
Propositional Satisfiability

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel

2 2

References

• Chpater 1 of Logic for Computer Scientists
http://www.springerlink.com/content/978-0-8176-4762-9/

http://www.advancedlinuxprogramming.com/

3 3

Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2 (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1) (iff)

4 4

Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula

5 5

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):
• determine whether a given CNF C is satisfiable

6 6

Are the following CNFs SAT or UNSAT

CNF 1 (3 clauses)
• ¬ b
• ¬ a ∨ ¬b ∨ ¬c
• a
• SAT: s(a) = True; s(b) = False; s(c) = False

CNF 2 (4 clauses)
• ¬b
• ¬a ∨ b ∨ ¬c
• a
• ¬a ∨ c
• UNSAT

7 7

Algorithms for SAT

SAT is NP-complete
• solution can be checked in polynomial time
• no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf

8 8

Background Reading: SAT

9 9

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

10 10

SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of
variables from

HW designs
Courtesy Daniel le Berre

11 11

ENCODING PROBLEMS TO SAT

12 12

Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of
G such that no two adjacent vertices have the
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring

13 13

k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V)

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V)

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)

14 14

Vertex Cover

Given a graph G=(V,E). A vertex cover of G is a subset C of vertices in
V such that every edge in E is incident to at least one vertex in C

see a4_encoding.pdf for details of reduction to CNF-SAT
• will be given together with assignment 4

https://en.wikipedia.org/wiki/Vertex_cover

15 15

USING A SAT SOLVER

16 16

DIMACS interface to a SAT Solver

Input:

• a CNF in DIMACS format

Output:

• SAT/UNSAT + satisfying assignment

We will use a SAT solver called MiniSAT

• available at https://github.com/agurfinkel/minisat

• written in C++

• use as a library in Assignment 4

• use via DIMACS interface today in class

• MiniSat examples:

– https://github.com/eceuwaterloo/ece650-minisat

https://github.com/agurfinkel/minisat
https://github.com/eceuwaterloo/ece650-minisat

17 17

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
Format details
• comments start with c
• header line: p cnf nbvar nbclauses
– nbvar is # of variables, nbclauses is # of clauses

• each clause is a sequence of distinct numbers terminating with 0
– positive numbers are variables, negative numbers are negations

18 18

MiniSat

MiniSat is one of the most famous modern SAT-solvers
• written in C++
• designed to be easily understandable and customizable
• many new SAT-solvers use MiniSAT as their base

Web page: http://minisat.se/

We will use a slightly updated version from GitHub:
https://github.com/agurfinkel/minisat

Good references for understanding SAT solving details
• MiniSat architecture: http://minisat.se/downloads/MiniSat.pdf
• Donald Knuth’s SAT13 (also based on MiniSat)
– http://www-cs-faculty.stanford.edu/~knuth/programs/sat13.w

http://minisat.se/
https://github.com/agurfinkel/minisat
http://minisat.se/downloads/MiniSat.pdf

19 19

PROPOSITIONAL RESOLUTION

20 20

Satisfiability and Unsatisfiability

Let F be a propositional formula (large)

Assume that F is satisfiable. What is a short proof / certificate to
establish satisfiability without a doubt?
• provide a model. The model is linear in the size of the formula

Now, assume that F is unsatisfiable. What is a short proof / certificate to
establish UNSATISFIABILITY without a doubt?

Is the following formula SAT or UNSAT? How do you explain your
answer?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

21 21

Propositional Resolution

Res({C, p}, {D, ¬p}) = {C, D}

Given two clauses (C, p) and (D, ¬p) that contain a literal p
of different polarity, create a new clause by taking the union
of literals in C and D

C ∨ p D ∨ ¬p
C ∨ D

Resolvent

Pivot

22 22

Resolution Lemma:
Let F be a CNF formula.

Let R be a resolvent of two clauses X and Y
in F.

Then, F ∪ { R } is equivalent to F.
• i.e., R is implied by F. Adding it to F does not
change the meaning of F

23 23

Resolution Theorem

Let F be a set of clauses

Define Resn recursively as follows:

Theorem: A CNF F is UNSAT iff Res*(F) contains an empty clause

Res(F) = F [{R | R is a resolvent of two clauses in F}

Res0(F) = F

Resn+1(F) = Res(Resn(F)), for n � 0

Res⇤(F) =
[

n�0

Resn(F)

24 24

Exercise from LCS

For the following set of clauses determine Resn for n=0, 1, 2

A _ ¬B _ C

B _ C

¬A _ C

B _ ¬C
¬C

25 25

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resi(F) for any i.
Let n be such that Resn+1(F) contains an empty clause, but Resn(F) does
not. Then Resn(F) must contain to unit clauses L and ¬L. Hence, it is
UNSAT.

