Propositional Logic

Methods & Tools for Software Engineering (MTSE) Fall 2017

Prof. Arie Gurfinkel

References

Chpater 1 of Logic for Computer Scientists
 http://www.springerlink.com/content/978-0-8176-4762-9/

Modern Birkhäuser Classics

Logic for
Computer Scientists

Uwe Schöning

What is Logic

According to Merriam-Webster dictionary logic is: **a** (1): a science that deals with the principles and criteria of validity of <u>inference</u> and demonstration

d: the arrangement of circuit elements (as in a computer) needed for computation; *also*: the circuits themselves

What is Formal Logic

Formal Logic consists of

- syntax what is a legal sentence in the logic
- semantics what is the meaning of a sentence in the logic
- proof theory formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as *and*, *or*, and *not* between simplest "atomic sentences"

A = "Paris is the capital of France"

B = "mice chase elephants"

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

A and B

A of B

if A then B

Syntax of Propositional Logic

An atomic formula has a form A_i , where i = 1, 2, 3 ...

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula F, ¬F (called not F) is a formula
- For all formulas F and G, F ∧ G (called and) and F ∨ G (called or)
 are formulas

Abbreviations

- use A, B, C, ... instead of A₁, A₂, ...
- use $F_1 \rightarrow F_2$ instead of $\neg F_1 \lor F_2$

(implication)

• use $F_1 \leftrightarrow F_2$ instead of $(F_1 \to F_2) \ \land \ (F_2 \to F_1)$

(iff)

Syntax of Propositional Logic (PL)

```
truth\_symbol ::= T(true) \mid \bot(false)
      variable ::= p, q, r, \dots
          atom ::= truth_symbol | variable
         literal ::= atom | \neg atom |
       formula ::= literal |
                      ¬formula |
                      formula \land formula \mid
                      formula \text{\text{formula}}
                      formula \rightarrow formula |
                      formula \leftrightarrow formula
```


Example

$$F = \neg((A_5 \land A_6) \lor \neg A_3)$$

Sub-formulas are

$$F, ((A_5 \land A_6) \lor \neg A_3),$$

$$A_5 \land A_6, \neg A_3,$$

$$A_5, A_6, A_3$$

Semantics of propositional logic

Truth values: {0, 1}

D is any subset of the atomic formulas An assignment A is a map $\mathbf{D} \rightarrow \{0, 1\}$

 $\mathbf{E} \supseteq \mathbf{D}$ set of formulas built from \mathbf{D} An extended assignment \mathbf{A}' : $\mathbf{E} \to \{0, 1\}$ is defined on the next slide

Semantics of propositional logic

For an atomic formula A_i in D: $A'(A_i) = A(A_i)$

A'((
$$F \land G$$
)) = 1 if A'(F) = 1 and A'(G) = 1 = 0 otherwise

A'((F
$$\vee$$
 G)) = 1 if A'(F) = 1 or A'(G) = 1
= 0 otherwise

$$A'(\neg F)$$
 = 1 if $A'(F) = 0$
= 0 otherwise

Example

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Truth Tables for Basic Operators

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \wedge G))$
0	0	0
0	1	0
1	0	0
1	1	1

$\mathcal{A}(F)$	$\mathcal{A}(\neg F)$		
0	1		
1	0		

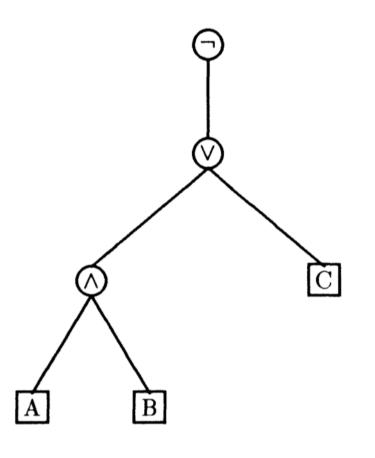
$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \vee G))$
0	0	0
0	1	1
1	0	1
1	1	1

