
Concurrency: Running
Together

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Reza Babaee

Pi
nC

lip
ar

t.c
om

2 2

Learning Objectives

• By the end of this lecture you will be able to:
• Explain the benefits of multiprogramming and

multithreading
• Apply multiprogramming and multithreading to run

different tasks concurrently
• Analyze different sources of concurrency issues and

how to resolve them

Today’s
class

3 3

References

• (not comprehensive!)
• Modern Operating Systems by Andrew S.

Tanenbaum, 4th Edition
– Section 2.1.7
– Sections 2.2.3 & 2.2.4
– Sections 2.3.1 & 2.3.2 & 2.3.3
– Sections 2.3.5 & 2.3.6
– Section 6.2

• Slides & Demo credit:
– Carlos Moreno (cmoreno@uwaterloo.ca)

4 4

MULTIPROGRAMMING

5 5

Review process – 06-review-process

6 6

Multiprogramming

Concurrent execution of multiple tasks (e.g.,
processes)
● Each task runs as if it was the only task running on the

CPU.

Benefits:
● When one task needs to wait for I/O, the processor can

switch to the another task.
● (why is this potentially a huge benefit?)

7 7

Multiprogramming

8 8

Multiprogramming

Example / case-study:
● Demo of web-based app posting jobs and a
simple command-line program processing them.

–Can run multiple instances of the job processing
program.
–Or we can have the program use fork() to spawn

multiple processes that work concurrently

9 9

MULTITHREADING

10 10

Review thread – 06-review-threads

11 11

Multithreading

Example/demo:
● With the multithreading demo, we'll look at a different

application/motivation for the use of concurrency:
performance boost through parallelism.
–Possible when we have multiple CPUs (e.g., multicore

processors)
– Important to have multiple CPUs when the application is

CPU-bound.

12 12

CONCURRENCY ISSUES

13 13

Race Condition

A situation where concurrent operations access
data in a way that the outcome depends on the
order (the timing) in which operations execute.
● Doesn't necessarily mean a bug! (like in the threads

example with the linked list)
● In general it constitutes a bug when the programmer

makes any assumptions (explicit or otherwise) about an
order of execution or relative timing between operations in
the various threads.

14 14

Race Condition – Example

Race condition:

Example (x is a shared variable):

Thread 1: Thread 2:

x = x + 1; x = x – 1;

(what's the implicit assumption a programmer could make?)

15 15

Race Condition – Example

Race condition:

Thread 1: Thread 2:

x = x + 1; x = x – 1;

In assembly code:

R1 ← x R1 ← x
inc R1 dec R1
R1 → x R1 → x

16 16

Race Condition – Example

And this is how it could go wrong:

Thread 1: Thread 2:

x = x + 1; x = x – 1;

In assembly code:

R1 ← x R1 ← x

inc R1 dec R1

R1 → x R1 → x

17 17

Atomicity/ Atomic Operations

Atomicity is a characteristic of a fragment of a
program that exhibits an observable behaviour that
is non-interruptible – it behaves as if it can only
execute entirely or not execute at all, such that no
other threads deal with any intermediate outcome
of the atomic operation.
● Non-interruptible applies in the context of other
threads that deal with the outcome of the
operation, or with which there are race conditions.

● For example: in the pthreads demo, if the
insertion of an element in the list was atomic,
there would be no problem.

18 18

Atomicity/ Atomic Operations – Examples

● Renaming / moving a file with
int rename (const char * old, const char * new);
Any other process can either see the old file, or
the new file – not both and no other possible
“intermediate” state.

● opening a file with attributes O_CREAT and
O_EXCL (that is, creating a file with exclusive
access). The operation atomically attempts to
create the file: if it already exists, then the call
returns a failure code.

19 19

Mutual Exclusion

Atomicity is often achieved through mutual
exclusion – the constraint that execution of one
thread excludes all the others.
● In general, mutual exclusion is a constraint that is
applied to sections of the code.

