
Propositional Logic

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel

2 2

References

• Chpater 1 of Logic for Computer Scientists
http://www.springerlink.com/content/978-0-8176-4762-9/

http://www.advancedlinuxprogramming.com/

3 3

What is Logic

According to Merriam-Webster dictionary logic is:
a (1) : a science that deals with the principles and
criteria of validity of inference and demonstration

d :the arrangement of circuit elements (as in a
computer) needed for computation; also: the
circuits themselves

https://www.merriam-webster.com/dictionary/inference

4 4

What is Formal Logic

Formal Logic consists of
• syntax – what is a legal sentence in the logic
• semantics – what is the meaning of a sentence in the logic
• proof theory – formal (syntactic) procedure to construct valid/true

sentences

Formal logic provides
• a language to precisely express knowledge, requirements, facts
• a formal way to reason about consequences of given facts rigorously

5 5

Where is Formal Logic used in SE?

Programming Languages
• conditional statements
• meaning (semantics) of programs

Requirements and Specification
• rigorous definition of what is to be constructed
• e.g., if we used formal logic for assignments, there would be no questions on

what is required, what is optional, and no questions
Computer Hardware
• computers are build out of simple logical gates
• most computer hardware can be specified and understood in propositional

logic
Testing and Verification
• rigorously validate that software satisfies its specifications

Algorithms and Optimization
• many complex problems can be reduced to logic and solved effectively using

automated decision procedures

6 6

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as and, or, and not
between simplest “atomic sentences”

A = “Paris is the capital of France”
B = “mice chase elephants”

The subject of propositional logic is to declare formally the truth of
complex structures from the truth of individual atomic components

A and B
A or B
if A then B

7 7

Syntax and Semantics

Syntax
•MW: the way in which linguistic elements (such as words)

are put together to form constituents (such as phrases or
clauses)
•Determines and restricts how things are written

Semantics
•MW: the study of meanings
•Determines how syntax is interpreted to give meaning

8 8

Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2 (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1) (iff)

9 9

Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula

10 10

Example

Sub-formulas are

F = ¬((A5 ^A6) _ ¬A3)

F, ((A5 ^A6) _ ¬A3),

A5 ^A6,¬A3,

A5, A6, A3

11 11

Semantics of propositional logic 1/2

We start with two truth values: {0, 1}
•0 stands for False, and 1 stands for True

Let D be any subset of the atomic formulas
An assignment A is a map D → {0, 1}
•A assigns True or False to every atomic in D

Let E ⊇ D be set of formulas built from D using
propositional connectives

Extended assignment A’: E → {0, 1} extends A from
atomic formulas to all formulas
• continued on the next slide

12 12

Semantics of propositional logic 2/2

For an atomic formula Ai in D: A’(Ai) = A(Ai)

A’(F ⋀ G) = 1 if A’(F) = 1 and A’(G) = 1
= 0 otherwise

A’(F ⋁ G) = 1 if A’(F) = 1 or A’(G) = 1
= 0 otherwise

A’(¬F) = 1 if A’(F) = 0
= 0 otherwise

13 13

Exercise: Define Extended Assignment

A(A) = 1

A(B) = 1

A(C) = 0

F = ¬(A ^B) _ C

Is F true or false under A’?

14 14

Truth Tables for Basic Operators

An extended assignment A’ extends the truth
table from atomic propositions to propositional
formulas

