomic operation.

● Non-interruptible applies in the context of other
threads that deal with the outcome of the
operation, or with which there are race conditions.

● For example: in the pthreads demo, if the
insertion of an element in the list was atomic,
there would be no problem.

14

Concurrency Issues
● Examples of atomic operations in POSIX:

● Renaming / moving a file with
int rename (const char * old, const char * new);

Any other process can either see the old file, or
the new file – not both and no other possible
“intermediate” state.

● opening a file with attributes O_CREAT and O_EXCL
(that is, creating a file with exclusive access). The
operation atomically attempts to create the file: if it
already exists, then the call returns a failure code.

15

Concurrency Issues
● Mutual Exclusion:

Atomicity is often achieved through mutual
exclusion – the constraint that execution of one
thread excludes all the others.

● In general, mutual exclusion is a constraint that is
applied to sections of the code.

● For example: in the pthreads demo, the fragment
of code that inserts the element to the list should
exhibit mutual exclusion: if one thread is inserting
an element, no other thread should be allowed to
access the list

● That includes main, though not a problem in
this particular case (why?)

16

Concurrency Issues
● Critical section:

A section of code that requires atomicity and that
needs to be protected by some mutual exclusion
mechanism is referred to as a critical section.

● In general, we say that a program (a thread)
enters a critical section.

17

Concurrency Issues
● Mutual Exclusion – How?

Attempt #1: We disable interrupts while in a critical
section (and of course avoid any calls to the OS)

● There are three problems with this approach
● Not necessarily feasible (privileged operations)
● Extremely inefficient (you're blocking everything else,

including things that wouldn't interfere with what your
critical section needs to do)

● Doesn't always work!! (keyword: multicore)

18

Concurrency Issues
● Mutual Exclusion – How?

Attempt #2: We place a flag (sort of telling others
“don't touch this, I'm in the middle of working with it).

int locked; // shared between threads
// ...
if (! locked)
{
 locked = 1;
 // insert to the list (critical section)
 locked = 0;
}

● Why is this flawed? (there are several issues)

19

Concurrency Issues
● Mutual Exclusion – How?

One of the problems: does not really work!

This is what the assembly code could look like:

R1 ← locked
tst R1
brnz somewhere_else
R1 ← 1
R1 → locked

20

Concurrency Issues
● Mutual Exclusion – How?

Another problem: an if statement just doesn't cut it!
We need to insert an element – if some other thread
is inserting an element at this time, we need to wait
until the other thread finishes:

while (locked) {}
locked = 1;
// ... critical section
locked = 0;

There are two problems with this: one is that it
doesn't work (for the same reason as with the if)
What's the other problem?

21

Concurrency Issues
● Mutex:

A mutex (for MUTual EXclusion) provides a clean
solution: In general we have a variable of type mutex,
and a program (a thread) attempts to lock the mutex.
The attempt atomically either succeeds (if the mutex
is unlocked) or it blocks the thread that attempted the
lock (if the mutex is already unlocked).

● As soon as the thread that is holding the lock
unlocks the mutex, this thread's state becomes
ready.

22

Concurrency Issues
● Using a Mutex:

lock (mutex)
critical section
unlock (mutex)

● For example, with POSIX threads (pthreads):

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
// ...
pthread_mutex_lock (&mutex);
// ... critical section
pthread_mutex_unlock (&mutex);

23

Concurrency Issues
● Using a Mutex:

● One issue is that POSIX only defines mutex
facilities for threads --- not for processes!

● We could still implement it through a “lock file”
(created with open using flags O_CREAT and
O_EXCL)

● Not a good solution (it does work, but is has
the same issues as the lock variable example)

24

Concurrency and synchronization
● Another synchronization primitive: Semaphores

25

(image courtesy of wikipedia.org)

Concurrency and synchronization
● Another synchronization primitive: Semaphores

● Semaphore: A counter with the following properties:
● Atomic operations that increment and decrement the count
● Count is initialized with a non-negative value
● wait operation decrements count and causes caller to block

if count becomes negative (if it was 0)
● signal (or post) operation increments count. If there are

threads blocked (waiting) on this semaphore, it unblocks one
of them.