(Completeness) By induction on the number of different atomic
propositions in F.
Base case is trivial: F contains an empty clause.
IH: Assume F has atomic propositions A1, … An+1

Let F0 be the result of replacing An+1 by 0
Let F1 be the result of replacing An+1 by 1
Apply IH to F0 and F1 . Restore replaced literals. Combine the two
resolutions.

26 26

Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P

P1, . . . , Pn ` C

27 27

Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

C ∨ p D ∨ ¬p
C ∨ D

28 28

Example of a resolution proof

29 29

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

30 30

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every
model of F and is a model of G

A formula G is derivable from a formula F by a proof system
P if there exists a proof whose leaves are labeled by
formulas in F and the root is labeled by G

F |= G

F `P G

31 31

Soundness and Completeness

A proof system P is sound iff

A proof system P is complete iff

(F |= G) =) (F `P G)

(F `P G) =) (F |= G)

32 32

Propositional Resolution

Theorem: Propositional resolution is sound
and complete for propositional logic

Proof: Follows from Resolution Theorem

33 33

Book: Exercise 33

Using resolution show that

is a consequence of

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C

34 34

Exercise 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B

35 35

Exercise 33

Using resolution show that

is a consequence of

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C

36 36

Exercise 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B

37 37

DPLL PROCEDURE
Davis Putnam Logemann Loveland

38 38

Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given
propositional logic (PL) formula F is satisfiable
• NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach
• Enumerate truth table

Modern SAT solvers
• DPLL algorithm
– Davis-Putnam-Logemann-Loveland

• Operates on Conjunctive Normal Form (CNF)

39 39

SAT solving by resolution (DP)
Formula must be in CNF

Resolution rule: !∨# $∨¬#
!∨$

Example: &∨'∨# &∨(∨¬#
&∨'∨(

The result of resolution is the resolvent (clause).
Original clauses are kept (not deleted).
Duplicate literals are deleted from the resolvent.

Note: No branching.

Termination: Only finite number of possible derived
clauses.

40 40

Unit & Input Resolution

Unit resolution: !∨ℓ ¬ℓ
! ¬ℓ (% ∨ ℓ is subsumed by %)

Input resolution: !∨ℓ '∨¬ℓ
!∨' (% ∨ ℓ member of input F).

(Optional) Exercise:
Set of clauses F:
F has an input refutation iff F has a unit refutation.

41 41

DPLL

DPLL: David Putnam Logeman Loveland = Unit resolution + split rule.

!
!,# | !,¬# split & '() ¬& '*+ (,- .(/

!, 0∨ℓ,¬ℓ
!, 0, ¬ℓ unit

Ingredient of most efficient SAT solvers

42 42

The original DPLL procedure

Tries to build incrementally a satisfying truth
assignment M for a CNF formula F

M is grown by
• deducing the truth value of a literal from M and F, or
• guessing a truth value

If a wrong guess for a literal leads to an
inconsistency, the procedure backtracks and tries
the opposite value

47 47

DPLL (as a procedure)

48 48

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3,

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Conflict

49 49

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3,

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Undo 3

50 50

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Model
Found

Guess ¬3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

51 51

Pure Literals

A literal is pure if only occurs positively or negatively.

53 53

An Abstract Framework for DPLL

State
• fail or M ‖ F
• where
– F is a CNF formula, a set of clauses, and
– M is a sequence of annotated literals denoting a partial truth assignment

Initial State
• ∅ ‖ F, where F is to be checked for satisfiability

Expected final states:
• fail if F is unsatisfiable
• M ‖ G

where
– M is a model of G
– G is logically equivalent to F

54 54

Transition Rules for the Original DPLL

Extending the assignment:

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

Notation: ld is a decision literal

55 55

Transition Rules for the Original DPLL

Repairing the assignment:

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain
decision literals

M ld N ‖ F, C ® M ¬l ‖ F, C Backtrack
M ld N ⊨ ¬C

l is the last decision
literal

56 56

Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
41, 2, 3d, 4 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬

2, ¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Decide 3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrack
3

57 57

Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
4

Decide 3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrack
3

1, 2, 3 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

58 58

Transition Rules for the Original DPLL

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain
decision literals

M ld N ‖ F, C ® M ¬l ‖
F, C

Backtrack
M ld N ⊨ ¬C

l is the last decision literal

59 59

The Basic DPLL System – Correctness

Some terminology
• Irreducible state: state to which no transition rule applies.
• Execution: sequence of transitions allowed by the rules and starting with

states of the form ∅ ǁ F.
• Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL is
finite