● For example: in the pthreads demo, the fragment
of code that inserts the element to the list should
exhibit mutual exclusion: if one thread is inserting
an element, no other thread should be allowed to
access the list
–That includes main, though not a problem in
this particular case (why?)

20 20

Mutual Exclusion – How?

Attempt #1: We disable interrupts while in a critical

section (and of course avoid any calls to the OS)

● There are three problems with this approach

–Not necessarily feasible (privileged operations)

–Extremely inefficient (you're blocking everything else,

including things that wouldn't interfere with what your

critical section needs to do)

–Doesn't always work!! (keyword: multicore)

21 21

Mutual Exclusion – How?

Attempt #2: We place a flag (sort of telling others
“don't touch this, I'm in the middle of working with
it).

int locked; // shared between threads
// ...
if (! locked)
{

locked = 1;
// insert to the list (critical section)
locked = 0;

}

Why is this flawed? (there are several issues)

22 22

Mutual Exclusion – How?

One of the problems: does not really work!

This is what the assembly code could look like:

R1 ← locked
tst R1
brnz somewhere_else
R1 ← 1
R1 → locked

23 23

Mutual Exclusion – How? à Mutex

A mutex (for MUTual EXclusion) provides a clean
solution: In general we have a variable of type
mutex, and a program (a thread) attempts to lock
the mutex. The attempt atomically either succeeds
(if the mutex is unlocked) or it blocks the thread
that attempted the lock (if the mutex is already
unlocked).

● As soon as the thread that is holding the lock
unlocks the mutex, this thread's state becomes
ready.

24 24

Mutual Exclusion – How? à Mutex
Using a Mutex:
lock (mutex)
critical section
unlock (mutex)

For example, with POSIX threads (pthreads):
pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER;
// ...
pthread_mutex_lock (&mutex);
// ... critical section
pthread_mutex_unlock (&mutex);

25 25

Mutual Exclusion – How? à Mutex

● One issue is that POSIX only defines mutex
facilities for threads --- not for processes!

● We could still implement it through a “lock file”
(created with open using flags O_CREAT and
O_EXCL)
–Not a good solution (it does work, but is has
the same issues as the lock variable example)

26 26

27 27

SEMAPHORES
Another synchronization primitive

(image courtesy of wikipedia.org)

Edsger W. Dijkstra

28 28

Definition

● Semaphore: A counter with the following properties:

–Atomic operations that increment and
decrement the count
–Count is initialized with a non-
negative value

29 29
29

Operations

–wait operation decrements count
and causes caller to block if count
becomes negative (if it was 0)
–signal (or post) operation
increments count. If there are
threads blocked (waiting) on this
semaphore, it unblocks one of
them.

30 30
30

Example

Producer / consumer with semaphores

semaphore items = 0;
mutex_t mutex; // why also a mutex?

void producer() void consumer()
{ {

while (true) while (true)
{ {

produce_item(); sem_wait (items);
lock (mutex); lock (mutex);
add_item(); retrieve_item();
unlock (mutex); unlock (mutex);
sem_signal (items); consume_item();

} }
} }

31 31

Implementing Mutex with a Semaphore

Interestingly enough – Mutexes can be implemented in
terms of semaphores!

semaphore lock = 1;

void process (...)
{

while (1)
{

/* some processing */
sem_wait (lock);

/* critical section */
sem_signal (lock);
/* additional processing */

}
}

October 23, 2019 31

32 32
32

Exercise

Producer / consumer with semaphores only

33 33

POSIX Semaphores

● Defined through data type sem_t
● Two types:
–Memory-based or unnamed (good for threads)
–Named semaphores (system-wide — good for
processes synchronization)

October 23, 2019 33

34 34

POSIX Semaphores – unnamed

–Declare a (shared – possibly as global variable)
sem_t variable
–Give it an initial value with sem_init
–Call sem_wait and sem_post as needed.