26

Concurrency and synchronization
● Producer / consumer with semaphores

semaphore items = 0;
mutex_t mutex; // why also a mutex?

void producer() void consumer()
{ {
 while (true) while (true)
 { {
 produce_item(); sem_wait (items);
 lock (mutex); lock (mutex);
 add_item(); retrieve_item();
 unlock (mutex); unlock (mutex);
 sem_signal (items); consume_item();
 } }
} }

27

Concurrency and synchronization
● Mutual Exclusion with semaphores

● Interestingly enough – Mutexes can be implemented
in terms of semaphores!

semaphore lock = 1;

void process (...)
{
 while (1)
 {
 /* some processing */
 sem_wait (lock);
 /* critical section */
 sem_signal (lock);
 /* additional processing */
 }
}

28

Concurrency and synchronization
● Producer / consumer with semaphores only

semaphore items = 0;
semaphore lock = 1;

void producer() void consumer()
{ {
 while (true) while (true)
 { {
 produce_item(); sem_wait (items);
 sem_wait (lock); sem_wait (lock);
 add_item(); retrieve_item();
 sem_signal (lock); sem_signal (lock);
 sem_signal (items); consume_item();
 } }
} }

29

Concurrency and synchronization
● Producer / consumer with semaphores only

● Interestingly, POSIX does provide inter-process
semaphores!

30

Concurrency and synchronization
● POSIX semaphores:

● Defined through data type sem_t

● Two types:

● Memory-based or unnamed (good for threads)
● Named semaphores (system-wide — good for

processes synchronization)

31

Concurrency and synchronization
● POSIX semaphores:

● For unnamed semaphores:

● Declare a (shared – possibly as global variable)
sem_t variable

● Give it an initial value with sem_init
● Call sem_wait and sem_post as needed.

sem_t items;
sem_init (&items, 0, initial_value);
// ...
sem_wait (&items) or sem_post (&items)

32

Concurrency and synchronization
● POSIX semaphores:

● For named semaphores:

● Similar to dealing with a file: have to “open” the
semaphore – if it does not exist, create it and give
it an initial value.

sem_t * items = sem_open (semaphore_name, flags,
 permissions, initial_value);
// should check if items == SEM_FAILED

// ...

sem_wait (items) or sem_post (items)

33

Concurrency and synchronization
● Producer-consumer:

● We'll work on the example of the web-based demo as
a producer-consumer with semaphores.

● Granularity for locking?

● Should we make the entire process_requests a
critical section?
● Clearly overkill! No problem with two separate

processes working each on a different file!
● We can lock the file instead — no need for a mutex,

since this is a consumable resource.
● For a reusable resource, we'd want a mutex – block

while being used, but then want to use it ourselves!

34

Concurrency and synchronization
● Consumable vs. Reusable Resource:

● With a consumable resource, we want to:

● Try to lock it.
● If failed, then forget about it (someone else

locked it and will make it disappear – will
“consume” it).

● With a reusable resource:

● Wait until you can lock it (as in, attempt to lock it
blocking if it is already locked)
● When unlocked by the other thread/process,

then we lock it and (re)use it.

35

Concurrency and synchronization
● Consumable vs. Reusable Resource:

● See code for demo — locking has to be done
atomically!

● We recall that renaming a file with rename is an
atomic operation!

36

Concurrency and synchronization
● More on locking granularity:

● Consider the following scenario:
● One thread writes to some shared resource (e.g., a

linked list)

● Many threads need to read that shared resource

● Observation: concurrent reads don't cause a race
condition (right?)

● Do we need to lock the resource when reading?

37

Concurrency and synchronization
● More on locking granularity:

● Consider the following scenario:

● Problem:

● Concurrent reads do not need mutual exclusion

● But since a write could be taking place, we need to
define the read operation as a critical section, in case
there is a concurrent write operation!

38

Concurrency and synchronization
● More on locking granularity:

● Consider the following scenario:

● Problem:

● Concurrent reads do not need mutual exclusion

● But since a write could be taking place, we need to
define the read operation as a critical section, in case
there is a concurrent write operation!

● Solution:
● Finer granularity!

● Locking for write vs. locking for read!

39

Concurrency and synchronization
● More on locking granularity:

● Read/Write locks implement this functionality:
● Threads calling read_lock do not exclude each other.

● A thread calling write_lock excludes any other threads
requesting write_lock and also any other threads
requesting read_lock

● It blocks if some thread is holding a read lock!

40

Concurrency and synchronization
● More on locking granularity:

● Read/Write locks implement this functionality:
● Threads calling read_lock do not exclude each other.

● A thread calling write_lock excludes any other threads
requesting write_lock and also any other threads
requesting read_lock

● It blocks if some thread is holding a read lock!
● POSIX R/W Locks:

 pthread_rwlock_t
 pthread_rwlock_rdlock (...)
 pthread_wrlock_wrlock (...)
 pthread_rwlock_unlock (...)

41

Concurrency and synchronization
● More on locking granularity:

● Big problem with Read/Write locks?

● Hint: what happens if many threads are reading very
frequently?