A(F) A(G) A0(F ^G)
0 0 0
0 1 0
1 0 0
1 1 1

<latexit sha1_base64="U5ldtJIl+3f4NZbuKFCmpNd64cc=">AAACiXicbVHdbtMwFHYCjJEB6+CSG4sJ1kmoiof2I65WJm1cDoluQ3VVOSenrTXHiWyHqQp5F54A8QA8BXd7mzltJMbGkY786fvO8fl8nBRKWhfH10H44OGjlcerT6K1p8+er3c2XpzZvDSAA8hVbi4SYVFJjQMnncKLwqDIEoXnyeVRo59/Q2Nlrr+4eYGjTEy1nEgQzlPjzg+u8QryLBM6rTj064pnws1AqKpf1xFPcCp1JYwR87oC+A6eg373eJu+pQ04acFW95jyK0ynSE+2OY/4rHEUxV5dpKeak7WY3eJZy7O/bRy9m+XQcWcz7sWLoPcBa8Hm4detX+Ofv/un484fnuZQZqgdKGHtkMWFG/nbnASF3n5psRBwKaY49FCLDO2oWmyypm88k9JJbnxqRxfs7Y5KZNbOs8RXNmuyd7WG/J82LN3kYFRJXZQONSwHTUpFXU6bb6GpNAhOzT0QYKT3SmEmjADnPy/yS2B3n3wfnO302Pvezme/jY9kGavkFXlNuoSRfXJIPpFTMiAQrATvgt1gL1wLWXgQfliWhkHb85L8E+HRDaW0vPg=</latexit>

A(F) A(G) A0(F _G)
0 0 0
0 1 1
1 0 1
1 1 1

<latexit sha1_base64="wD7w9khWazaF2dyDX2ZED41AjUo=">AAACh3icbZHNbtQwEMedUKANXwscuVhU0C2HbdKitscGpJZjkdi2aL1aObOzu1ZtJ7KdVqs0r8IjVH0AnoIbb4Ozm0rQMtLIP/1nxjMeZ4UU1sXx7yB8sPLw0ePVtejJ02fPX3RevjqxeWkA+5DL3Jxl3KIUGvtOOIlnhUGuMomn2fnnJn56gcaKXH9z8wKHik+1mAjgzkujzg+m8RJypbgeVwzSumKKuxlwWaV1HbEMp0JX3Bg+ryuAK/AapN3DTfqeNnDUwkb3kLILRHq0yVjEZs08UexjC/dScyaNe05a/ZZv9baMoZ9l2XLUWY978cLofUhaWD/4vnEzuv6ZHo86v9g4h1KhdiC5tYMkLtzQ3+YESPTDlxYLDud8igOPmiu0w2qxx5q+88qYTnLjXTu6UP+uqLiydq4yn9ksyd6NNeL/YoPSTfaHldBF6VDDstGklNTltPkUOhYGwcm5Bw5G+FkpzLjh4PzXRX4Jyd0n34eT7V6y09v+6rfxiSxtlbwhb0mXJGSPHJAv5Jj0CQQrwYdgJ/gYroVb4W64v0wNg7bmNfnHwvQPsTG8Gg==</latexit>

A(F) A0(¬F)
0 1
1 0

<latexit sha1_base64="CKaMcMq2OanpyHkQRweqrNrarJE=">AAACXHicbVHNbhMxEPYuhaZbCoFKXLhYVEC4RLvlUI4NSIgDhyKRtlIcRd7JJLFqe1e2FxQtK56KM5c+AbdeOPAKPADMJpWAlpEsf/N98+dxXmrlQ5peRPGNjZu3NjtbyfbtnTt3u/fuH/uicoBDKHThTnPpUSuLw6CCxtPSoTS5xpP87FWrn3xA51Vh34dliWMj51bNFMhA1KTrhcWPUBgj7bQWMGhqYWRYgNT1oGkSkeNc2Vo6J5dNDZ+AKBj0Xj/jTziBpz1Kn3NyhUjEoh0iSUnKyM3oTv/QAqnBus6ku5f205Xx6yC7BHuHb7+c//j5+evRpPtNTAuoDNoAWno/ytIyjKlaUKCRRqo8lhLO5BxHBK006Mf1ajkNf0zMlM8KR8cGvmL/zqil8X5pcopsX+6vai35P21UhdmLca1sWQW0sG40qzQPBW83zafKIQS9JCDBKZqVw0I6CYH+I6ElZFeffB0c7/ez5/39d7SNl2xtHfaQPWI9lrEDdsjesCM2ZMAu2K+oE21F3+ONeDveWYfG0WXOLvvH4ge/AScWtuw=</latexit>