Proposition (Soundness) For every exhausted execution starting with ∅
ǁ F and ending in M ǁ F, M ⊨ F

Proposition (Completeness) If F is unsatisfiable, every exhausted
execution starting with ∅ ǁ F ends with fail

60 60

Modern DPLL: CDCL

Conflict Driven Clause Learning

Two watched literals
Periodically restarting backtrack search
Clausal learning

More details at
http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf

http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf

61 61

Conflict Directed Clause Learning

Lemma learning

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬q

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ t

63 63

Modern CDCL
Initialize !| # # $% & %'()* +,&-%'%
Decide . # ⟹ ., ℓ # ℓ $% -2&%%$32'4
Propagate . #, 5 ∨ ℓ ⟹ ., ℓ7∨ℓ #, 5 ∨ ℓ 5 $% *&,%' -24'8 .

Sat . |# ⟹ . # (8-' -24'8 .

Conflict . #, 5 ⟹ . #, 5 | 5 5 $% *&,%' -24'8 .
Learn . # | 5 ⟹ . #, 5 | 5
Unsat . # ∅ ⟹ :2%&(

Backjump ..′ # | 5 ∨ ℓ ⟹ .ℓ7∨ℓ # ̅5 ⊆ .,¬ℓ ∈ .′

Resolve . # | 5′ ∨ ¬ℓ ⟹ . # | 5′ ∨ 5 ℓ7∨ℓ ∈ .

Forget . #, 5 ⟹ . # 5 is a learned clause

Restart . # ⟹ ! # [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Model

Proof
Conflict

Resolution

64 64

CONVERTING TO CNF

65 65

Conjuctive Normal Form

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

'$)CNF '! ^ ! '
'!)CNF ¬' _
¬(' _))CNF ¬' ^ ¬
¬(' ^))CNF ¬' _ ¬
¬¬')CNF '
(' ^) _ ⇠)CNF (' _ ⇠) ^ (_ ⇠)

66 66

Tseitin Transformation – Main Idea

Introduce a fresh variable ei for every subformula Gi
of F
• intuitively, ei represents the truth value of Gi

Assert that every ei and Gi pair are equivalent
• ei ↔ Gi

• and express the assertion as CNF

Conjoin all such assertions in the end

67 67

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0$ (p$ e1)) ^ (e1 $ (q®r))

e1 $ (q ! r)
= (e1 ! (q ! r)) ^ ((q ! r) ! e1)
= (¬e1 _ ¬q _ r) ^ ((¬q _ r) ! e1)
= (¬e1 _ ¬q _ r) ^ (¬q ! e1) ^ (r ! e1)
= (¬e1 _ ¬q _ r) ^ (q _ e1) ^ (¬r _ e1)

68 68

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r))

e0 $ (p $ e1)
= (e0 ! (p $ e1)) ^ ((p $ e1)) ! e0)
= (e0 ! (p ! e1)) ^ (e0 ! (e1 ! p)) ^

(((p ^ e1) _ (¬p ^ ¬e1)) ! e0)
= (¬e0 _ ¬p _ e1) ^ (¬e0 _ ¬e1 _ p) ^

(¬p _ ¬e1 _ e0) ^ (p _ e1 _ e0)

69 69

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r))

G : e0^ (¬e0_¬p_e1) ^ (¬e0_p_¬e1) ^ (e0
_p_e1) ^ (e0_ ¬ p_¬e1) ̂

(¬e1_¬q_r) ̂ (e1_q) ̂ (e1_¬r)

70 70

Formula to CNF Conversion

def cnf (ɸ):
p, F = cnf_rec (ɸ)
return p ∧ F

def cnf_rec (ɸ):
if is_atomic (ɸ): return (ɸ, True)
elif ɸ == ψ ∧ ξ:
q, F1 = cnf_rec (ψ)
r, F2 = cnf_rec (ξ)

p = mk_fresh_var ()
C is CNF for p«(q∧r)
C = (¬p∨q)∧(¬p∨r)∧(p∨¬q∨¬r)
return (p, F1∧F2∧C)

elif ɸ == ψ∨ξ:
…

Exercise: Complete cases for
ɸ == ψ∨ξ, ɸ==¬ψ, ɸ == ψ«ξ

mk_fresh_var() returns a fresh
variable not used anywhere before

71 71

Tseitin Transformation [1968]

Used in practice

• No exponential blow-up

• CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:

• F’ is equisatisfiable to F

• Every model of F’ can be translated (i.e., projected) to a model of F

• Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion

