
Propositional Satisfiability

Methods & Tools for Software Engineering (MTSE)
Fall 2019

Prof. Arie Gurfinkel



2 2

References

• Chpater 1 of Logic for Computer Scientists
http://www.springerlink.com/content/978-0-8176-4762-9/

http://www.advancedlinuxprogramming.com/


3 3

Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are 

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2        (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1)                   (iff)
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Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula
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Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation  ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction 
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it 
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause 
in C
Boolean Satisfiability Problem (CNF-SAT):  
• determine whether a given CNF C is satisfiable
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Are the following CNFs SAT or UNSAT

CNF 1 (3 clauses)
• ¬ b
• ¬ a ∨ ¬b ∨ ¬c
• a
• SAT: s(a) = True;  s(b) = False; s(c) = False

CNF 2 (4 clauses)
• ¬b
• ¬a ∨ b ∨ ¬c
• a
• ¬a ∨ c
• UNSAT
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Algorithms for SAT

SAT is NP-complete
• solution can be checked in polynomial time
• no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf
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Background Reading: SAT
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S. A. Seshia 1 

Some Experience with SAT Solving 
Sanjit A. Seshia 

Speed-up of 2012 solver over other solvers 
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Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf  
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SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams 

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause 

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause 

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of 
variables from 

HW designs
Courtesy Daniel le Berre
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ENCODING PROBLEMS TO SAT
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Graph k-Coloring

Given a graph G = (V, E), and a natural number 
k > 0 is it possible to assign colors to vertices of 
G such that no two adjacent vertices have the 
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring
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k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V )

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V )

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)
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Vertex Cover

Given a graph G=(V,E). A vertex cover of G is a subset C of vertices in 
V such that every edge in E is incident to at least one vertex in C

see a4_encoding.pdf for details of reduction to CNF-SAT
• will be given together with assignment 4

https://en.wikipedia.org/wiki/Vertex_cover
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USING A SAT SOLVER
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DIMACS interface to a SAT Solver

Input: 

• a CNF in DIMACS format

Output:

• SAT/UNSAT + satisfying assignment

We will use a SAT solver called MiniSAT

• available at https://github.com/agurfinkel/minisat

• written in C++

• use as a library in Assignment 4

• use via DIMACS interface today in class

• MiniSat examples:

– https://github.com/eceuwaterloo/ece650-minisat

https://github.com/agurfinkel/minisat
https://github.com/eceuwaterloo/ece650-minisat
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DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c 
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
Format details
• comments start with c
• header line: p cnf nbvar nbclauses
– nbvar is # of variables, nbclauses is # of clauses

• each clause is a sequence of distinct numbers terminating with 0
– positive numbers are variables, negative numbers are negations
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MiniSat

MiniSat is one of the most famous modern SAT-solvers
• written in C++
• designed to be easily understandable and customizable
• many new SAT-solvers use MiniSAT as their base

Web page: http://minisat.se/

We will use a slightly updated version from GitHub: 
https://github.com/agurfinkel/minisat

Good references for understanding SAT solving details
• MiniSat architecture: http://minisat.se/downloads/MiniSat.pdf
• Donald Knuth’s SAT13 (also based on MiniSat)
– http://www-cs-faculty.stanford.edu/~knuth/programs/sat13.w

http://minisat.se/
https://github.com/agurfinkel/minisat
http://minisat.se/downloads/MiniSat.pdf
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PROPOSITIONAL RESOLUTION
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Satisfiability and Unsatisfiability

Let F be a propositional formula (large)

Assume that F is satisfiable. What is a short proof / certificate to 
establish satisfiability without a doubt?
• provide a model. The model is linear in the size of the formula

Now, assume that F is unsatisfiable. What is a short proof / certificate to 
establish UNSATISFIABILITY without a doubt?

Is the following formula SAT or UNSAT? How do you explain your 
answer?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)
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Propositional Resolution

Res({C, p}, {D, ¬p}) = {C, D}

Given two clauses (C, p) and (D, ¬p) that contain a literal p 
of different polarity, create a new clause by taking the union 
of literals in C and D

C ∨ p              D ∨ ¬p
C ∨ D

Resolvent

Pivot
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Resolution Lemma: 
Let F be a CNF formula. 

Let R be a resolvent of two clauses X and Y 
in F. 

Then,  F ∪ { R } is equivalent to F.
• i.e., R is implied by F. Adding it to F does not 
change the meaning of F
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Resolution Theorem

Let F be a set of clauses

Define Resn recursively as follows:

Theorem: A CNF F is UNSAT iff Res*(F) contains an empty clause

Res(F ) = F [ {R | R is a resolvent of two clauses in F}

Res0(F ) = F

Resn+1(F ) = Res(Resn(F )), for n � 0

Res⇤(F ) =
[

n�0

Resn(F )
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Exercise from LCS

For the following set of clauses determine Resn for n=0, 1, 2

A _ ¬B _ C

B _ C

¬A _ C

B _ ¬C
¬C
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Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resi(F) for any i. 
Let n be such that Resn+1(F) contains an empty clause, but Resn(F) does 
not. Then Resn(F) must contain to unit clauses L and ¬L. Hence, it is 
UNSAT.