15 15

A(A) = 1

A(B) = 1

A(C) = 0

F = ¬(A ^B) _ C

Formula

Assignment

Abstract Syntax Tree
(AST)

16 16

Propositional Logic: Semantics

An assignment A is suitable for a formula F if A assigns a truth value to
every atomic proposition of F

An assignment A is a model for F, written A⊧ F, iff
• A is suitable for F
• A’(F) = 1, i.e., F evaluates to true (or holds) under A

A formula F is satisfiable iff F has a model, otherwise F is unsatisfiable
(or contradictory)

A formula F is valid (or a tautology), written ⊧ F, iff every suitable
assignment for F is a model for F

17 17

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2n suitable assignments
Build a truth table enumerating all assignments
F is satisfiable iff there is at least one entry with 1 in the output

18 18

Problem: Is formula F SAT?

F = (¬A ! (A ! B))

A B ¬A (A ! B) F
0 0 1 1 1
0 1 1 1 1
1 0 0 0 1
1 1 0 1 1

19 19

Validity and Unsatisfiability

Theorem:
A formula F is valid if and only if ¬F is unsatifsiable

Proof:
F is valid ó every suitable assignment for F is a model for F

ó every suitable assignment for ¬ F is not a model for ¬ F
ó ¬ F does not have a model
ó ¬ F is unsatisfiable

20 20

Book: Exercise #10

Prove of give a counterexample

(a) If (F ⇒ G) is valid and F is valid, then G is valid

(b) If (F ⇒ G) is sat and F is sat, then G is sat

(c) If (F ⇒ G) is valid and F is sat, then G is sat

Valid

Valid

Not Valid

21 21

Semantic Equivalence

Two formulas F and G are (semantically) equivalent, written F ≡ G, iff for
every assignment A that is suitable for both F and G, A’(F) = A’(G)

For example, (F ⋀ G) is equivalent to (G ⋀ F)

Formulas with different atomic propositions can be equivalent
• e.g., all tautologies are equivalent to True
• e.g., all unsatisfiable formulas are equivalent to False

22 22

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in
which F occurs as a sub-formula. Let H’ be a formula obtained from H by
replacing every occurrence of F by G. Then, H and H’ are equivalent.

Proof:

(Let’s talk about proof by induction first…)

23 23

Mathematical Induction (over Natural Numbers)

To proof that a property P(n) holds for all natural numbers n

1. Show that P(0) is true

2. Assume that P(k) is true for some natural number k

• This assumption is called an Inductive Hypothesis (IH)

3. Show that P(k+1) is true using IH from the previous step

4. Conclude that P(n) holds for all natural numbers n

• P(n) is proven (or established, true) by mathematical induction

24 24

Example: Mathematical Induction

Show by induction that the formula for arithmetic series is correct

Base Case: P(0) is

IH: Assume P(k), show P(k+1)

0 + · · ·+ n =
n(n+ 1)

2

0 =
0(0 + 1)

2

0 + · · ·+ k + (k + 1)

= k(k+1)
2 + (k + 1)

= k(k+1)+2(k+1)
2

= (k+1)((k+1)+1)
2

IH is used in this step

25 25

Structural Induction on the formula structure

The definition of a syntax of a formula is an inductive definition
• first, define atomic formulas; second, define more complex formulas from

simple ones, each next definition uses previous definition recursively

The definition of the semantics of a formula is also inductive
• first, determine value of atomic propositions; second, define values of more

complex formulas

The same principle works for proving properties of formulas!
• To show that every formula F satisfies some property S:
• (base case) show that S holds for atomic formulae
• (induction step) assume S holds for an arbitrary fixed formulas F and G.

Show that S holds for (F ∧ G), (F ∨ G), and (¬ F)

26 26

Substitution Theorem (back from detour)

Theorem: Let F and G be equivalent formulas. Let H be a formula in
which F occurs as a sub-formula. Let H’ be a formula obtained from H by
replacing every occurrence of F by G. Then, H and H’ are equivalent.

