Testing: Dataflow Coverage

Testing, Quality Assurance, and Maintenance
Winter 2018

Arie Gurfinkel

based on slides by Thibaud Lutellier, Marsha Chechik and Prof. Lin Tan
Non-looping Path Selection Problem

\[x := 1 \]

All branches 1, 2, 4, 5, 7
1, 3, 4, 6, 7

does not exercise the relationship between the definition of \(X \) in statement 2 and the reference to \(X \) in statement 6.
Def, Use

Goal: Try to ensure that values are computed and used correctly.

- **def**: a location where a value for a variable is stored in memory.
- **use**: a location where a variable's value is accessed.
- **def(n)**: The set of variable defined by node n.
- **use(n)**: the set of variable used by node n
Def-Use CFG

q_0: $z = x - y$
- $\text{def}(q_0) = \{z\}$
- $\text{use}(q_0) = \{x, y\}$

q_1: $\text{if } (z < w)$
- $\text{def}(q_1) = \{}$
- $\text{use}(q_1) = \{z, w\}$

q_2: $\text{print}(z)$
- $\text{def}(q_2) = \{\}$
- $\text{use}(q_2) = \{z\}$

q_3: $\text{print}(w)$
- $\text{def}(q_3) = \{\}$, $\text{use}(q_3) = \{w\}$

q_4
- $\text{def}(q_4) = \{\}$, $\text{use}(q_4) = \{\}$
DU-path, Def-clear and Reach

- A **definition-clear path (def-clear)** p with respect to x is a sub-path where x is not defined at any of the nodes in p.
- A **du-path** is a simple path where the initial node of the path is the only defining node of x in the path.
- **Reach**: if there is a def-clear path from the nodes m to p with respect to x, then the def of x at m reaches the use at p.

Example for z:
- du-path: q_0, q_1, q_2
- def-clear: q_1, q_2, q_4
- q_0 reaches q_2.

\[
\begin{array}{c}
q_0: z = x - y \\
q_1: \text{if } (z < w) \\
q_2: \text{print}(z) \\
q_3: \text{print}(w) \\
q_4
\end{array}
\]
Does the def at n2 reach the use at n3?
Assumptions (1/2)

no edges of the form \((n, n_{\text{start}})\) or \((n_{\text{finish}}, n)\)

no edges of the form \((n, n)\)
	here is at most one edge \((m, n)\) for all \(m, n\)

every control graph is well-formed

- Connected
- Single start and single final node

every loop has a single entry and a single exit
Assumptions (2/2)

at least one variable is associated with a node representing a predicate

no variable definitions are associated with a node representing a predicate
 • no predicates of the form: \((x++ \geq 3)\)

every definition of a variable reaches at least one use of that variable

every use is reached by at least one definition

every control graph contains at least one variable definition
All-Defs-Coverage (ADC)

- All-Defs-Coverage (ADC):
 - Some def-clear sub-path from each definition to some use reached by that definition

\[
\begin{align*}
x &:= x \\
\text{def-clear} \\
&:= x
\end{align*}
\]
All-Defs Coverage: Example

Requires:
\(d_1(x) \) to a use

Satisfactory Path:
\[1, 2, 4, 6 \]
All-Uses Coverage (AUC)

Some definition-clear subpath from each definition to each use reached by that definition and each successor node of the use.
All-Uses Coverage: Example

Requires:
• \(d_1(x) \) to \(u_2(x) \)
• \(d_1(x) \) to \(u_3(x) \)
• \(d_1(x) \) to \(u_5(x) \)

Satisfactory Paths:
• \([1, 2, 4, 5, 6] \)
• \([1, 3, 4, 6] \)
All-Du-Paths Coverage (ADUPC)

- All-Du-Paths Coverage (ADUPC):
 - All def-clear sub-paths that are cycle-free or simple-cycles from each definition to each use reached by that definition and each successor node of the use.

\[x := \text{def-clear cycle-free or simple-cycles} \]
All-Du-Paths Coverage: Example

Requires:
- All $d_1(x)$ to $u_2(x)$: [1,2]
- All $d_1(x)$ to $u_3(x)$: [1,3]
- All $d_1(x)$ to $u_5(x)$: [1,2,4,5], [1,3,4,5]

Satisfactory Paths:
- [1, 2, 4, 5, 6]
- [1, 3, 4, 5, 6]
Data Flow Test Criteria

Assume definitions occur on nodes only, for the following definitions.

First, we make sure every def reaches a use:

All-Defs Coverage (ADC): For each set of du-paths $S = du (n, v)$, TR contains at least one path d in S.

Then we make sure that every def reaches all possible uses:

All-Uses Coverage (AUC): For each set of du-paths to uses $S = du (ni, nj, v)$, TR contains at least one path d in S.

Finally, we cover all the du-paths between defs and uses:

All-du-Paths Coverage (ADUPC): For each set $S = du (ni, nj, v)$, TR contains every path d in S.

x
Problems with data flow coverage criteria

Infeasible paths

• Don’t usually get 100% coverage

Need to understand fault detection ability

Artificially combines control with data flow
Graph Coverage Criteria Subsumption
AUC & EC

Under what additional assumptions, AUC subsumes EC?

- For every node with multiple outgoing edges, at least one variable is used on each out edge, (and the same variables are used on each out edge).

Reasoning (key points, not a full proof):
- Assume test set T satisfies AUC.
- Each edge e_1 must be either a branch edge or not.
- If e_1 is a branch edge, then it has a use, thus it must be covered by T.
- If e_1 is not a branch edge, the closest branch edge before e_1, denoted as e_2, should be covered by T, and if e_2 is covered by a test, e_1 must also be. If the closed branch edge doesn’t exit, then the program has no branch edges; therefore e_1 must be covered by T.
Compiler tidbit

In a compiler, we use intermediate representations to simplify expressions, including definitions and uses.

For instance, we would simplify:

• $x = \text{foo}(y + 1, z \times 2)$

To:

• $a = y + 1$
• $b = z \times 2$
• $x = \text{foo}(a, b)$
Exercise (1/3)

Answer questions (a)-(f) for the graph defined by the following sets:

- \(N = \{0, 1, 2, 3, 4, 5, 6, 7\} \)
- \(N_0 = \{0\} \)
- \(N_f = \{7\} \)
- \(E = \{(0, 1), (1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (5, 6), (6, 1)\} \)
- \(\text{def}(0) = \text{def}(3) = \text{use}(5) = \text{use}(7) = \{X\} \)

Also consider the following test paths:

- \(t_1 = [0, 1, 7] \)
- \(t_2 = [0, 1, 2, 4, 6, 1, 7] \)
- \(t_3 = [0, 1, 2, 4, 5, 6, 1, 7] \)
- \(t_4 = [0, 1, 2, 3, 2, 4, 6, 1, 7] \)
- \(t_5 = [0, 1, 2, 3, 2, 3, 2, 4, 5, 6, 1, 7] \)
- \(t_6 = [0, 1, 2, 3, 2, 4, 6, 1, 2, 4, 5, 6, 1, 7] \)
Exercise (2/3)

(a) Draw the graph.

(b) List all of the du-paths with respect to x. (Note: Include all du-paths, even those that are subpaths of some other du-paths).

(c) For each test path, determine which du-paths that test path du-tours. Consider direct touring only. Hint: A table is a convenient format for describing the relationship.
Exercise (3/3)

(d) List a minimal test set that satisfies \textit{all-defs} coverage with respect to x (Direct tours only). \textbf{Use the given test paths.}

(e) List a minimal test set that satisfies \textit{all-uses} coverage with respect to x. (Direct tours only). \textbf{Use the given test paths.}

(f) List a minimal test set that satisfies \textit{all-du-paths} coverage with respect to x. (Direct tours only). \textbf{Use the given test paths.}
Exercise - cont.

(b) $du(0, 5, x)$:
 i: $[0, 1, 2, 4, 5]$

 $du(0, 7, x)$:
 ii: $[0, 1, 7]$

 $du(3, 5, x)$:
 iii: $[3, 2, 4, 5]$

 $du(3, 7, x)$:
 iv: $[3, 2, 4, 6, 1, 7]$
 v: $[3, 2, 4, 5, 6, 1, 7]$

(c)

<table>
<thead>
<tr>
<th>Test Path</th>
<th>Du-tour directly</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1 = [0,1,7]</td>
<td>ii</td>
</tr>
<tr>
<td>t2 = [0,1,2,4,6,1,7]</td>
<td>/</td>
</tr>
<tr>
<td>t3 = [0,1,2,4,5,6,1,7]</td>
<td>i</td>
</tr>
<tr>
<td>t4 = [0,1,2,3,2,4,6,1,7]</td>
<td>iv</td>
</tr>
<tr>
<td>t5 = [0,1,2,3,2,3,2,4,5,6,1,7]</td>
<td>iii, v</td>
</tr>
<tr>
<td>t6 = [0,1,2,3,2,4,6,1,2,4,5,6,1,7]</td>
<td>/</td>
</tr>
</tbody>
</table>
Exercise - Partial Solutions.

(d) List a **minimal** test set that satisfies *all-defs* coverage with respect to x (Direct tours only). **Use the given test paths.**

- $\{t_1, t_4\}$ or $\{t_1, t_5\}$ or $\{t_3, t_4\}$ or $\{t_3, t_5\}$
- Why isn’t $\{t_1, t_6\}$ a correct answer?
 - t_6 does **not** du-tour any path in $\text{du}(3, x)$.

(e) List a **minimal** test set that satisfies *all-uses* coverage with respect to x. (Direct tours only). **Use the given test paths.**

- $\{t_1, t_3, t_5\}$

(f) List a **minimal** test set that satisfies *all-du-paths* coverage with respect to x. (Direct tours only). **Use the given test paths.**

- $\{t_1, t_3, t_4, t_5\}$
Strengths and Weaknesses of Graph Coverage:

Must create graph
Node coverage is usually easy, but cycles make it hard to get good coverage in general.
Incomplete node or edge coverage point to deficiencies in a test set.
Summary

Summarizing Structural Coverage:
- Generic; hence broadly applicable
- Uses no domain knowledge

Summarizing Dataflow Coverage:
- Definitions and uses are useful but hard to reason.

Miscellaneous other notes:
- Control-flow graphs are manageable for single methods, but not generally more than that.
- Use call graphs to represent multiple methods, hiding details of each method.
- When we want to test du-paths across multiple elements, use first-use/last-def heuristic.