(Completeness) By induction on the number of different atomic 
propositions in F. 
Base case is trivial: F contains an empty clause.
IH: Assume F has atomic propositions A1, … An+1 

Let F0 be the result of replacing An+1 by 0
Let F1 be the result of replacing An+1 by 1
Apply IH to F0 and F1 . Restore replaced literals. Combine the two 
resolutions.
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Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that 
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P 

P1, . . . , Pn ` C
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Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single 
propositional resolution rule

C ∨ p              D ∨ ¬p
C ∨ D
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Example of a resolution proof
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Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)
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Entailment and Derivation

A set of formulas F entails a set of formulas G iff every 
model of F and is a model of G

A formula G is derivable from a formula F by a proof system 
P if there exists a proof whose leaves are labeled by 
formulas in F and the root is labeled by G

F |= G

F `P G
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Soundness and Completeness

A proof system P is sound iff

A proof system P is complete iff

(F |= G) =) (F `P G)

(F `P G) =) (F |= G)
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Propositional Resolution

Theorem: Propositional resolution is sound 
and complete for propositional logic

Proof: Follows from Resolution Theorem
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Book: Exercise 33

Using resolution show that 

is a consequence of 

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C
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Exercise 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B
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Exercise 33

Using resolution show that 

is a consequence of 

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C
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Exercise 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B
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DPLL PROCEDURE
Davis Putnam Logemann Loveland
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Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given 
propositional logic (PL) formula F is satisfiable
• NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach
• Enumerate truth table

Modern SAT solvers
• DPLL algorithm
– Davis-Putnam-Logemann-Loveland

• Operates on Conjunctive Normal Form (CNF)



39 39

SAT solving by resolution (DP)
Formula must be in CNF

Resolution rule:  !∨# $∨¬#
!∨$

Example: &∨'∨# &∨(∨¬#
&∨'∨(

The result of resolution is the resolvent (clause).
Original clauses are kept (not deleted).
Duplicate literals are deleted from the resolvent.

Note: No branching.

Termination: Only finite number of possible derived 
clauses.
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Unit & Input Resolution

Unit resolution:  !∨ℓ ¬ℓ
! ¬ℓ (% ∨ ℓ is subsumed by %)

Input resolution: !∨ℓ '∨¬ℓ
!∨' (% ∨ ℓ member of input  F).

(Optional) Exercise: 
Set of clauses F:
F has an input refutation iff F has a unit refutation.
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DPLL

DPLL: David Putnam Logeman Loveland = Unit resolution + split rule.

!
!,# | !,¬# split    & '() ¬& '*+ (,- .( /

!, 0∨ℓ,¬ℓ
!, 0, ¬ℓ unit

Ingredient of most efficient SAT solvers
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The original DPLL procedure

Tries to build incrementally a satisfying truth 
assignment M for a CNF formula F

M is grown by 
• deducing the truth value of a literal from M and F, or
• guessing a truth value

If a wrong guess for a literal leads to an 
inconsistency, the procedure backtracks and tries 
the opposite value
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DPLL (as a procedure)
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The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3, 

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Conflict
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The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3, 

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Undo 3



50 50

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Model 
Found

Guess ¬3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1
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Pure Literals

A literal is pure if only occurs positively or negatively.
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An Abstract Framework for DPLL

State
• fail or M ‖ F
• where
– F is a CNF formula, a set of clauses, and
– M is a sequence of annotated literals denoting a partial truth assignment

Initial State
• ∅ ‖ F, where F is to be checked for satisfiability

Expected final states:
• fail if F is unsatisfiable
• M ‖ G

where 
– M is a model of G 
– G is logically equivalent to F
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Transition Rules for the Original DPLL

Extending the assignment:

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C  ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

Notation: ld is a decision literal
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Transition Rules for the Original DPLL

Repairing the assignment:

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain 
decision literals

M ld N ‖ F, C ® M ¬l ‖ F, C Backtrack
M ld N ⊨ ¬C

l is the last decision 
literal
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Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
41, 2, 3d, 4 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬

2, ¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Decide  3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrack 
3
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Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
4

Decide  3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrack 
3

1, 2, 3 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1
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Transition Rules for the Original DPLL

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain 
decision literals

M ld N ‖ F, C ® M ¬l ‖
F, C 

Backtrack
M ld N ⊨ ¬C

l is the last decision literal
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The Basic DPLL System – Correctness

