
Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016

by Paul A.S. Ward. All Rights Reserved

Electrical and Computer Engineering
University of Waterloo

November 7, 2019 2

Operating Systems and Systems
Programming

The Linux philosophy is to laugh in the face of
danger. Oops. Wrong one. Do it yourself. That's it.

Linus Torvalds

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

References

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 3

• William Stallings. Operating Systems:
Internals and Design Principles

• Advanced Linux Programming
http://www.advancedlinuxprogramming.co
m

http://www.advancedlinuxprogramming.com/

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Operating System Concepts

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 5

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

What is an OS?

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 6

1. Hardware Abstraction

2. Resource Manager

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Hardware Abstraction (1)

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 7

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Hardware Abstraction (2)

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 8

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

This is beautiful?

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 9

(Compared to the alternative, yes, it is)

fd = socket(AF_INET, SOCK_STREAM, 0);
getsockname(fd, (sockaddr *)&binder,

&binderSockLen);
nready = select(maxfd+1, &rset, NULL, NULL, NULL);
FD_ISSET(listenfd, &rset);
connfd = accept(listenfd,

(sockaddr *)&cliaddr, &clilen);

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 10

Layers of Computer System

user views “system” as a
set of applications

masks details of
HW from
Programmer

William Stallings. Operating Systems: Internals and Design Principles.

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Resource Manager

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 11

• More than one process is executing at a time
– Need to facilitate sharing of

• Processor
• I/O

– Keyboard
– Mouse
– Touchscreen
– Disk
– Network Interface Card (NIC)
– ….

• Memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

12

OS History

• Early days
– no operating system

– machine directly controlled from console [toggle switches, display lights], input
device and printer

– serial processing

– need to schedule time to reserve machine

– typical sequence:
• load the compiler, load source program,
• compile, load & link the compiled program
• execute the compiled program

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

13

Early OS History [2]

• Simple batch systems with ‘monitors’

• Monitor
– software that controls execution of programs

– ‘jobs’ batched together

– control returns back to monitor when program execution finished

– monitor is resident in main memory, always available for execution

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

14

Job Control Language (JCL)

• special type of programming language

• contains instruction to the monitor
– what compiler to use

– what data to use

interrupt
processing

device
drivers

job
scheduling

control lang.
interpreter

user
program

area

Monitor

Memory layout
for a resident

monitor

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

15

Multiprogramming

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

16

OS History: Time Sharing OS

• Using multiprogramming to handle multiple interactive programs

• Processor time is shared among several users

• Each user has the illusion of having his/her own computer

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

17

Batch Multiprogramming vs
Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response
time

Source of directives
to operating system

Job Control Language
commands provided with
the job

Commands entered at
the terminal

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

(Brief) Hardware Review

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 18

• CPU
– Fetch, decode, execute, fetch, decode, execute, ….

• (with pipelining to improve performance, but we will ignore that)
– General-purpose registers: R1, R2, … Rn

– Special-purpose registers:
• Program Counter (PC)

– points to next instruction
• Stack Pointer (SP)

– points to current stack, which contains current frame
» input parameters, local variables, …

– does not exist in every architecture
• Program Status Word (aka, flags)

– mode (user/kernel), condition code bits, etc.

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

OS Concepts

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 19

• Services

• Kernel

• Processes

• Memory management
– Volatile memory

• File System
– Long-term memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

OS Concepts

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 20

• Security/Protection

• Scheduling

• System Calls

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

21

OS Services

• Concurrency and Sharing

– Concurrent execution of programs

– Shared and controlled access to memory

– Shared and controlled access to I/O devices

– Shared and controlled access to files

– Shared and controlled access to other system resources

load data + instructions,
schedule execution

-protect from unauthorized access, resolve conflicts

-knowledge of I/O devices + structure of data contained in file/storage system

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

22

OS Services [2]

• Detection of errors and recovery
– internal and external hardware errors

• memory error, device failure
– software errors

• e.g., access to forbidden memory locations

-arithmetic overflow
-not able to grant request
-etc…..
-terminate program?
-retry?
-send error report?