Proof: by induction on formula structure

(base case) if H is atomic, then F = H, H’ = G, and F ≡ G

(inductive step)

(case 1) H = ¬ H1

(case 2) H = H1 ⋀ H2

(case 3) H = H1 ∨ H2

27 27

Useful Equivalences (1/ 2)

28 28

Useful Equivalences (2/ 2)

Don’t believe in these laws. Prove them using
structural induction!

29 29

Bool: Exercise 18: Children and Doctors

Formalize and show that the two statements are
equivalent
• If the child has temperature or has a bad cough and we

reach the doctor, then we call him

• If the child has temperature, then we call the doctor,
provided we reach him, and, if we reach the doctor then
we call him, if the child has a bad cough

((T ∨ C) ∧ R) ⇒ D

(R ⇒ (T ⇒ D)) ∧ (C ⇒ (R ⇒ D))

30 30

((T ∨ C) ∧ R) ⇒ D
((T ∧ R) ∨ (C ∧ R) ⇒ D)
((T ∧ R) ⇒ D) ∧ ((C ∧ R) ⇒ D)
(R ⇒ (T ⇒ D)) ∧ (C ⇒ (R ⇒ D))

Law:
(a ∨ b) ⇒ c
(a ⇒ c) ∧ (b ⇒ c)

31 31

Book Example: Secret to long life

"What is the secret of your long life?" a centenarian
was asked.

"I strictly follow my diet: If I don't drink beer for
dinner, then I always have fish. Any time I have
both beer and fish for dinner, then I do without ice
cream. If I have ice cream or don't have beer, then I
never eat fish."

The questioner found this answer rather confusing.
Can you simplify it?

Centenarian – a person who lives to or beyond an age 100.

32 32

https://www.merriam-webster.com/dictionary/normal%20form

https://www.merriam-webster.com/dictionary/normal%20form

33 33

Normal Form: DNF

A literal is either an atomic proposition v or its negation ¬v

A cube is a conjunction of literals
• e.g., (v1 ∧ ¬ v2 ∧ v3)

A formula F is in Disjunctive Normal Form (DNF) if F is a disjunction of
conjunctions of literals

(Fun) Fact: determining whether a DNF formula F is satisfiable is easy
• easy == linear in the size of the formula

n_

i=1

(
mî

j=1

Li,j)

34 34

Normal Form: CNF

A literal is either an atomic proposition v or its negation ¬v

A clause is a disjunction of literals
• e.g., (v1 ∨ ¬v2 ∨ v3)

A formula F is in Conjunctive Normal Form (CNF) if F is a conjunction of
disjunctions of literals

(Fun) Fact: determining whether a CNF formula F is satisfiable is hard
• hard == NP-complete

n̂

i=1

(
mi_

j=1

Li,j)

35 35

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F1 in
CNF. For every formula F, there is an equivalent formula F2 in DNF.

That is, CNF and DNF are normal forms:
• Every propositional formula can be converted to CNF and to DNF without

affecting its meaning (i.e., semantics)!

Proof: (by induction on the structure of the formula F)

36 36

Converting a formula to CNF

Given a formula F

1. Substitute in F every occurrence of a sub-formula of the form
¬¬G by G
¬(G ∧ H) by (¬G ∨ ¬H)
¬(G ∨ H) by (¬G ∧ ¬H)
This is called Negation Normal Form (NNF)

2. Substitute in F each occurrence of a sub-formula of the form
(F ∨ (G ∧ H)) by ((F ∨ G) ∧ (F ∨ H))
((F ∧ G) ∨ H) by ((F ∨ H) ∧ (G ∨ H))

The resulting formula F is in CNF
• the result in CNF might be exponentially bigger than original formula F

37 37

Example: From Truth Table to CNF and DNF

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(¬A ^ ¬B ^ ¬C) _
(A ^ ¬B ^ ¬C) _
(A ^ ¬B ^ C)

(A _B _ ¬C) ^
(A _ ¬B _ C) ^

(A _ ¬B _ ¬C) ^
(¬A _ ¬B _ C) ^

(¬A _ ¬B _ ¬C)

see the book for detailed algorithm

DNF

CNF

Truth table

38 38

2-CNF Fragment

A formula F is in 2-CNF iff
• F is in CNF
• every clause of F has at most 2 literals

Theorem: There is a polynomial algorithm for deciding wither a a 2-
CNF formula F is satisfiable

39 39

Horn Fragment

A formula F is in Horn fragment iff
• F is in CNF
• in every clause, at most one literal is positive

• Note that each clause can be written as an implication
– e.g. C ∧ A ⇒ D , A ∧ B ⇒ False, True ⇒ D

Theorem: There is a polynomial time algorithm for deciding satisfiability
of a Horn formula F

(A _ ¬B) ^ (¬C _ ¬A _D) ^ (¬A _ ¬B) ^D ^ ¬E

(B ! A) ^ (A ^ C ! D) ^ (A ^B ! 0) ^ (1 ! D) ^ (E ! 0)

40 40

Horn Satisfiability

Input: a Horn formula F

Output: UNSAT or SAT + satisfying assignment for F

Step 1: Mark every occurrence of an atomic formula A in F if there is an

occurrence of sub-formula of the form A in F

Step 2: pick a formula G in F of the form A1 ∧ … ∧ An -> B such that all

of A1, …, An are already marked

• if B = 0, return UNSAT

• otherwise, mark B and go back to Step 2

Step 3: Construct an suitable assignment S such that S(Ai) = 1 iff Ai is

marked. Return SAT with a satisfying assignment S.

41 41

Exercise 21

Apply Horn satisfiability algorithm on a formula

(¬A _ ¬B _ ¬D)

¬E
(¬C _A)

C

B

(¬G _D)

G

42 42

3-CNF Fragment

A formula F is in 3-CNF iff
• F is in CNF
• every clause of F has at most 3 literals

Theorem: Deciding whether a 3-CNF formula F is satisfiable is at least
as hard as deciding satisfiability of an arbitrary CNF formula G
Proof: by effective reduction from CNF to 3-CNF
Let G be an arbitrary CNF formula. Replaced every clause of the form

with 3-literal clauses

where {bi} are fresh atomic propositions not appearing in F

(`0 _ · · · _ `n)

(`0 _ b0) ^ (¬b0 _ `1 _ b1) ^ · · · ^ (¬bn�1 _ `n)

43 43

Complexity of 3-CNF Satisfiability

Theorem (Cook-Levin): The Boolean Satisfiability Problem is NP-
complete

Consequences
• If a formula F is satisfiable, then there exists a certificate for satisfiability that

can be checked in P (polynomial) time.
– That is, checking solutions is easy

• Any other problem that has polynomial certificates is polynomial reducible to
Boolean Satisfiability
– That is, such problems can be solved by writing a loop-free program,

compiling it to a Boolean circuit, and checking whether the circuit ever
accepts some input

• MANY MANY MANY OPTIMIZATION PROBLEMS ARE LIKE THAT
• Boolean Satisfiability is easy iff P = NP
– i.e., Boolean satisfiability today is a VERY VERY VERY HARD problem!

44 44

Background Reading: SAT

45 45

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

46 46

SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of
variables from

HW designs
Courtesy Daniel le Berre

47 47

Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of
G such that no two adjacent vertices have the
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring

48 48

k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V)

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V)

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)

49 49

Vertex Cover

Given a graph G=(V,E). A vertex cover of G is a subset C of vertices in
V such that every edge in E is incident to at least one vertex in C

see a4_encoding.pdf for details of reduction to CNF-SAT
• will be given together with assignment 4

https://en.wikipedia.org/wiki/Vertex_cover

50 50

Compactness Theorem

Theorem:
A (possibly infinite) set M of propositional formulas is satisfiable iff every
finite subset of M is satisfiable.