sem_t items;
sem_init (&items, 0, initial_value);
// ...
sem_wait (&items) or sem_post (&items)

October 23, 2019 34

35 35

POSIX Semaphores – named

–Similar to dealing with a file: have to “open” the
semaphore – if it does not exist, create it and give it
an initial value.
–

sem_t * items = sem_open (semaphore_name, flags,
permissions, initial_value);

// should check if items == SEM_FAILED

// ...

sem_wait (items) or sem_post (items)

October 23, 2019 35

36 36

POSIX Semaphores – Example
Producer-consumer:
● We'll work on the example of the web-based demo as
a producer-consumer with semaphores.

● Granularity for locking?

–Should we make the entire process_requests a

critical section?

● Clearly overkill! No problem with two separate

processes working each on a different file!

● We can lock the file instead — no need for a mutex,

since this is a consumable resource.

● For a reusable resource, we'd want a mutex – block
while being used, but then want to use it ourselves!

October 23, 2019 36

37 37

STARVATION & DEADLOCKS

38 38
38

Starvation

● One of the important problems we deal with
when using concurrency:

● An otherwise ready process or thread is
deprived of the CPU (it's starved) by other
threads due to, for example, the algorithm used
for locking resources.
–Notice that the writer starving is not due to a
defective scheduler/dispatcher!

39 39
39

Deadlocks

● Consider the following scenario:
● A Bank transaction where we transfer money
from account A to account B and vice versa at
the same time

● Clearly, there is a (dangerous) race condition
–Want granularity — can not lock the entire bank
so that only one transfer can happen at a time
–We want to lock at the account level:

● Lock account A, lock account B,
then proceed!

40 40
40

Deadlocks – cont.

● Problem with this?

● Two concurrent transfers — one from Account
A to Account B ($100), and the other one from
account B to account A ($300).
–If the programming is written as:
Lock source account
Lock destination account
Transfer money
Unlock both accounts

41 41
41

Deadlocks – cont.

● Problem with this?
● Two concurrent transfers — one from Account
A to Account B ($100), and the other one from
account B to account A ($300).
–Process 1 locks account A, then locks
account B
–Process 2 locks account B, then locks
account A

42 42
42

Deadlocks – cont.

● What about the following interleaving?
–Process 1 locks account A
–Process 2 locks account B
–Process 1 attempts to lock account B (blocks)
–Process 2 attempts to lock account A (blocks)

● When do these processes unblock?

● Answer: under some reasonable assumptions,
never!

43 43
43

Deadlocks – cont.

Process 1 Process 2

Acct. 100

Acct. 200

● Solution in this case is really simple:
–Lock the resources in a given order (e.g., by
ascending account number).

B

A

44 44

INTER-PROCESS
COMMUNICATION

45 45

Review – 06-review-IPC

46 46

Shared Memory

● Mechanism to create a segment of memory and give
multiple processes access to it.

● shmget creates the segment and returns a handle to it
(just an integer value)

● shmat creates a logical address that maps to the
beginning of the segment so that this process can use
that memory area
–If we call fork(), the shared memory segment is
inherited shared (unlike the rest of the memory, for
which the child gets an independent copy)

October 23, 2019 46

47 47

Message Queues

● Mechanism to create a queue or “mailbox” where
processes can send messages to or read messages
from.

● mq_open opens (creating if necessary) a message
queue with the specified name.

● mq_send and mq_receive are used to transmit or
receive (receive by default blocks if the queue is
empty) from the specified message queue.

● Big advantages:
–Allows multiple processes to communicate with
other multiple processes
–Synchronization is somewhat implicit!

October 23, 2019 47

48 48

Assignment 3

/dev/urandom is a special file (device)
that provides supply of “truly” random
numbers

”infinite size file” – every read returns a
new random value

To get a random value, read a byte/word
from the file

see using_rand.cpp for an example

Have to use it for Assignment 3!

https://www.2uo.de/myths-about-urandom/

