
Introduction: Testing and Quality
Assurance

Testing, Quality Assurance, and Maintenance
Winter 2017

Prof. Arie Gurfinkel

2 2

Software is Everywhere

3 3

Software is Everywhere

“Software easily rates as the most poorly
constructed, unreliable, and least maintainable

technological artifacts invented by man”
Paul Strassman, former CIO of Xerox

4 4

Infamous Software Disasters

Between 1985 and 1987, Therac-25 gave patients massive overdoses
of radiation, approximately 100 times the intended dose. Three patients
died as a direct consequence.

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army
barracks, killing 28 soldiers and injuring around 100 other people.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency forty seconds after lift-off. The rocket was on
its first voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million.

http://www5.in.tum.de/~huckle/bugse.html

5 5

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

6 6

Software Engineering is very complex
• Complicated algorithms
• Many interconnected components
• Legacy systems
• Huge programming APIs
• …

Software Engineers need better tools to deal with this complexity!

Why so many bugs?

7 7

What Software Engineers Need Are …

Tools that give better confidence than ad-hoc testing while remaining
easy to use

And at the same time, are
• … fully automatic
• … (reasonably) easy to use
• … provide (measurable) guarantees
• … come with guidelines and methodologies to apply effectively
• … apply to real software systems

8 8

Testing

Software validation the “old-fashioned” way:
•Create a test suite (set of test cases)
•Run the test suite
•Fix the software if test suite fails
•Ship the software if test suite passes

9 9

“Program testing can be a very effective way to show the
presence of bugs, but is hopelessly inadequate for showing
their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

input x
if (hash(x) == 10) {

...
}

10 10

“Beware of bugs in the above code; I have only proved it correct, not
tried it.”

Donald Knuth

You can only verify what you have specified.

Testing is still important, but can we make it less impromptu?

11 11

Verification / Quality Assurance

Verification: formally prove that a computing system
satisfies its specifications
• Rigor: well established mathematical foundations
• Exhaustiveness: considers all possible behaviors of the system, i.e.,

finds all errors
• Automation: uses computers to build reliable computers

Formal Methods: general area of research related to
program specification and verification.

12 12

Ultimate Goal: Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments

and inputs

The algorithmic discovery of properties of program by inspection of the
source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification

13 13

Turing, 1936: “undecidable”

14 14

Undecidability

A problem is undecidable if there does not exists a Turing machine that
can solve it
• i.e., not solvable by a computer program

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective

method can decide whether an algorithm computes a partial function with that
property

• in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

15 15

LEGO Turing Machine

by Soonho Kong. See http://www.cs.cmu.edu/~soonhok for building instructions.

BEGIN:
READ
CJUMP0 CASE_0

CASE_1:
WRITE 0
MOVE R
JUMP BEGIN

CASE_0:
WRITE 1
MOVE R
JUMP BEGIN

16 16

Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants

Testing

Automated Verification

Sym Exec

Deductive Verification

17 1717

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

18 18

J. McCarthy, “A basis for mathematical theory of computation”,
1963.

C.A.R Hoare, “An axiomatic basis for computer programming”,
1969.

R. W. Floyd, “Assigning meaning to programs”, 1967.

P. Naur, “Proof of algorithms by general snapshots”, 1966.

E. W. Dijkstra: “Guarded Commands, Nondeterminacy and Formal
derivation ”, 1975.

Formal Software Analysis

19 19

Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification (My research area)
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

20 20

(User) Effort vs (Verification) Assurance
As

su
ra

nc
e/

C
ov

er
ag

e

Effort

Testing

Automated
Verification

Symbolic
Execution

Deductive
Verification

21 21

Available Tools

Testing
• many tools actively used in industry. We will use Python unittest

Symbolic Execution
• mostly academic tools with emerging industrial applications
• KLEE, S2E, jDART, Pex (now Microsoft IntelliTest)

Automated Verification
• built into compilers, may lightweight static analyzers
– clang analyzer, Facebook Infer, Coverity, …

• academic pushing the coverage/automation boundary
– SeaHorn (my tool), JayHorn, CPAChecker, SMACK, T2, …

(Automated) Deductive Verification
• academic, still rather hard to use, we’ll experience in class J
• Dafny/Boogie (Microsoft), Viper, Why3, KeY, ...

22 22

Key Challenges

Testing
• Coverage

Symbolic Execution and Automated Verification
• Scalability

Deductive Verification
• Usability

Common Challenge
• Specification / Oracle

23 23

Topics Covered in the Course

Foundations
• syntax, semantics, abstract syntax trees, visitors, control flow graphs

Testing
• coverage: structural, dataflow, and logic

Symbolic Execution
• using SMT solvers, constraints, path conditions, exploration strategies
• building a (toy) symbolic execution engine

Deductive Verification
• Hoare Logic, weakest pre-condition calculus, verification condition generation
• verifying algorithm using Dafny, building a small verification engine

Automated Verification
• (basics of) software model checking

24 24

A little about me

2007, PhD University of Toronto

2006-2016, Principle Researcher at Software
Engineering Institute, Carnegie Mellon University

Sep 2016, Associate Professor, University of Waterloo

FrankenBitUFO

SPACER

Avy SeaHorn

25 25

Interests and Tools

Interests
• Software Model Checking, Program Verification, Decision Procedures,

Abstract Interpretation, SMT, Horn Clauses, …

Active Tools
• SeaHorn – Algorithmic Logic-Based Verification framework for C
• AVY – Hardware Model Checker with Interpolating PDR
• SPACER – Horn Clause Solver based on Z3 GPDR
• for more, see http://arieg.bitbucket.org/tools.html

Current Work
• parametric symbolic reachability – verifying safety properties of parametric

systems
• automated verification of C
• …

