Verification Tools in Practice

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

% WATERLOO

Turing, 1949

Alan M. Turing. “Checking a large routine”, 1949

How can one check a routine in the sense of making sure that it is right?

l.xould make a number of definite assortions which c;an So-éhc;;kod
1% : » and from which the correctness of the whole programme casily

follows,
|
r=n r=n STOP s<sr<n S=sr<n
“' u=r! u=rl >0 u=sr! u=(s+1y!
o<n I** : v=r i v=rl v=r
I |
' ; | l :
: r:=1 | I I I
A A y Vi=u r—n s$:=1 u:=u+v s:=s+1
u=1 N <0 N
<C/\,
= H—=r I
I
I
SO =0 —-1=<r<n
r:=r+1 ' 4 =srl
: v=r!
r<n
5 u=(r+1)r
%9)’ hhhhhh e

VerifyThis! Verification Competition

http://www.pm.inf.ethz.ch/research/verifythis.html
“Hackathon”-format

Given a few days and a few problems, create “provably” correct
solutions

Solutions are judges by a committee to decide that they meet
“provability” criteria.

Dafny is the most commonly used tools in the competition

Great way to learn about other tools, current research, and challenging
problems

%) WATERLOO

Microsoft Visual Studio Products

Code Contracts

e https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftw
areEngineering.CodeContractsforNET

e https://qgithub.com/Microsoft/CodeContracts

e statically and dynamically checked method pre- and post-conditions

IntelliTest

e https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-
manual/introduction

e automated test generation by dynamic symbolic execution

UNIVERSITY OF

WATERLOO

https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftwareEngineering.CodeContractsforNET
https://github.com/Microsoft/CodeContracts
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction

Auto-active Verification Tools

Formal verification of code targeting developers
o Why3: http://why3.Iri.fr
— Functional PL approach: WhyML, VCGen, supports many SMT solvers
» VeriFast: https://github.com/verifast/verifast
— concurrent and low-level memory, works directly on C language
e OpenJML: http://www.openjml.org/
— standard for annotations for Java
— based on ESC-Java by Rustan Leino (precursor of Dafny)
o KeY: https://www.key-project.org/
— Java, based on Symbolic Execution, found bugs in TimSort
* Frama-C: https://frama-c.com/
— static analysis and auto-active verification for C
— standard for annotations
— Automation with static analysis, verification with Why3

UNIVERSITY OF

WATERLOO

http://why3.lri.fr/

Proving that Android’s, Java’'s and
Python’s sorting algorithm is broken (and
showing how to fix it)

(@ February 24,2015 @ Envisage Written by Stijn de Gouw. & Ss

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina-
tion of ideas from merge sort and insertion sort, and designed to perform well on real
world data. TimSort was first developed for Python, but later ported to Java (where it ap-
pears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer
of Java Collections who also pointed out that most binary search algorithms were broken).
TimSort is today used as the default sorting algorithm for Android SDK, Sun's JDK and
OpenJDK. Given the popularity of these platforms this means that the number of comput-
ers, cloud services and mobile phones that use TimSort for sorting is well into the billions.

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

% WATERLOO

General Purpose Theorem Provers

Logician view of program verification (and not just program)
ACL2: http://www.cs.utexas.edu/users/moore/acl2/
PVS: http://pvs.csl.sri.com/

HOL: https://hol-theorem-prover.org/
HOL-light: http://www.cl.cam.ac.uk/~jrh13/hol-light/
Isabelle: http://isabelle.in.tum.de/

Coq: https://coq.inria.fr/
» https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html
e Programs are extracted from proofs of theorems

Lean: https://leanprover.github.io/

IIIIIIIIIIII

http://pvs.csl.sri.com/
https://hol-theorem-prover.org/
http://isabelle.in.tum.de/
https://coq.inria.fr/
https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html

Intermediate Languages for Verification

Build your own auto-active verifier for your favorite language (python,
etherium, javascript, ...)