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$



Propositional Logic: Semantics

An assignment A is *suitable* for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a *model* for F, written A ⊧ F, iff

- A is suitable for F
- A(F) = 1, i.e., F *holds* under A

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable* (or contradictory)

A formula F is *valid* (or a tautology), written F, iff every suitable assignment for F is a model for F

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2ⁿ suitable assignments Build a truth table enumerating all assignments

F is satisfiable iff there is at least one entry with 1 in the output

	A_1	A_2	• • •	A_{n-1}	A_n	F
\mathcal{A}_1 :	0	0		0	0	$\mathcal{A}_1(F)$
\mathcal{A}_2 :	0	0		0	1	$egin{array}{c} \mathcal{A}_1(F) \ \mathcal{A}_2(F) \end{array}$
:			٠.			:
\mathcal{A}_{2^n} :	1	1		1	1	$\mathcal{A}_{2^n}(F)$

An example

$$F = (\neg A \to (A \to B))$$

A	B	$\neg A$	$(A \rightarrow B)$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

Validity and Unsatisfiability

Theorem:

A formula F is valid if and only if ¬F is unsatifsiable

Proof:

F is valid \Leftrightarrow every suitable assignment for F is a model for F

⇔ every suitable assignment for ¬ F is not a model for ¬ F

⇔ ¬ F does not have a model

⇔ ¬ F is unsatisfiable

Exercise 10

Prove of give a counterexample

(a) If (F -> G) is valid and F is valid, then G is valid

(b) If (F->G) is sat and F is sat, then G is sat

(c) If (F->G) is valid and F is sat, then G is sat

Semantic Equivalence

Two formulas F and G are (semantically) equivalent, written $F \equiv G$, iff for every assignment A that is suitable for both F and G, A(F) = A(G)

For example, $(F \land G)$ is equivalent to $(G \land F)$

Formulas with different atomic propositions can be equivlent

- e.g., all tautologies are equivalent to True
- e.g., all unsatisfiable formulas are equivalent to False

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof:

(Let's talk about proof by induction first...)

Mathematical Induction

To proof that a property P(n) holds for all natural numbers n

- 1. Show that P(0) is true
- 2. Show that P(k+1) is true for some natural number k, using an Inductive Hypothesis that P(k) is true

Example: Mathematical Induction

Show by induction that P(n) is true

$$0 + \dots + n = \frac{n(n+1)}{2}$$

Base Case: P(0) is $0 = \frac{0(0+1)}{2}$

IH: Assume P(k), show P(k+1)

$$0 + \dots + k + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)+2(k+1)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

Induction on the formula structure

The definition of a syntax of a formula is an inductive definition

 first, define atomic formulas; second, define more complex formulas from simple ones

The definition of the semantics of a formula is also inductive

 first, determine value of atomic propositions; second, define values of more complex formulas

The same principle works for proving properties of formulas

- To show that every formula F satisfies some property S:
- (base case) show that S holds for atomic formulae
- (induction step) assume S holds for an arbitrary fixed formulas F and G.
 Show that S holds for (F ∧ G), (F ∨ G), and (¬ F)

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof: by induction on formula structure (base case) if H is atomic, then F = H, H' = G, and $F \equiv G$ (inductive step)

(case 1)
$$H = \neg H_1$$

(case 2)
$$H = H_1 \land H_2$$

(case 3)
$$H = H_1 \vee H_2$$

Useful Equivalences (1/2)

Useful Equivalences (2/2)

```
\neg(F \land G) \equiv (\neg F \lor \neg G)

\neg(F \lor G) \equiv (\neg F \land \neg G)

(deMorgan's Laws)

(F \lor G) \equiv F, \text{ if } F \text{ is a tautology}

(
F \land G
) 
\equiv G, \text{ if } F \text{ is a tautology}

(Tautology Laws)

(F \lor G) \equiv G, \text{ if } F \text{ is unsatisfiable}

(
F \land G
) 
\equiv F, \text{ if } F \text{ is unsatisfiable}

(Unsatisfiability Laws)
```


Exercise 18: Children and Doctors

Formalize and show that the two statements are equivalent

- If the child has temperature or has a bad cough and we reach the doctor, then we call him
- If the child has temperature, then we call the doctor, provided we reach him, and, if we reach the doctor then we call him, if the child has a bad cough

Example: Secret to long life

"What is the secret of your long life?" a centenarian was asked.

