
Version Control with Git

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel

based on https://git-scm.com/book

2 2

What is Version (Revision) Control

A system for managing changes to documents, programs, web pages,…

Maintains a revision history of changes to the document

Maintains multiple versions of a document

Enables multiple users to collaborate on a common collection of
documents

There are many revision control systems available
• rcs, cvs, subversion, mercurial
• git

3 3

Git Resources

From the command line
• git help to get a list of commands
• git help <cmd>
– where <cmd> is a git command (e.g., add, commit, fetch, merge)

On-line book
• https://git-scm.com/book/en/v2

Tutorial
• https://git-scm.com/docs/gittutorial

Interactive Tutorial on GitHub
• https://try.github.io/

https://git-scm.com/book/en/v2
https://git-scm.com/docs/gittutorial

4 4

Git History

Developed by the Linux development community
• Linux Torvalds, 2005

Initial goals
• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux kernel efficiently (speed and data
size)

5 5

Local Version Control

6 6

Centralized Version Control (subversion)

7 7

Distributed Version Control (git)

8 8

Snapshots, Not Differences

differences

snapshots

9 9

Common GIT workflow

init or clone
• create an empty repo or make a local copy of a remote repo

edit some files, create and modify content
add (or stage)
• mark changes to be combined into a commit
• a commit is a unit of change, a new version
• each commit has a globally unique name (i.e., 029389678201859fd6838c8b6c059edd0f17efcf)

commit
• create a commit based on identified changes

push
• propagate changes to remote repo

fetch or pull
• download changes from report repo

10 10

The Three States

11 11

File Life Cycle

12 12

TO THE CONSOLE!
https://www.katacoda.com/courses/git

https://www.katacoda.com/courses/git

13 13

Git Internals: Blobs, trees, and commits

14 14

SHA: Secure Hash Algorithm

SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash
function designed by the United States National Security Agency and is
a U.S. Federal Information Processing Standard published by the United
States NIST.[3] SHA-1 produces a 160-bit (20-byte) hash value known
as a message digest. A SHA-1 hash value is typically rendered as
a hexadecimal number, 40 digits long. [Wikipedia]

For any message (sequence of characters) computes a 40 digit hex
number (a digest) such that the probability that two different messages
are assigned the same digest (collision) is very low.

Git assigns every piece of content a unique name using its SHA-1
digest. In practice, the first 8 digest are sufficient for uniqueness.

You can use sha1sum to compute a digest on command line

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Hexadecimal

15 15

Git Internals: Blobs, trees, and commits

16 16

Commit history

17 17

Commit history and branches

18 18

Creating a branch

$ git branch testing

19 19

Switching a branch

$ git checkout testing

20 20

Change a file on testing

$ <make a change to foo.txt>

$ git commit –a –m ‘a change’

21 21

Switch back to master

$ git checkout master

22 22

Change a file on master

$ <make a change to foo.txt>

$ git commit –a –m ‘change’

23 23

Master, develop, topic

master – stable version
• only stable, well-tested commits

develop – development version
• next version to replace (merge into) master

topic – experimental bleeding edge
• test stuff out before merging into develop

http://nvie.com/posts/a-successful-git-branching-model/

24 24

A successful Git branching model

http://nvie.com/posts/a-successful-git-branching-model/

25 25

Example: many issues one solution

26 26

Example: merging things together

$ git checkout master

$ git merge dumbidea

$ git merge iss91v2

27 27

How to Write Git Commit Messages

https://xkcd.com/1296/

28 28

7 Rules of Great Git Commit Messages

1. Separate subject from body with a blank line

2. Limit the subject line to 50 characters

3. Capitalize the subject line

4. Do not end the subject line with a period

5. Use the imperative mood in the subject line

6. Wrap the body at 72 characters

7. Use the body to explain what and why vs. how

https://chris.beams.io/posts/git-commit/

Crash course on UNIX

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel

based on https://git-scm.com/book

30 30

UNIX

Unix (/ˈjuː.nɪks/; trademarked as UNIX) is a family
of multitasking, multiuser computer operating systems that derive from
the original AT&T Unix, development starting in the 1970s at the Bell
Labs research center by Ken Thompson, Dennis Ritchie, and others.

• 1970s -- developed at Bell Labs research center
• 1980s -- popular on many platforms BUT too many forks / extensions

(System V, AT&T, BSD, Xenix, …)
• 1990s – fragmented market, niche player
• 2000s – Linux is taking over, Apple is using Unix-based Darwin OS
• 2010s – Linux server market exceeds that of the rest of Unix market

https://en.wikipedia.org/wiki/Unix

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Multiuser
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/AT&T_Corporation
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie

31 31

Shell – Command Line Interface

Hardware

Operating System

Shell

Terminal

UNIX

32 32

33 33

ecelinux.uwaterloo.ca

All assignments have to work on ecelinux
Use Secure Shell (SSH) client to login from home

• built-in on Linux/Mac

• PuTTY on Windows (https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)

First, connect to ecelinux4.uwaterloo.ca using your Quest

username and password

Second, use ssh to hop to one of ecelinux[1-3] work machines

�ssh –X ecelinux1
Third, once connected start bash shell (unless bash is your def. shell)

�bash –l

If in doubt about any questions, answer “Yes” J

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)

34 34

Basic Shell Commands
Command Description
pwd display current working directory
cd folder change working directory to folder
ls list files in the current directory
ls -la list files including hidden files and display lots of

information
ls folder list files in a given folder
mkdir –p folder create a folder (and necessary sub-folders)
rm –rf folder recursively delete a given folder
touch filename create a blank file with a given name
rm filename delete a file with a given name
cat filename prints a content of a file onto standard output
less filename display a content of a file
man command display a manual page on command

there are many more commands and many online tutorials

35 35

Fun with shell and pipes

List a first/last few entries of a file
�cat file | head –n 20
�cat file | tail

Find all unique words in a file and their occurrences
�cat file | sort | uniq –c | sort

Save output of a command to a file
�ls > output.txt

Save output (stdout and stderr) and display it
�ls 2>&1 | tee output.txt

Searching (grepping) for a string in the output
�cat file | grep MYSTRING

Searching for a file by name
�find [folder] –name ‘*filename*’

man command or command –help or google for help

36 36

Transferring files between ecelinux

Use Secure Copy (scp/sftp) to transfer files to ecelinux4
• they are immediately available on all ecelinux machines

Much better way – use Git!!!

• commit and push from your working machine to github

• fetch or pull from ecelinux

If you don’t have a local Linux environment, use a local virtual machine.

Only use ecelinux for final testing and initial exploration

Tutorials for setting up a virtual machine, a docker container, and

Windows Linux Subsystem are on the course web page

• https://ece.uwaterloo.ca/~agurfink/ece650/

• you don’t need them all. Pick the one that works best for YOU

https://ece.uwaterloo.ca/~agurfink/ece650/

37 37

https://xkcd.com/378/

Which editor to use?

38 38

https://xkcd.com/1823/

39 39

So what editor to use?

Use your favorite editor or IDE on your machine
• atom, sublime, notepad++, visual studio, xcode, eclipse, etc.
• recommended: PyCharme for Python and CLion for C/C++

Use a simple text editor on ecelinux (or another terminal)
• pico, nano

Use vi or vim (Vi Improved)
• there are gui versions available for virtually every platform

My editor of choice is emacs
• configured using Spacemacs
• used with EVIL mode: https://github.com/emacs-evil/evil