BoogiePL.: https://github.com/boogie-org/boogie
 intermediate language of Dafny
 “similar” to our while language
WhyML
 Intermediate language of Why3
Viper
 http://www.pm.inf.ethz.ch/research/viper.html
e emphasis on concurrency and memory (inhale/exhale/implicity dyn. frames)
Constrained Horn Clauses
e a fragment of FOL sufficient for invariants
e used by some automatic tools

UNIVERSITY OF

WATERLOO

https://github.com/boogie-org/boogie
http://www.pm.inf.ethz.ch/research/viper.html

Boogie verifier architecture
Spec# C C
Dafny .Chalice

t- e

E ar ondition

\ 4 — —

“correct” or list of errors

>

SPARKPro

http://www.adacore.com/sparkpro/
Ada is an old language still used in security- and safety-critical domains
SPARKPro provides auto-active verification for Ada

Actively used by specialized companies

IIIIIIIIIIII

WATERLOO

10

>

IronClad and InronFleet

https://github.com/Microsoft/Ironclad

Distributed state machine and distributed key-value dictionary
implemented in Dafny

Verified key correctness properties and key liveness properties

e e.g., distributed algorithm eventually converges to a result as long as enough
participants are active

Open sourced and available on GitHub

Non-trivial system designed and verified by system engineers
e not researchers in FM trying to show off what their tools can do

IIIIIIIIIIII

WATERLOO

11

Amazon S2N

o (] Automated Reasoning and A X Arie

& C 0 [ﬂ Secure https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/ f(] (V) i

i Apps OGetting Started [] Google Bookmark [Addto Wish List [1 + Pocket [Google Bookmark Application Fundam... [] Note in Reader & Next » [J Subscribe... » [EZ Other Bookmarks

Products ~ Solutions Pricing Software Support More ~ My Account ~ Create an AWS Account

AWS Security Blog

Automated Reasoning and Amazon s2n

Announcements | Permalink | @ Comments
Search

In June 2015, AWS Chief Information Security Officer Stephen Schmidt introduced AWS’s new Open Source implementation of the
SSL/TLS network encryption protocols, Amazon s2n. s2n is a library that has been designed to be small and fast, with the goal of
providing you with network encryption that is more easily understood and fully auditable.

New AWS Big Data Blog Post: Analyze
Security, Compliance, and Operational
Activity Using AWS CloudTrail and
Amazon Athena

Now Generally Available - AWS
Organizations: Policy-Based
Management for Multiple AWS
Accounts

s2n Is Now Handling 100 Percent of
SSL Traffic for Amazon S3

In the 14 months since that announcement, development on s2n has continued, and we have merged more than 100 pull requests from

15 contributors on GitHub. Those active contributors include members of the Amazon S3, Amazon CloudFront, Elastic Load Balancing,

AWS Cryptography Engineering, Kernel and OS, and Automated Reasoning teams, as well as 8 external, non-Amazon Open Source

Easily Replace or Attach an IAM Role to
an Existing EC2 Instance by Using the

contributors. EC2 Console

How to Audit Your AWS Resources for
Security Compliance by Using Custom
AWS Config Rules

At the time of the initial s2n announcement, three external security evaluations and penetration tests on s2n had been completed. Those
evaluations were code reviews and testing completed by security-focused experts, and came in addition to the code reviews and testing
that are applied to every code change at Amazon as standard practice. We have continued to perform such evaluations, and we are
pleased to have s2n be the focus of additional analysis from external academic and professional security researchers.

Adding automated reasoning to s2n

Because of s2n’s role as security-critical software, one of our goals is to use s2n as a proving ground for new automated reasoning The Official AWS Blog
testing and assurance techniques that we can refine for broader adoption within Amazon and beyond. Increasingly, the availability of

compute resources on demand such as Amazon EC2 makes it possible to perform extensive security analysis, even on every code Amazon SES

change.

https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/

% WATERLOO 12

Symbolic Execution Tools

KLEE: https://klee.github.io/
o EXE-style symbolic execution for LLVM virtual machine
S2E: http://s2e.systems/
o EXE-style symbolic execution at Virtual Machine Level
Angr: http://angr.io/
* A framework for symbolic execution and analysis of binaries
Mayhem: https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/
o Automated exploit generation using symbolic execution