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

23

OS Services [3]

• Monitoring and Accounting
– monitor computer operation

– monitor performance

– collect execution time data

– compute execution time statistics

– maintain accounting information

maintain high processor
utilization

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

24

-kernel (most frequently used) resident
-rest on storage, get as needed

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

25

Kernel

• Portion of operating system that provides the basic OS functionality

• Always resident in main memory

- interrupt/device drivers & handlers
- process/memory/resource management

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

26

Process

• consists of three components
1. an executable program

2. data needed/created by the program

3. execution context of the program

• all information OS needs to manage the process during and between execution
[PC, CPU registers, stack pointers,
files opened, resources owned...]

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

27

Memory Management

• Separation of process address spaces

• Protection and access control

• Automatic allocation and management

• Long-term storage management

typically met
with Virtual
Memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

28

Virtual Memory

• Physical memory [RAM]: limited, shared

• VM allows programmers to work with independent address spaces

• Parts of process address space may be in RAM, parts on disk

• If required, VM must also allow individual processes to share regions of
memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

29

Paging

• Process view: main memory consists of a number of fixed-size blocks,
called pages

• Main memory consists of correspondingly sized memory blocks called
frames

• Virtual address has two components:
a page number and an offset within the page

• A page may be located in any frame in main memory

• Underlying computer design issue:

– does address bus carry virtual or real addresses?

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

30

Virtual Memory Addressing

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

31

File System

• Implements long-term store

• Information stored in named objects called files

• Hierarchical structure: directories, subdirectories, files

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

32

Information Protection and Security

• Access control
– regulate user access to the system

• Information flow control
– regulate flow of data within the system and its delivery to programs/processes

• Certification
– proving that access and flow control perform according to specifications

- enforce desired protection and security

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

33

Scheduling, Resource Management

• General situation: K resources, N processes wishing to use
resources

• Need to decide who gets what and when

• Objectives (may conflict)

– Fairness

– Differential responsiveness

• discriminate between different classes of processes

– Efficiency

• maximize throughput, minimize response time, and
accommodate as many processes as possible

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

System Calls

• A call into the system!
– Meaning:

• Switching from user to kernel mode
– Cost?

• Need to preserve all state of calling entity

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 34

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Example

• count = read(fd, &buf, n);
1. User program

a. Push n
b. Push &buf
c. Push fd
d. Call “read” (go to 2)
e. ….

2. Library Set up trap
a. Put code for “read” in relevant register
b. Trap (go to 3)
c. Return to 1.e

3. In kernel:
a. Dispatch
b. Return to 2.c

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 35

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

System Calls - Process Management

• pid = fork();

• pid = waitpid(pid, &statloc, options);

• rc = execve(name, argv, environp);

• exit(status);

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 36

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

System Calls – File Management

• fd = open(file, flags, mode);
– fd = open(“./fubar”, O_RDWR);

• rc = close(fd);

• n = read(fd, buf, n);

• n = write(fd, buf, n);

• position = lseek(fd, offset, whence);

• rc = stat(name, &buf);

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 37

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

System Calls

• Manual 2 contains information on all system calls
– Thus: “man 2 <system call name>” will give you all you need to know about

that system call

– e.g., “man 2 lseek” returns:
LSEEK(2) Linux Programmerâs Manual LSEEK(2)

NAME
lseek - reposition read/write file offset

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

….

• (See “man man” for information on the un*x manual)
– Use “apropos <whatever>” to hunt around for stuff

November 7, 2019 Lecture Slides – ECE 650: Systems Programming 38

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

39

OS Software Structure

• Monolithic

• Layered

• Microkernel

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

40

Monolithic

• Single program in kernel mode

• All system calls are in a single address space

– No protection once something is in the kernel

• E.g., Unix

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

41

UNIX

• Hardware is surrounded by the operating-system

• Key part = the Unix kernel

• Comes with a number of user services and interfaces

– shell

– C compiler

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

42

UNIX Layered Structure

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

43

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

44

Layered

• OS software structured as a collection of layers

• each layer performs a set of functions which are related

• each layer relies on the next lower level to perform more
primitive functions

– MULTICS

– THE

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

45

Microkernel

• A few essential functions put in the kernel
– basic process support

– inter-process communication (IPC)

– basic process scheduling

– address space support

• Or even just a concurrency control/protection mechanism
– Or even just an API for CC/P

– Windows NT (as originally envisioned)

– MINIX

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

46

Additional Characteristics of OSes

• Multithreading
– process is further subdivided into threads that can run concurrently

• Thread
– dispatchable unit of work

– executes sequentially and is interruptible

• Process is a collection of one or more threads

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

47

Symmetric Multiprocessing

• OS capable of supporting multiple processors

– or multiple cores

• these processors share same main memory and I/O
facilities

• all processors can perform the same functions

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

48

OS Classification
• Different OSes depending on the nature of requirements

– “General purpose”
• Catchall name for OSes that will be put in front of a person

– e.g., Windows, MacOS, DOS, Un*x
• Make general assumptions based on user-behaviour studies

– Real-time
• tailored to specific needs of real-time systems

– Often associated with embedded, but most “general purpose” OSes have some real-
time capability

» Why?

– Embedded
• Used in devices not often viewed as computers

– e.g., microwave ovens, TV Set, DVD player, anti-lock braking system, ….
• Do not have the “typical” I/O facilities

– e.g., no keyboard, mouse, monitor
– Often no non-volatile storage

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

49

Processes
and

Threads

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

50

Process Model
• A program in execution

– Which means what?
• Sequential execution

è Program Counter to keep track of next instruction

• Give the illusion (is it?) of a dedicated computer

– CPU
– Memory
– Files
– I/O

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

51

Major Requirements of an OS
• Interleave the execution of several processes

– Concurrency (multiprogramming) is hard; why bother?
• to maximize processor and resource utilization

– Possibly while providing reasonable response time

• Allocate resources to processes

• Maintain separation of processes

• Support application program creation and termination of
processes

• Support inter-process communication

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

52

So we have:

• One CPU
– With one Program Counter

– One memory subsystem

– One file subsystem

– One I/O subsystems

• N processes
– Each with their own current view of

• Where they are in execution (i.e., their own PC)
• What memory they have
• What files they have open
• What I/O they are doing

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

From the Machine Perspective

• Imagine a CPU with opcodes that are all one byte in size, and the
programs are all simple sequential code

– e.g., a program could be
• int main (void) { int a; int b; a = 1; b = 2; a = a+b; return 0; }

– and Process A and B will both execute the same program

• PC = 0x1234 (Process A, instruction x)

• PC = 0x1235 (Process A, instruction x+1)

• PC = 0x1236 (Process A, instruction x+2)

• PC = 0x4962 (Switch to Process B, instruction y)

• PC = 0x4963 (Process B, instruction y+1)

• PC = 0x1237 (Switch to Process A, instruction x+3)
53

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

From the Process Perspective

• Process A does
– …
– instruction x
– instruction x+1
– instruction x+2
– instruction x+3
– …

• Process B does
– …
– instruction y
– instruction y+1
– instruction y+2
– …

54

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

From the Time Perspective

B ----- -----

A ----- -----

Time à

• Which means you cannot assume you have time knowledge within
your process; you need to use device timers if you want timing
information

– otherwise known as PacMan made of an 8088 computer running at 4.77 MHz
doesn’t work so well on a 80386 computer running at 25 MHz

55

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

So How Does an OS Manage This?

• It will need
– Some data structure to maintain the state of any given process

– Some data structure to maintain the state of all currently “executing” processes
• Why is “executing” in quotation marks?