Some terminology
• Irreducible state: state to which no transition rule applies.
• Execution: sequence of transitions allowed by the rules and starting with 

states of the form ∅ ǁ F.
• Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in Basic DPLL is 
finite

Proposition (Soundness) For every exhausted execution starting with ∅
ǁ F and ending in M ǁ F,  M ⊨ F

Proposition (Completeness) If F is unsatisfiable, every exhausted 
execution starting with ∅ ǁ F ends with fail
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Modern DPLL: CDCL

Conflict Driven Clause Learning

Two watched literals
Periodically restarting backtrack search
Clausal learning

More details at
http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf

http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf
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Conflict Directed Clause Learning

Lemma learning

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬q

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ t
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Modern CDCL
Initialize !| # # $% & %'( )* +,&-%'%
Decide . # ⟹ ., ℓ # ℓ $% -2&%%$32'4
Propagate . #, 5 ∨ ℓ ⟹ ., ℓ7∨ℓ #, 5 ∨ ℓ 5 $% *&,%' -24'8 .

Sat . |# ⟹ . # (8-' -24'8 .

Conflict . #, 5 ⟹ . #, 5 | 5 5 $% *&,%' -24'8 .
Learn . # | 5 ⟹ . #, 5 | 5
Unsat . # ∅ ⟹ :2%&(

Backjump ..′ # | 5 ∨ ℓ ⟹ .ℓ7∨ℓ # ̅5 ⊆ .,¬ℓ ∈ .′

Resolve . # | 5′ ∨ ¬ℓ ⟹ . # | 5′ ∨ 5 ℓ7∨ℓ ∈ .

Forget . #, 5 ⟹ . # 5 is a learned clause

Restart . # ⟹ ! # [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Model

Proof
Conflict

Resolution
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CONVERTING TO CNF
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Conjuctive Normal Form

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

'$  )CNF '!  ^  ! '
'!  )CNF ¬' _  
¬(' _  ) )CNF ¬' ^ ¬ 
¬(' ^  ) )CNF ¬' _ ¬ 
¬¬' )CNF '
(' ^  ) _ ⇠ )CNF (' _ ⇠) ^ ( _ ⇠)
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Tseitin Transformation – Main Idea

Introduce a fresh variable ei for every subformula Gi
of F
• intuitively, ei represents the truth value of Gi

Assert that every ei and Gi pair are equivalent
• ei ↔ Gi

• and express the assertion as CNF

Conjoin all such assertions in the end
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0$ (p$ e1)) ^ (e1 $ (q®r)) 

e1 $ (q ! r)
= (e1 ! (q ! r)) ^ ((q ! r) ! e1)
= (¬e1 _ ¬q _ r) ^ ((¬q _ r) ! e1)
= (¬e1 _ ¬q _ r) ^ (¬q ! e1) ^ (r ! e1)
= (¬e1 _ ¬q _ r) ^ (q _ e1) ^ (¬r _ e1)
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r)) 

e0 $ (p $ e1)
= (e0 ! (p $ e1)) ^ ((p $ e1)) ! e0)
= (e0 ! (p ! e1)) ^ (e0 ! (e1 ! p)) ^

(((p ^ e1) _ (¬p ^ ¬e1)) ! e0)
= (¬e0 _ ¬p _ e1) ^ (¬e0 _ ¬e1 _ p) ^

(¬p _ ¬e1 _ e0) ^ (p _ e1 _ e0)
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r)) 

G : e0^ (¬e0_¬p_e1) ^ (¬e0_p_¬e1) ^ (e0
_p_e1) ^ (e0_ ¬ p_¬e1)  ̂

(¬e1_¬q_r)  ̂ (e1_q)  ̂ (e1_¬r)
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Formula to CNF Conversion

def cnf (ɸ):
p, F = cnf_rec (ɸ)
return p ∧ F

def cnf_rec (ɸ):
if is_atomic (ɸ): return (ɸ, True)
elif ɸ == ψ ∧ ξ:
q, F1 = cnf_rec (ψ)
r, F2 = cnf_rec (ξ)

p = mk_fresh_var ()
# C is CNF for p«(q∧r)
C = (¬p∨q)∧(¬p∨r)∧(p∨¬q∨¬r)
return (p, F1∧F2∧C)

elif ɸ == ψ∨ξ:
…

Exercise: Complete cases for 
ɸ == ψ∨ξ, ɸ==¬ψ, ɸ == ψ«ξ

mk_fresh_var() returns a fresh 
variable not used anywhere before
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Tseitin Transformation [1968]

Used in practice

• No exponential blow-up

• CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:

• F’ is equisatisfiable to F

• Every model of F’ can be translated (i.e., projected) to a model of F

• Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion


