
Python

ECE 650
Methods & Tools for Software Engineering (MTSE)

Fall 2019

Prof. Arie Gurfinkel

2 2

Python

Created by Guido van Rossum in early 90s
• simple and elegant syntax emphasizing readability
• dynamic type system (”duck” typing)
• automatic memory management
• dynamically interpreted

Python 2.0 released in 2000

Python 3.0 released in 2008
• many new features
• NOT backward compatible to Python 2.0
• both version 2 and 3 are still actively used

We use Python v2.7 in the course
• January 2020 is EOL of Python2

3 3

Duck Typing

“if it walks like a duck and quacks like a duck,
then it must be a duck”

A type of any object / expression is
determined dynamically based on what
operations (methods / functions) the objects
involved support
• if the code works then it is typed correctly

This means that there are very few checks that
can be done before the code is executed
• thus, a poorly tested program might contain

hidden code paths that do not are not even
executable (i.e., do not produce any answer)

http://stereobooster.github.io/duck-typing

4 4

Many Flavors of Python

CPython (a.k.a. Python)
• the official implementation of Python in C
• a defacto standard of the language

PyPy
• an alternative implementation
• based on RPython framework for developing interpretes for dynamic

languages
Jython
• a Java-based implementation
• compiles Python into Java bytecode

Cython
• a C-based implementation
• compiles Python into C for more efficient execution

Don’t forget that there is version 2 and version 3 of everything!

5 5

IPython

An interactive shell for Python
• written in Python

Much more user friendly than the standard Python interpreter
• many helpful features to discover available modules, methods
• easy access to documentation
• good way to learn the language by trying

Part of a bigger echo system
• Jupyter, Python Notebooks, graphs, and many more
• https://ipython.org/

We will only use the interactive shell

https://ipython.org/

6 6

PYTHON TUTORIAL
https://docs.python.org/2/tutorial/index.html

7 7

https://notebooks.azure.com/arie-
gurfinkel/projects/ece650-py

8 8

CALCULATOR EXAMPLE

9 9

Virtualenv

It is hard to maintain consistent development environment
• your code might require 3rd party libraries and specific versions of these
• different environments might provide different libraries and these might

change as system administrator updates the system
• you might want to develop on one machine but make sure that it works on

another (i.e., develop on personal machine, run on ecelinux[1-3])

virtualenv simplifies the management of virtual python environment
• not a virtual machine! no overhead! (except for extra space)
• maintains local copies of desired libraries
• multiple virtual environments can co-exist together

• see course web site for setup details
– https://ece.uwaterloo.ca/~agurfink/ece650/tutorial/2019/08/25/virtualenv-intro

https://ece.uwaterloo.ca/~agurfink/ece650/tutorial/2019/08/25/virtualenv-intro

10 10

Unit Testing

A unit test exercises a unit of functionality to test its behavior

A unit test framework provides a standard mechanism for
• specifying a test (setup, execution, expected result, teardown)
• executing a test
• generating test reports

Python includes a Unit Test framework called unittest
• https://docs.python.org/2/library/unittest.html

It is important to design your code with testing in mind
• e.g., a code that simply reads and writes to standard input and output is

harder to test than code that provides a more structured interaction

https://docs.python.org/2/library/unittest.html

11 11

Anatomy of a Unit Test
include module A test case is a

collection of tests A method is a
test

Calls to
assertXXX()

methods indicate
test results

Entry point for the
test when ran from

command line

12 12

Designing for Testing

Factor the program into meaningful units / components
• e.g., parser, command processor, components, data structures, etc.

Each unit should have a well defined specification
• what are legal inputs
• what are legal outputs
• how inputs and outputs are passed around

Avoid monolithic design that reads standard input and writes standard
output

Good design requires more work
• additional functionality specifically for testing / debugging purposes
• but ultimately will save time of the overall development

13 13

coverage.py

A test coverage is a metric identifying how much of a program has been
executed by a given test (or a set of inpiuts)
• e.g., #statements executed / # total statements

Statement coverage measures the number of statements executed

Branch coverage, in addition, measures the number of branches taken
• a branch is covered if both true- and false-branches are taken in some

execution

In Python (or any interpreted language) statement/branch coverage are
especially important
• a code that is not covered is never executed; it might be (almost) complete

nonesense

Coverage.py is a widely used coverage tool for Python
• https://coverage.readthedocs.io/en/coverage-4.4.1/

14 14

coverage.py usage

coverage run PYTHON_PROGRAM
• executes the program and monitors which statements are executed

coverage run –branch PYTHON_PROGRAM
• executes the program and monitors which statements are executed and

which branches are followed

coverage html
• generates an HTML report showing coverage of the last run
• can only be executed after coverage-run as shown above
• the result is placed in htmlconv/index.html

15 15

Regular Expressions

RegEx – a language to specify and discover patterns in strings

(Basic) Syntax

regex ::= letter (exact match)
(regex) (grouping)
regex? (zero or one)
regex+ (one or more)
regex* (zero or more)
regex regex (sequence)
regex | regex (choice)

letter ::= (see next slide)

16 16

Regular Expressions (Cont’d)

letter ::= char (exact match)
. (matches any character)
[char+] (any char in the group)
[^ letter+] (any char not in a group)

char ::= (a single character)

Python RE library
• https://docs.python.org/2/library/re.html
• provides many additional “characters” and extra operators to refine and

simplify the matching
• provides API to find matches in strings

https://docs.python.org/2/library/re.html

17 17

Regular Expressions by Example

Single Digit: [0-9]
Non-Digit: [^0-9]
Non-Space: [^]

Natural number: [0-9]+
Integer: [-]?[0-9]+
Decimal: [0-9]+(\.[0-9]+)?

In Python
import re
r = re.compile(r’[0-9]+’)
v = r.findall(‘555-4567 ext. 3483’)
print v

18 18

Design for A1

Command Parser
• input: line of text
• output: command or error

Street Database
• a list of streets and their line segments
• interface: add/delete/change/check street

Graph
• a store for edges and vertices

Graph Generator
• input: Street Database
• output: Graph

Graph Printer
• input: a graph
• output: a graph in the output format of A1

19 19

Python

Course Website
https://ece.uwaterloo.ca/~agurfink/ece650/tutorial/2019/09/13/python

The Python Tutorial
http://docs.python.org/tutorial/

Think Python, 2nd edition
http://www.greenteapress.com/thinkpython/

Data Programming course notes
http://courses.cs.washington.edu/courses/cse1
40/13wi/calendar/lecturelist.html

https://ece.uwaterloo.ca/~agurfink/ece650/tutorial/2019/09/13/python
http://docs.python.org/tutorial/
http://www.greenteapress.com/thinkpython/
http://courses.cs.washington.edu/courses/cse140/13wi/calendar/lecturelist.html

20 20

Python Tutor

http://www.pythontutor.com/

http://www.pythontutor.com/