– Process creation and termination mechanisms

– Other control structures

– Some mechanism(s) for deciding when to change the state of any given process

56

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

57

Maintaining Individual Process State

Context data == registers

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

58

PCB: Process Identification

• Identifiers [often numeric]
– Identifier of this process

– Identifier of the process that created this process (parent process)

– User identifier

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

59

PCB: Processor State Related

Application Programmer Visible Registers

• Control and Status Registers
– A variety of processor registers that are employed to control the operation of the

processor. These include
• Program counter
• Condition codes
• Status information
• Stack Pointers

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

60

PCB: Scheduling Info

• Scheduling and State Information

This is information that is needed by the operating system
to perform its scheduling function. Typical items:

– Process state: defines the readiness of the process to be scheduled
for execution

• e.g., running, ready, waiting, halted
• see below

– Event:
• Identity of event the process is waiting for (if any)

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

61

PCB: Scheduling Info [2]

– Scheduling-related information:
• dependent on the scheduling algorithm used.
• examples: amount of time that the process has been waiting and the amount of

time that the process executed the last time it was running.
– Priority:

• the scheduling priority of the process
• In some systems, several values are required

– e.g., default, current, highest-allowable

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

62

PCB: OS Data Structure Support

• OS maintains a number of data structures to support its operation

• some data structures contain/refer to processes, e.g.,
– all processes in a waiting state for a particular resource may be linked in a queue.

– a process may be in a parent-child (creator-created) relationship with another
process.

• the process control block may contain pointers/references to other
processes to support these structures

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

63

PCB: Other Info

• Interprocess Communication Related
– Various flags, signals, and messages may be associated with communication

between two independent processes.

• Process Privilege Related
– Processes are granted privileges in terms of the memory that may be accessed and

the types of instructions that may be executed.

– Access to system utilities and services.

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

64

PCB: Other Info [2]

• Memory Management Related
– pointers to tables that describe the virtual memory assigned to this process

• Resource Ownership and Utilization Related
– resources given to the process may be indicated, such as opened files.

– A history of utilization of the processor or other resources

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

65

Maintaining the State of all Processes A: 2-state

• Process may be in one of two states
– Running

– Not-running

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

66

Implementation: Queue

• not-running processes in a queue
• ‘dispatcher’ gives the processor to a process

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

67

Maintaining the State of all Processes B: 5-state

• not-running state must be further subdivided into
– ready to execute

– blocked
• e.g., waiting for I/O

– newly created

– exiting

• reason: need to assist the dispatcher
– dispatcher cannot just choose the process that has been in the queue the

longest because it may be blocked

Copyright © 2011 by Paul A.S. Ward. All Rights Reserved

68

(New, Ready, Blocked, Running, Exit)

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

69

Exaggerated,
not in perspective!

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

70

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

71

Process Suspension

• variety of scenarios under which it is desirable to temporarily
‘suspend’ a process

• two new states
– ready, suspend

– blocked, suspend

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

72

Reasons for Process Suspension

Swapping The OS needs to release sufficient main memory to bring in a
process that is ready to execute.

Other OS reason The OS may suspend a background or utility process or a
process that is suspected of causing a problem.

Interactive user
request

A user may wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

Timing A process may be executed periodically and may be suspended
while waiting for the next time interval

Parent process
request

A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or to
coordinate the activity of various descendents.

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

73

Maintaining the State of all Processes C: 7-state

Admit when have sufficient resources

Admit when
insufficient
resources

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Process Creation: When?

• Done at

1. System initialization

• Which will typically start some process at boot-up, and then use mechanism (2), below, to

create any additional processes.

2. System call by a running process

• On un*x: fork() (often followed by execve())

• On Windows: CreateProcess()

3. User request

• Which will be via either shell or GUI and will do (2) above.

4. Batch-job initiation

• E.g., cron job on un*x

– (see “man cron”, “man crontab”, and “man 5 crontab”)

– In this case the “cron daemon” must be running, and it starts the relevant cron job at the requisite

time using mechanism (2)

74

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

75

Process Creation: What?

• Assign a unique process identifier

• Allocate space for the process
– program, data, stack, PCB

• Initialize process control block

• Set up appropriate linkages
– e.g., add new process to linked list used for scheduling queue

• Create or expand other data structures
– e.g., maintain an accounting file

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Process Termination

1. Process exits normally, by program choice

– e.g., “exit(0);”

– See “man 3 exit”

2. Process exits with error

– Per (1) above, with non-zero error code

– perror() can be useful here; see “man 3 perror”

3. Fatal error

– e.g., uncaught signal

• e.g., SEGV without associated signal-handler code to catch the violation.

4. Killed by another process

– e.g., “kill -HUP <pid>”

– Note that “kill” simply sends a signal to the relevant process

76

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

77

Other Control Structures

• Information about the current state of each process and resource

• This information is often structured in tables

• Tables are constructed for most entities the operating system manages

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

78

Memory Tables

• Allocation of main memory to processes

• Allocation of secondary memory to processes

• Protection attributes for access to shared (or dedicated) memory
regions

• Information needed to manage virtual memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

79

I/O Tables

• I/O device status: available or assigned

• I/O operation status

• Regions/locations in main memory being used as the source or
destination of the I/O transfer

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

80

File Tables

• Files in existence

• For each file

– location on secondary memory

– current Status

– attributes

• Sometimes this information is maintained by a file-management
system

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

81

Process Table

• Where the object representing the process is located

• Attributes necessary for individual process management
– process ID

– process state

– location in memory

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

82

Process Location

• Process includes set of programs to be executed
– Program location

– Data locations for local and global variables

– Any defined constants

– Stack

• Process control block
– Per previous discussion

• Collection of attributes frequently needed by OS

• Process image
– Collection of program, data, stack, and attributes

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

83

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

84

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

85

Possibly
Multiple queues

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

86

Changing Process State

• Process executes system call
– e.g. file open

• Clock interrupt
– process has executed for maximum time slice

• I/O interrupt

• Page fault
– memory address accessed is not currently in main memory

• Error trap
– process execution caused an error trap

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

87

Context Switch

• More than just switching from user mode to kernel mode

– The currently executing process is to be changed

– Which means: execution context must be switched

• Save the context of processor in the PCB

– including program counter, other registers

• Update the PCB and put it to appropriate queue - ready,

blocked,

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

88

Context Switch [2]

• Select another process for execution (another PCB)

• Update the PCB of the process selected

• Update memory-management data structures

• Restore processor context to that of the selected process

• Question:
– What does this imply for the contents of

• Cache?
• Main memory (as opposed to virtual memory)?

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

89

OS Execution

• Execution Within User Process
– OS software executes within the context of a user process

– process executes in privileged mode when executing OS code

• Kernel execution outside process
– execute kernel outside of any process

– operating system code is executed as a separate entity that operates in privileged
mode

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

90

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

91

UNIX Process States

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

92

UNIX Process State Transitions

User
Running

Preempted

Ready, in
Memory

Created

Ready,
Swapped

Sleep,
Swapped

Sleep, in
MemoryZombie

Kernel
Running

Exit

fork

Insufficient
Memory

Swap out

Swap in

wakeup

Swap out

enough
memory

preempt

return to
user

return
system call,
interrupt

interrupt,
intr. return

reschedule
process

wakeup

sleep

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

93

Problem

• What happens when I do a blocking system call?

– e.g., a browser does “gethostbyname()”

– That process blocks

• What if I have nothing else useful to run?

• What if the “hostname” was a typo and I want to abort the call?

• What if I want my application to execute faster?

• What if my application is I/O bound?

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

94

Threads

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

95

Who gets what?

• the unit of scheduling is the thread
– sometimes (e.g., on Solaris) the lightweight process

• the unit of resource ownership is the process

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

96

Process

• Has a virtual address space which holds the process image

• Protected access to files, I/O resources and other processes

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

97

Thread

• has execution state (running, ready, etc.)