"I strictly follow my diet: If I don't drink beer for dinner, then I always have fish. Any time I have both beer and fish for dinner, then I do without ice cream. If I have ice cream or don't have beer, then I never eat fish."

The questioner found this answer rather confusing. Can you simplify it?

Normal Forms: CNF and DNF

A *literal* is either an atomic proposition v or its negation ~v A *clause* is a disjunction of literals

A formula is in *Conjunctive Normal Form* (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

$$\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})$$

A formula is in *Disjunctive Normal Form* (DNF) if it is a disjuction of conjunctions of literals

$$\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})$$

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F_1 in CNF and F_2 in DNF

Proof: (by induction on the structure of the formula F)

Converting a formula to CNF

Given a formula F

Substitute in F every occurrence of a sub-formula of the form

```
¬¬G by G ¬(G \wedge H) by (¬G \vee ¬H) ¬(G \vee H) by (¬G \wedge ¬H) This is called Negation Normal Form (NNF)
```

Substitute in F each occurrence of a sub-formula of the form

(F
$$\vee$$
 (G \wedge H)) by ((F \vee G) \wedge (F \vee H)) ((F \wedge G) \vee H) by ((F \vee H) \wedge (G \vee H))

The resulting formula F is in CNF

the result in CNF might be exponentially bigger than original formula F

From Truth Table to CNF and DNF

$$(\neg A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$$

$$(A \lor B \lor \neg C) \land \\ (A \lor \neg B \lor C) \land \\ (A \lor \neg B \lor \neg C) \land \\ (\neg A \lor \neg B \lor C) \land \\ (\neg A \lor \neg B \lor \neg C)$$

A	B	C	$\mid F \mid$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

2-CNF Fragment

A formula F is in 2-CNF iff

- F is in CNF
- every clause of F has at most 2 literals

Theorem: There is a polynomial algorithm for deciding wither a a 2-CNF formula F is satisfiable

Horn Fragment

A formula F is in Horn fragment iff

- F is in CNF
- in every clause, at most one literal is positive

$$(A \lor \neg B) \land (\neg C \lor \neg A \lor D) \land (\neg A \lor \neg B) \land D \land \neg E$$

Note that each clause can be written as an implication

$$(B \to A) \land (A \land C \to D) \land (A \land B \to 0) \land (1 \to D) \land (E \to 0)$$

Theorem: There is a polynomial time algorithm for deciding satisfiability of a Horn formula F

Horn Satisfiability

Input: a Horn formula F

Output: UNSAT or SAT + satisfying assignment for F

Step 1: Mark every occurrence of an atomic formula *A* in F if there is an occurrence of sub-formula of the form *A* in F

Step 2: pick a formula G in F of the form A1 \wedge ... \wedge An -> B such that all of A₁, ..., A_n are already marked

- if B = 0, return UNSAT
- otherwise, mark B and go back to Step 2

Step 3: Construct an suitable assignment S such that S(Ai) = 1 iff Ai is marked. Return SAT with a satisfying assignment S.

Exercise 21

Apply Horn satisfiability algorithm on a formula

$$(\neg A \lor \neg B \lor \neg D)$$

$$\neg E$$

$$(\neg C \lor A)$$

$$C$$

$$B$$

$$(\neg G \lor D)$$

$$G$$

3-CNF Fragment

A formula F is in 3-CNF iff

- F is in CNF
- every clause of F has at most 3 literals

Theorem: Deciding whether a 3-CNF formula F is satisfiable is at least as hard as deciding satisfiability of an arbitrary CNF formula G

Proof: by effective *reduction* from CNF to 3-CNF

Let G be an arbitrary CNF formula. Replaced every clause of the form

$$(\ell_0 \vee \cdots \vee \ell_n)$$

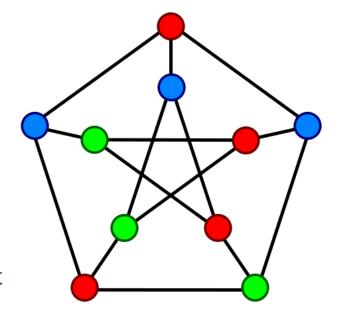
with 3-literal clauses

$$(\ell_0 \vee b_0) \wedge (\neg b_0 \vee \ell_1 \vee b_1) \wedge \cdots \wedge (\neg b_{n-1} \vee \ell_n)$$

where {b_i}are fresh atomic propositions not appearing in F

Graph k-Coloring

Given a graph G = (V, E), and a natural number k > 0 is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.



Formally:

- does there exists a function $f: V \rightarrow [0..k)$ such that
- for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF

 construct CNF C such that C is SAT iff G is kcolorable

k-coloring as CNF

Let a Boolean variable f_{v.i} denote that vertex v has color i

if f_{v,i} is true if and only if f(v) = i

Every vertex has at least one color

$$\bigvee_{0 \le i \le k} f_{v,i} \qquad (v \in V)$$

No vertex is assigned two colors

$$\bigwedge_{0 \le i < j < k} (\neg f_{v,i} \lor \neg f_{v,j}) \qquad (v \in V)$$

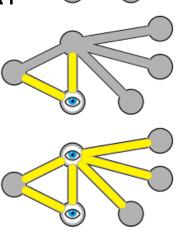
No two adjacent vertices have the same color

$$\bigwedge_{\text{university of }} (\neg f_{v,i} \vee \neg f_{u,i}) \qquad \qquad ((v,u) \in E)$$
 waterloo

Vertex Cover

Given a graph G=(V,E). A vertex cover of G is a subset C of vertices in V such that every edge in E is incident to at least one vertex in C

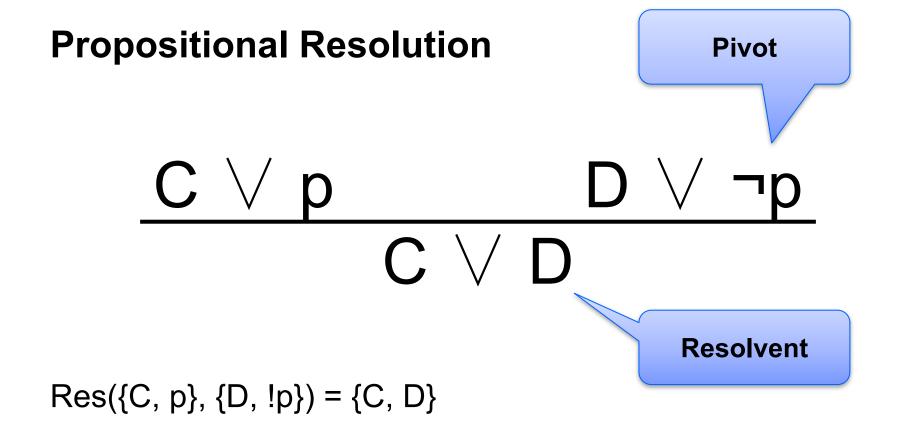
see a4_encoding.pdf for details of reduction to CNF-SAT



Compactness Theorem

Theorem:

A (possibly infinite) set M of propositional formulas is satisfiable iff every finite subset of M is satisfiable.



Given two clauses (C, p) and (D, !p) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup \{R\}$ is equivalent to F

Resolution Theorem

Let F be a set of clauses

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$$

$$Res^{0}(F) = F$$

$$Res^{n+1}(F) = Res(Res^{n}(F)), \text{ for } n \ge 0$$

$$Res^{*}(F) = \bigcup_{n>0} Res^{n}(F)$$

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

Exercise from LCS

For the following set of clauses determine Resⁿ for n=0, 1, 2

$$A \vee \neg B \vee C$$

$$B \vee C$$

$$\neg A \vee C$$

$$B \vee \neg C$$

$$\neg C$$

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resⁱ(F) for any i. Let n be such that Resⁿ⁺¹(F) contains an empty clause, but Resⁿ(F) does not. Then Resⁿ(F) must contain to unit clauses L and ¬L. Hence, it is UNSAT.

(Completeness) By induction on the number of different atomic propositions in F.

Base case is trivial: F contains an empty clause.

IH: Assume F has atomic propositions A1, ... A_{n+1}

Let F_0 be the result of replacing A_{n+1} by 0

Let F_1 be the result of replacing A_{n+1} by 1

Apply IH to F_0 and F_1 . Restore replaced literals. Combine the two resolutions.

Proof System

$$P_1,\ldots,P_n\vdash C$$

An inference rule is a tuple (P₁, ..., P_n, C)

- where, P₁, ..., P_n, C are formulas
- P_i are called premises and C is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

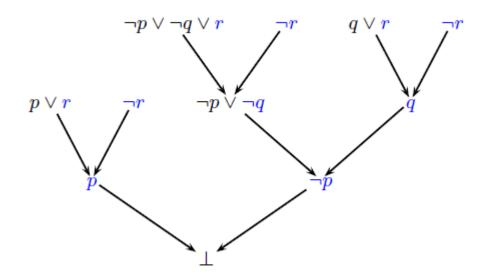
Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule

Example of a resolution proof

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:



Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c)$$

$$\frac{\neg a \lor b \lor \neg c \qquad a}{b \lor \neg c \qquad b} \qquad \frac{a \qquad \neg a \lor c}{c}$$

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$

Soundness and Completeness

A proof system P is sound iff

$$(F \vdash_P G) \implies (F \models G)$$

A proof system P is complete iff

$$(F \models G) \implies (F \vdash_P G)$$

Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic

Proof: Follows from Resolution Theorem

Exercise 33

Using resolution show that

$$A \wedge B \wedge C$$

is a consequence of

$$\neg A \lor B$$

$$\neg B \lor C$$

$$A \lor \neg C$$

$$A \lor B \lor C$$

Exercise 34

Show using resolution that F is valid

$$F = (\neg B \land \neg C \land D) \lor (\neg B \land \neg D) \lor (C \land D) \lor B$$

$$\neg F = (B \lor C \lor \neg D) \land (B \lor D) \land (\neg C \lor \neg D) \land \neg B$$

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables

A *literal* is either a variable v in V or its negation ~v

A *clause* is a disjunction of literals

A Boolean formula in *Conjunctive Normal Form* (CNF) is a conjunction of clauses

• e.g., (v1 || ~v2) && (v3 || v2)

An *assignment* s of Boolean values to variables *satisfies* a clause c if it evaluates at least one literal in c to true

An assignment s satisfies a formula C in CNF if it satisfies every clause in C

Boolean Satisfiability Problem (CNF-SAT):

determine whether a given CNF C is satisfiable

CNF Examples

CNF₁

- ~b
- ~a || ~b || ~c
- a
- sat: s(a) = True; s(b) = False; s(c) = False

CNF₂

- ~b
- ~a || b || ~c
- a
- ~a || c
- unsat

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

```
c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
```

Format details

- comments start with c
- header line: p cnf nbvar nbclauses
 - nbvar is # of variables, nbclauses is # of clauses
- each clause is a sequence of distinct numbers terminating with 0
 - positive numbers are variables, negative numbers are negations