42

Concurrency and synchronization
● Starvation:

● One of the important problems we deal with when
using concurrency:

● An otherwise ready process or thread is deprived
of the CPU (it's starved) by other threads due to,
for example, the algorithm used for locking
resources.

● Notice that the writer starving is not due to a
defective scheduler/dispatcher!

43

Concurrency – Deadlock
● Deadlock:

● Consider the following scenario:
● A Bank transaction where we transfer money from

account A to account B
● Clearly, there is a (dangerous) race condition

● Want granularity — can not lock the entire bank so
that only one transfer can happen at a time

● We want to lock at the account level:
● Lock account A, lock account B, then proceed!

44

Concurrency – Deadlock
● Deadlock:

● Problem with this?
● Two concurrent transfers — one from account 100

to account 200, one from account 200 to account
100.

● If the programming is written as:
Lock source account
Lock destination account
Transfer money
Unlock both accounts

45

Concurrency – Deadlock
● Deadlock:

● Problem with this?
● Two concurrent transfers — one from account 100

to account 200, one from account 200 to account
100.

● Process 1 locks account 100, then locks
account 200

● Process 2 locks account 200, then locks
account 100

46

Concurrency – Deadlock
● Deadlock:

● What about the following interleaving?
● Process 1 locks account 100
● Process 2 locks account 200
● Process 1 attempts to lock account 200 (blocks)
● Process 2 attempts to lock account 100 (blocks)

● When do these processes unblock?

47

Concurrency – Deadlock
● Deadlock:

● What about the following interleaving?
● Process 1 locks account 100
● Process 2 locks account 200
● Process 1 attempts to lock account 200 (blocks)
● Process 2 attempts to lock account 100 (blocks)

● When do these processes unblock?
● Answer: under some reasonable assumptions,

never!

48

Concurrency – Deadlock
● Deadlock:

● Graphically:

49

Process 1 Process 2

Acct. 100

Acct. 200

Concurrency – Deadlock
● Deadlock:

● Solution in this case is really simple:
● Lock the resources in a given order (e.g., by

ascending account number).

50

Process 1 Process 2

Acct. 100

Acct. 200

Interprocess Communication
● Sharing data between processes:

● Requires synchronization (to avoid race
conditions, and to access data when there is data
to be accessed!)

● Typical mechanisms:
● Through designated files (obvious, but inefficient)
● Through pipes (very simple, but limited)
● Through shared memory (efficient, but dangerous!)
● Through message queues (convenient, though not

particularly simple)

51

Interprocess Communication
● Sharing data through files:

● Not much to say – one process writes data to a file,
another process reads data from the file.

● Still need synchronization

52

Interprocess Communication
● Pipes:

● A pipe is a mechanism to set up a “conduit” for data
from one process to another.

● It is unidirectional (i.e., we have to predefine who
transmits and who receives data)

● Simplest form is with popen:
● It executes a given command (created as a child

process) and returns a stream (a FILE *) to the calling
process:

● It then connects either the standard output of that
command to the (input) stream, or the standard input
of that command to the (output) stream.

53

Interprocess Communication
● Pipes – example:

● To read the output from a program:

FILE * child = popen (“/path/command”, “r”);
if (child == NULL) { /* handle error condition */ }

Now read data with, e.g., fread (… , … , … , child);
and NEVER forget to pclose (child);

● Whatever data the child process sends to its standard
output (e.g., with printf) will be read by the parent.

● Conversely, if we popen (…. , “w”), then whatever
data we write to it (e.g., with fprintf or fwrite) will
appear through the standard input of the child.

54

Interprocess Communication
● Pipes:

● For more details, see man popen

● For the more general form, including named pipes,
see man 7 pipe and man 2 pipe.

55

Interprocess Communication
● Shared memory:

● Mechanism to create a segment of memory and give
multiple processes access to it.

● shmget creates the segment and returns a handle to it
(just an integer value)

● shmat creates a logical address that maps to the
beginning of the segment so that this process can use
that memory area

● If we call fork(), the shared memory segment is
inherited shared (unlike the rest of the memory,
for which the child gets an independent copy)

56

Interprocess Communication
● Shared memory:

● For more information, see man shmget and man shmat

57

Interprocess Communication
● Message queues:

● Mechanism to create a queue or “mailbox” where
processes can send messages to or read messages
from.

● mq_open opens (creating if necessary) a message
queue with the specified name.

● mq_send and mq_receive are used to transmit or
receive (receive by default blocks if the queue is
empty) from the specified message queue.

58

Interprocess Communication
● Message queues:

● Big advantages:

● Allows multiple processes to communicate with
other multiple processes

● Synchronization is somewhat implicit!

● See man mq_overview for details.

59

	Concurrency Issues
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

