
Using Fork and Pipe

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel

2 2

Additional Information

Advanced Linux Programming
• Chapter 2.1 (Interacting with Execution Environment)
• Chapter 3 (Processes)
• Chapter 5.4 (Pipes)

The book is available from the links below

https://github.com/MentorEmbedded/advancedlinuxprogramming/blob/g
h-pages/alp-folder/advanced-linux-programming.pdf

https://github.com/MentorEmbedded/advancedlinuxprogramming/tree/gh
-pages

https://github.com/MentorEmbedded/advancedlinuxprogramming/blob/gh-pages/alp-folder/advanced-linux-programming.pdf
https://github.com/MentorEmbedded/advancedlinuxprogramming/tree/gh-pages

3 3

Standard input, output, and error

• Let’s change stdin, stdout, and stderr

ht
tp

s:
//e

n.
w

ik
ip

ed
ia

.o
rg

/w
ik

i/F
ile

:S
td

st
re

am
s-

no
tit

le
.s

vg

4 4

PROCESS

5 5

What is a “Process”?

• What is a process:
• “A running instance of a program”
• Examples:

• Each of the two instances of Firefox
• The shell and the ls command executed, each is a process

• Advanced programmers use multiple processes to
• Do several tasks at once
• Increase robustness (one process fails, other still running)
• Make use of already-existing processes

6 6

The “Guts” of a Process!

• The main components of a
process:
- An executable piece of code (a

program)
- Data that is input or output by the

program
- Execution context (information

about the program needed by
OS)

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

7 7

Let’s Dissect a Process!

• Windows:
• Task manager

• Unix-like (Mac and Linux):
• In the terminal type:

• ps or top
• ps –f for full details

8 8

The Parent of a Process

• Each process (with some exceptions) has a parent process
(indicated by ppid)

• Can we get this information within a program?
• YES!
• Use getpid() and getppid() from unistd.h

9 9

KILLing a Process!

• Run kill in the terminal (run kill with -KILL)

ht
tp

s:
//w

w
w

.re
dd

it.
co

m
/r/

lin
ux

m
as

te
rr

ac
e/

co
m

m
en

ts
/3

y4
2q

z/
ki

lli
ng

_a
_n

on
re

sp
on

di
ng

_p
ro

ce
ss

/

10 10

Creating a Process

• Using a system
• Runs a shell (as a subprocess) to run the given commands

• Why using system is not recommended:
• The call to system relies on the installed shell
• It brings the shell’s:

• Features
• limitations
• Security flaws

11 11

Creating a Process - fork() system call

Forks an execution of the process
• after a call to fork(), a new process is created (called child)

• the original process (called parent) continues to execute concurrently

• in the parent, fork() returns the process id of the child that was created

• in the child, fork() return 0 to indicate that this is a child process

• The parent and child are independent

Man(ual) Page
• man 2 fork

12 12

exec() – executing a program in a process

exec() series of functions are used to start another program in the
current process
• after a call to exec() the current process is replaced with the image of the

specified program
• different versions allow for different ways to pass command line arguments

and environment settings
• int execv(const char *file, char *const argv[])
– file is a path to an executable
– argv is an array of arguments. By convention, argv[0] is the name of the

program being executed

Man page
• man 3 exec

13 13

fork() system call

Forks an execution of the process
• after a call to fork(), a new process is created (called child)

• the original process (called parent) continues to execute concurrently

• in the parent, fork() returns the process id of the child that was created

• in the child, fork() returns 0 to indicate that this is a child process

Man(ual) Page
• man 2 fork

14 14

exec() – executing a program in a process

exec() series of functions are used to start another program in the
current process
• after a call to exec() the current process is replaced with the image of the

specified program
• different versions allow for different ways to pass command line arguments

and environment settings
• int execv(const char *file, char *const argv[])
– file is a path to an executable
– argv is an array of arguments. By convention, argv[0] is the name of the

program being executed

Man page
• man 3 exec

15 15

kill() – sending a signal

A process can send a signal to any other process
• usually the parent process sends signals to its children
• int kill(pid_t pid, int sig)
– send a signal sig to a process pid

• useful signal: SIGTERM
– asks a process to terminate

When a parent process exits, the children processes are terminated

It’s a good practice to kill and wait for children to terminate before exiting

Man page
• man 2 kill

16 16

Signals

• A special message sent to a process
• Signals are asynchronous
• Different types of signals (defined in signum.h)

• SIGTERM: Termination
• SIGINT: Terminal interrupt (Ctrl+C)
• SIGKILL: Kill (can't be caught or ignored)
• SIGBUS: BUS error
• SIGSEGV: Invalid memory segment access
• SIGPIPE: Write on a pipe with no reader, Broken pipe
• SIGSTOP: Stop executing (can't be caught or ignored)

• Handling a signal:
• Default disposition
• Signal handler procedure

• Sending signal from one process to another process (SIGTERM,
SIGKILL)

17 17

waitpid() – Waiting for a child

A parent process can wait for a child process to terminate
• pid_t waitpid(pid_t pid, int *stat_loc, int options)
– block until the process with the specified pid terminates
– the return code from the terminating process is placed in stat_loc
– options control whether the function blocks or not

• 0 is a good choice for options

Man page
• man 2 wait

18 18

pipe() and dup2() – Inter-Process
Communication
pipe() creates a ONE directional pipe
• two file descriptors: one to write to and one to read from the pipe
• a process can use the pipe by itself, but this is unusual
• typically, a parent process creates a pipe and shares it with a child, or

between multiple children
• some processes read from it, and some write to it
– there can be multiple writers and multiple readers

• although multiple writers is more common
dup2() duplicates a file descriptor
• used to redirect standard input, standard output, and standard error to a pipe

(or another file)
• STDOUT_FILENO is the number of the standard output

Man pages
• man 2 pipe
• man 2 dup2

19 19

getopt() – processing CLI options

CLI – command line interface

At a start of the program, main(argc, argv) is called, where
• argc is the number of CLI arguments
• argv is an array of 0 terminated strings for arguments
– e.g., argv[0] is “foo”, argv[1] is “-s”, argv[2] is “-t”, argv[2] is “10”, …

getopt() is a library function to parse CLI arguments
• getopt(argc, argv, “st:”)
• input: arguments and a string describing desired format
• output: returns the next argument and an option value
• see example in using_getopt.cpp

$ foo –s –t 10 bar.txt baz.txt

switch
switch with

an
argument

positional
argument

20 20

/dev/urandom – Really Random Numbers

/dev/urandom is a special file (device) that
provides supply of “truly” random numbers

”infinite size file” – every read returns a
new random value

To get a random value, read a byte/word
from the file

see using_rand.cpp for an example

Have to use it for Assignment 3!

https://www.2uo.de/myths-about-urandom/

