
Verification Tools in Practice

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

2 22

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

3 3

VerifyThis! Verification Competition

http://www.pm.inf.ethz.ch/research/verifythis.html

“Hackathon”-format

Given a few days and a few problems, create “provably” correct
solutions

Solutions are judges by a committee to decide that they meet
“provability” criteria.

Dafny is the most commonly used tools in the competition

Great way to learn about other tools, current research, and challenging
problems

4 4

Microsoft Visual Studio Products

Code Contracts
• https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftw

areEngineering.CodeContractsforNET
• https://github.com/Microsoft/CodeContracts

• statically and dynamically checked method pre- and post-conditions

IntelliTest
• https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-

manual/introduction

• automated test generation by dynamic symbolic execution

https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftwareEngineering.CodeContractsforNET
https://github.com/Microsoft/CodeContracts
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction

5 5

Auto-active Verification Tools

Formal verification of code targeting developers
• Why3: http://why3.lri.fr
– Functional PL approach: WhyML, VCGen, supports many SMT solvers

• VeriFast: https://github.com/verifast/verifast
– concurrent and low-level memory, works directly on C language

• OpenJML: http://www.openjml.org/
– standard for annotations for Java
– based on ESC-Java by Rustan Leino (precursor of Dafny)

• KeY: https://www.key-project.org/
– Java, based on Symbolic Execution, found bugs in TimSort

• Frama-C: https://frama-c.com/
– static analysis and auto-active verification for C
– standard for annotations
– Automation with static analysis, verification with Why3

http://why3.lri.fr/

6 6

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

7 7

General Purpose Theorem Provers

Logician view of program verification (and not just program)

ACL2: http://www.cs.utexas.edu/users/moore/acl2/

PVS: http://pvs.csl.sri.com/

HOL: https://hol-theorem-prover.org/

HOL-light: http://www.cl.cam.ac.uk/~jrh13/hol-light/

Isabelle: http://isabelle.in.tum.de/

Coq: https://coq.inria.fr/

• https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html

• Programs are extracted from proofs of theorems

Lean: https://leanprover.github.io/

http://pvs.csl.sri.com/
https://hol-theorem-prover.org/
http://isabelle.in.tum.de/
https://coq.inria.fr/
https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html

8 8

Intermediate Languages for Verification

Build your own auto-active verifier for your favorite language (python,
etherium, javascript, …)

BoogiePL: https://github.com/boogie-org/boogie
• intermediate language of Dafny
• “similar” to our while language

WhyML
• Intermediate language of Why3

Viper
• http://www.pm.inf.ethz.ch/research/viper.html
• emphasis on concurrency and memory (inhale/exhale/implicity dyn. frames)

Constrained Horn Clauses
• a fragment of FOL sufficient for invariants
• used by some automatic tools

https://github.com/boogie-org/boogie
http://www.pm.inf.ethz.ch/research/viper.html

9 9

10 10

SPARKPro

http://www.adacore.com/sparkpro/

Ada is an old language still used in security- and safety-critical domains

SPARKPro provides auto-active verification for Ada

Actively used by specialized companies

11 11

IronClad and InronFleet

https://github.com/Microsoft/Ironclad

Distributed state machine and distributed key-value dictionary
implemented in Dafny

Verified key correctness properties and key liveness properties
• e.g., distributed algorithm eventually converges to a result as long as enough

participants are active

Open sourced and available on GitHub

Non-trivial system designed and verified by system engineers
• not researchers in FM trying to show off what their tools can do

12 12

Amazon S2N

https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/

13 13

Symbolic Execution Tools

KLEE: https://klee.github.io/
• EXE-style symbolic execution for LLVM virtual machine

S2E: http://s2e.systems/
• EXE-style symbolic execution at Virtual Machine Level

Angr: http://angr.io/
• A framework for symbolic execution and analysis of binaries

Mayhem: https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/
• Automated exploit generation using symbolic execution

https://klee.github.io/
http://s2e.systems/
http://angr.io/
https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/

14 14

S2E: In-vivo Analysis of Software Systems

15 15

Automatic Verification

Automatically verify specific properties of programs
• minimize user guidance
• fixed, not very deep properties

Microsoft Static Driver Verifier
• https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-

driver-verifier
• based on Model Checking
• checks for correct API usage rules: e.g., always lock-before-unlock

Linux Driver Verification: https://linuxtesting.org/ldv
• Implementation of MS SDV for Linux using OSS tools

Facebook Infer: http://fbinfer.com/
• Automatically prove correct memory handling (e.g., absence of null

dereferencing) in C and Java programs

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://linuxtesting.org/ldv

16 16

http://seahorn.github.io

17 17

Smart Contracts: New Domain for Verification

Use code to represent a contract
Contract is executed by code
Blockchain is used to ensure adherence to
the contract in a distributed decentralized
environment

What does a contract actually do?
https://blockgeeks.com/guides/smart-contracts/

18 18https://blockgeeks.com/guides/smart-contracts/

19 19https://blockgeeks.com/guides/smart-contracts/

20 20

The DAO Attack

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-
beginners-in-solidity-80ee84f0d470

Follow the rules, use the contract, withdraw all money, get rich in the
process

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

21 21

22 22

Symbolic Execution for Smart Contracts

MyThril
• https://github.com/ConsenSys/mythril
• Security analysis tool for Etherium Smart Contracts

Manticore: https://github.com/trailofbits/manticore
• Symbolic execution tool

Oyente: http://www.comp.nus.edu.sg/~loiluu/oyente.html
• An analysis tool for smart contracts
• https://oyente.melon.fund

Very active area of both research and development.

https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
http://www.comp.nus.edu.sg/~loiluu/oyente.html

23 23

Is Verification Enough

Can verified software fail?

Do we need both testing and verification?