• thread context saved when thread not running

• has an execution stack

• some per-thread static storage for global variables

• access to the entire memory and all resources of its process
– all threads of a process share this

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

98

Uni-, Multi-threaded Process Models

User
Stack

Kernel
Stack

User
Addr.
Space

Process
Control
Block

User
Stack

Kernel
Stack

User
Addr.
Space

Process
Control
Block

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread
Control
Block

Thread
Control
Block

Thread Thread Thread

Single-Threaded Multithreaded

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

99

Benefits of Threads

• process = a heavy-weight entity
thread = a lighter weight entity

– Why?

– less time needed
• to create a new thread than a process
• to terminate a thread than a process
• to switch between two threads within the same process

• since threads within the same process share memory and files,
they can communicate with each other without involving the
kernel

– Also, cache and main memory performance benefits

• penalty: lesser inter-thread protection

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

100

Thread States and Operations

• key thread states: running, ready, blocked

• basic thread operations
– spawn

• spawn another thread
– block

– unblock

– finish
• deallocate space for register context and stacks

BIG QUESTION: if thread blocks, does entire process block???

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

101

Thread-Process Coupling

• Process ® Thread
– suspending a process involves suspending all threads of the process

– termination of a process terminates all threads within the process

• Thread ® Process
– relationship between thread blocking and process blocking; two alternatives

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

102

Example: RPC

Server

Server

Server Server

Time

Process 1

Thread A
(Process 1)

Thread B
(Process 1)

Blocked

Running

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

103

• User-level threads
– all thread management is done by the application process

– kernel is not aware of the existence of threads

• Kernel-level threads
– kernel maintains context information for the threads (and the process)

– scheduling is done by kernel on a thread basis

– W2K, Linux, and OS/2 are examples of this approach

Thread Design Alternatives

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

104

Combined Approaches

• example: Solaris

• both kernel and user-level threads (KLTs and ULTs)

• one or more ULTs mapped onto one KLT

• most activity at user level
– thread creation is done completely at user level

– also, the bulk of scheduling and synchronization of threads done at user level

• programmer can define the degree of parallelism in the process
execution

– state how many KLTs will the process run with

Copyright © 2011 by Paul A.S. Ward. All Rights Reserved

110

blocked state, process waiting
for an event (i.e. I/O)

blocked state, process waiting
directly on HW conditions, does
not accept signals

process terminated, but still
has task structure in process
table

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

111

Inter-Process Communication and Concurrency
• Desire: communication among processes

– Why?
• Sharing resources

– E.g., printing: need application to pass item to printer daemon
• Work together to solve a bigger problem

– E.g., ”ls | wc –l”

• Two issues:
1. Mechanism

2. Synchronization
1. Not tromping on each other
2. Correct sequencing

• Implications on allocation of processor time

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Mechanisms [1]

• Shared Memory
– With processes, need explicit API

• shm_open()
• shmget()
• shmctl()
• shmat()
• shmdt()
• mmap()
• ….

– With threads, operating in a shared-memory space

112

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

Mechanisms [2]

• Message Passing
– Named pipes

– Send

– Recv

– Recvfrom

– Putmsg

– Recvmsg

– ….

113

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

114

Difficulties Arising From Concurrency

• need to control sharing of global resources

• need to manage allocation of resources

• need to spend more resources on debug & test
– bugs only show under some scenarios which are difficult to identify,

reproduce

– consequently, bugs are difficult to locate

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

115

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

• echoing of keyboard input is common operation in OS

• echo() is a kernel routine

Copyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2011 by Paul A.S. Ward. All Rights ReservedCopyright © 2016 by Paul A.S. Ward. All Rights Reserved

116

A Simple Example

Process P1 Process P2

//invokes echo() .

chin = getchar(); //invokes echo()

. chin = getchar();

chout = chin; chout = chin;

putchar(chout); .

. putchar(chout);

. .