Corollary:
A (possibly infinite) set M of propositional formulas is unsatisfiable iff
there exists a finite subset U of M such that U is unsatisfiable

Proof:
• Section 1.4 in Logic for Computer Scientists by Uwe Schoning

51 51

Satisfiability and Unsatisfiability

Let F be a propositional formula (large)

Assume that F is satisfiable. What is a short proof / certificate to
establish satisfiability without a doubt?
• provide a model. The model is linear in the size of the formula

Now, assume that F is unsatisfiable. What is a short proof / certificate to
establish UNSATISFIABILITY without a doubt?

Is the following formula SAT or UNSAT? How do you explain your
answer?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

52 52

Propositional Resolution

Res({C, p}, {D, ¬p}) = {C, D}

Given two clauses (C, p) and (D, ¬p) that contain a literal p
of different polarity, create a new clause by taking the union
of literals in C and D

C ∨ p D ∨ ¬p
C ∨ D

Resolvent

Pivot

53 53

Resolution Lemma:
Let F be a CNF formula.

Let R be a resolvent of two clauses X and Y
in F.

Then, F ∪ { R } is equivalent to F.
• i.e., R is implied by F. Adding it to F does not
change the meaning of F

54 54

Resolution Theorem

Let F be a set of clauses

Define Resn recursively as follows:

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

Res(F) = F [{R | R is a resolvent of two clauses in F}

Res0(F) = F

Resn+1(F) = Res(Resn(F)), for n � 0

Res⇤(F) =
[

n�0

Resn(F)

55 55

Exercise from LCS

For the following set of clauses determine Resn for n=0, 1, 2

A _ ¬B _ C

B _ C

¬A _ C

B _ ¬C
¬C

56 56

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resi(F) for any i.
Let n be such that Resn+1(F) contains an empty clause, but Resn(F) does
not. Then Resn(F) must contain to unit clauses L and ¬L. Hence, it is
UNSAT.

(Completeness) By induction on the number of different atomic
propositions in F.
Base case is trivial: F contains an empty clause.
IH: Assume F has atomic propositions A1, … An+1

Let F0 be the result of replacing An+1 by 0
Let F1 be the result of replacing An+1 by 1
Apply IH to F0 and F1 . Restore replaced literals. Combine the two
resolutions.

57 57

Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P

P1, . . . , Pn ` C

58 58

Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

C ∨ p D ∨ ¬p
C ∨ D

59 59

Example of a resolution proof

60 60

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

61 61

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every
model of F and is a model of G

A formula G is derivable from a formula F by a proof system
P if there exists a proof whose leaves are labeled by
formulas in F and the root is labeled by G

F |= G

F `P G

62 62

Soundness and Completeness

A proof system P is sound iff

A proof system P is complete iff

(F |= G) =) (F `P G)

(F `P G) =) (F |= G)

63 63

Propositional Resolution

Theorem: Propositional resolution is sound
and complete for propositional logic

Proof: Follows from Resolution Theorem

64 64

Book: Exercise 33

Using resolution show that

is a consequence of

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C

65 65

Exercise 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B

66 66

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables

A literal is either a variable v in V or its negation ¬v

A clause is a disjunction of literals

• e.g., (v1 ∨ ¬v2 ∨ v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses

• e.g., (v1 ∨ ¬v2) ∧ (v3 ∨ v2)

An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in c to true

An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):

• determine whether a given CNF C is satisfiable

67 67

Are the following CNFs SAT or UNSAT

CNF 1 (3 clauses)
• ¬ b
• ¬ a ∨ ¬b \or ¬c
• a
• SAT: s(a) = True; s(b) = False; s(c) = False

CNF 2 (4 clauses)
• ¬b
• ¬a ∨ b ∨ ¬c
• a
• ¬a ∨ c
• UNSAT

68 68

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
Format details
• comments start with c
• header line: p cnf nbvar nbclauses
– nbvar is # of variables, nbclauses is # of clauses

• each clause is a sequence of distinct numbers terminating with 0
– positive numbers are variables, negative numbers are negations

69 69

Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf

70 70

Background Reading: SAT

71 71

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

72 72

SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of
variables from

HW designs
Courtesy Daniel le Berre