Algorithms for SAT

SAT is NP-complete

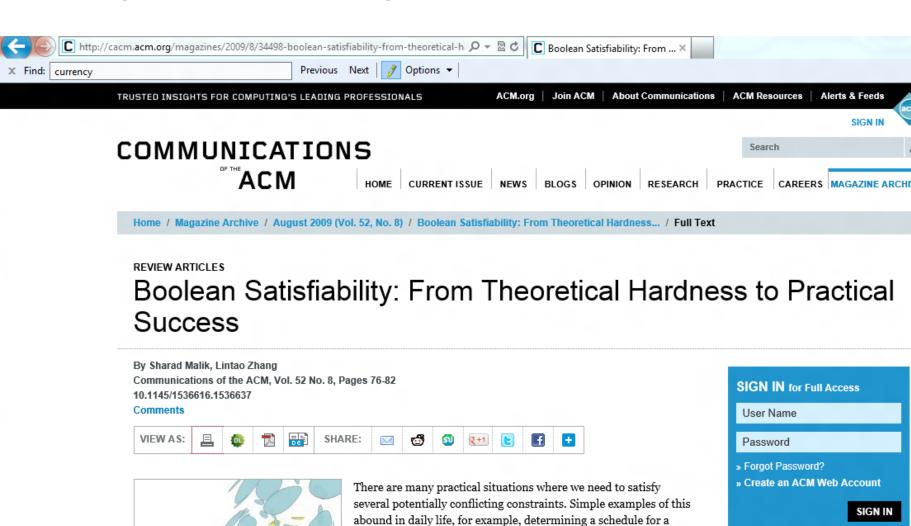
DPLL (Davis-Putnam-Logemman-Loveland, '60)

- smart enumeration of all possible SAT assignments
- worst-case EXPTIME
- alternate between deciding and propagating variable assignments

CDCL (GRASP '96, Chaff '01)

- conflict-driven clause learning
- extends DPLL with
 - smart data structures, backjumping, clause learning, heuristics, restarts...
- scales to millions of variables
- N. Een and N. Sörensson, "An Extensible SAT-solver", in SAT 2013.

Background Reading: SAT

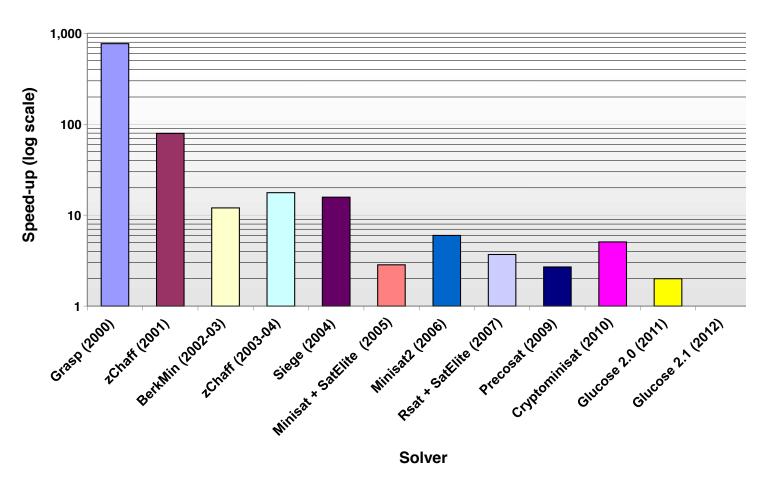


series of games that resolves the availability of players and venues, or finding a seating assignment at dinner consistent with various rules the host would like to impose. This also applies to applications in computing, for example, ensuring that a hardware/software system functions correctly with its overall behavior constrained by the behavior of its components and their

ARTICLE CONTENTS: Introduction **Boolean Satisfiability** Theoretical hardness: SAT and

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers



from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

SAT - Milestones

Problems impossible 10 years ago are trivial today

year	Milestone
1960	Davis-Putnam procedure
1962	Davis-Logeman-Loveland
1984	Binary Decision Diagrams
1992	DIMACS SAT challenge
1994	SATO: clause indexing
1997	GRASP: conflict clause learning
1998	Search Restarts
2001	zChaff: 2-watch literal, VSIDS
2005	Preprocessing techniques
2007	Phase caching
2008	Cache optimized indexing
2009	In-processing, clause management
2010	Blocked clause elimination