IIIIIIIIIIII

13

https://klee.github.io/
http://s2e.systems/
http://angr.io/
https://forallsecure.com/blog/2016/02/09/unleashing-mayhem/

S2E: In-vivo Analysis of Software Systems

VM
-
L Applications
>
' ' leranes
>
L Kernel Dr|vers
-
Virtual Hardware J J
_ g

S2E */dev/kvm

f(KVM-compatible interface)

Dynamic Symbolic

a Binary Execution

g Translator Engine

%]

E (Instrumeniion Engine)

Path Analysis

Selection
Plugins

Plugins

2 NIVERSITY OF
% WATERLOO

Automatic Verification

Automatically verify specific properties of programs
* minimize user guidance
e fixed, not very deep properties

Microsoft Static Driver Verifier
e https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-

driver-verifier
* based on Model Checking
e checks for correct API usage rules: e.g., always lock-before-unlock
Linux Driver Verification: htips://linuxtesting.org/ldv
e Implementation of MS SDV for Linux using OSS tools
Facebook Infer: http://fbinfer.com/

« Automatically prove correct memory handling (e.g., absence of null
dereferencing) in C and Java programs

UNIVERSITY OF

WATERLOO

15

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://linuxtesting.org/ldv

&

&«

=" Apps

SeaHorn | A Verification Fr %
O % 4 =

C fn seahorn.github.io

GJ Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
O,

SeaHorn i Fro
Home About Download Publications People %, .
6‘,;.' \
%, .
%

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

Smart Contracts: New Domain for Verification

Use code to represent a contract
Contract is executed by code

Blockchain is used to ensure adherence to
the contract in a distributed decentralized
environment

What does a contract actually do?
https://blockgeeks.com/guides/smart-contracts/

IIIIIIIIIIII

%) WATERLOO 17

An option contact between
parties is written as code into the
blockchain. The individuals
involved are anonymous, but the
contact is the public ledger.

9
3

A triggering event like an
expiration date and strike price is
hit and the contract executes itself
according to the coded terms.

@ Blockgeeks

E
9

@ <t

Regulators can use the blockchain

to understand the activity in the
market while maintaining the
privacy of individual actors’ positions

@WATERLOO hitns://blockgeeks.com/guides/smart-contracts/

18

How Smart Contracts Works

|

Blockgeeks

(
I Match Buyer with Seller |
S | Exchange I
— e
| Contract receives assets l
| |
i

Contract distributes assets

i

Sell House \ Buy House

ER=

Clearing and
settlement is
automated

Ownership is
undisputed

A A

Digitise the Land Deed

- - s s wEe wee W wee wew e .

=1

Digitise Currency

GIWaTERLOO hitns://blockgeeks.com/guides/smart-contracts/ '°

The DAO Attack

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-
beqginners-in-solidity-80ee84f0d470

Follow the rules, use the contract, withdraw all money, get rich in the
process

IIIIIIIIIIII

20

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

A

owner(lhackev)

deposit()

+75
addToBalance()

A

[successful response]

[successful response]

|

T I

withdraw()	75

withdrawBalance()
FALLBACK()
- withdrawBalance()
is_attack=false; FALLBACK()
+75
= [successful response] " [successful response]
+75 [successful response]
+150 [successful response]
[successful response]
——

e
oo
_____________[

Symbolic Execution for Smart Contracts

My Thril
e https://github.com/ConsenSys/mythril
e Security analysis tool for Etherium Smart Contracts

Manticore: https://github.com/trailofbits/manticore
e Symbolic execution tool

Oyente: http://www.comp.nus.edu.sg/~loiluu/oyente.html
* An analysis tool for smart contracts
o https://oyente.melon.fund

Very active area of both research and development.

IIIIIIIIIIII

22

https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
http://www.comp.nus.edu.sg/~loiluu/oyente.html

Is Verification Enough

Can verified software fail?

Do we need both testing and verification?

IIIIIIIIIIII

23

