
Testing: Coverage and Structural
Coverage

Testing, Quality Assurance, and Maintenance
Winter 2017

Prof. Arie Gurfinkel

based on slides by Prof. Marsha Chechik and Prof.
Lin Tan

2 2

How would you test this program?

def Foo (x, y):
“”” requires: x and y are int

ensures: returns floor(max(x,y)/min(x, y))”””
if x > y:

return x / y
else

return y / x

floor(x) is the largest integer not greater than x.

3 3

Testing

Static Testing [at compile time]
• Static Analysis
•Review
–Walk-through [informal]
–Code inspection [formal]

Dynamic Testing [at run time]
• Black-box testing
•White-box testing

Commonly, testing refers to dynamic testing.

4 4

Complete Testing?

Poorly defined terms: “complete testing”, “exhaustive testing”, “full
coverage”

The number of potential inputs are infinite.

Impossible to completely test a nontrivial system
• Practical limitations: Complete testing is prohibitive in time and cost [e.g., 30

branches, 50 branches, ...]
• Theoretical limitations: e.g. Halting problem

Need testing criteria

5 5

CFG Exercise (1)

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

Draw a control flow graph with 7 nodes.

6 6

CFG Exercise (1) Solution

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

1

2, 3

F
T

8

T
6

F

T

4

F

5

7

Draw a control flow graph with 7 nodes.

7 7

Test Case

Test Case: [informally]
• What you feed to software; and
• What the software should output in response.

Test Set: A set of test cases

Test Case: test case values, expected results, prefix values, and postfix
values necessary to evaluate software under test

Expected Results: The result that will be produced when
executing the test if and only if the program satisfies its intended
behaviour

8 8

Test Requirement & Coverage Criterion

Test Requirement: A test requirement is a specific element
of a software artifact that a test case must satisfy or cover.
• Ice cream cone flavors: vanilla, chocolate, mint
• One test requirement: test one chocolate cone
• TR denotes a set of test requirements

A coverage criterion is a rule or collection of rules that
impose test requirements on a test set.

• Coverage criterion is a recipe for generating TR in a systematic
way.

• Flavor criterion [cover all flavors]
• TR = {flavor=chocolate, flavor=vanilla, flavor=mint}

9 9

Adequacy criteria

Adequacy criterion = set of test requirements
A test suite satisfies an adequacy criterion if
• all the tests succeed (pass)
• every test requirement in the criterion is satisfied by at least one of the

test cases in the test suite.

Example:
the statement coverage adequacy criterion is satisfied by
test suite S for program P if each executable statement in P
is executed by at least one test case in S, and the outcome
of each test execution was “pass”

10 10

Adequacy Criteria as Design Rules

Many design disciplines employ design rules
• e.g.: “traces (on a chip, on a circuit board) must be at least ___ wide and

separated by at least ___”
• “Interstate highways must not have a grade greater than 6% without special

review and approval”

Design rules do not guarantee good designs
• Good design depends on talented, creative, disciplined designers; design

rules help them avoid or spot flaws

Test design is no different

11 11

Where do test requirements come from?

Functional (black box, specification-based): from software specifications
• Example: If spec requires robust recovery from power failure, test

requirements should include simulated power failure

Structural (white or glass box): from code
• Example: Traverse each program loop one or more times.

Model-based: from model of system
• Models used in specification or design, or derived from code
• Example: Exercise all transitions in communication protocol model

Fault-based: from hypothesized faults (common bugs)
• example: Check for buffer overflow handling (common vulnerability) by testing

on very large inputs

12 12

Code Coverage

Introduced by Miller and Maloney in 1963

13 13

Coverage Criteria

•Line coverage
•Statement
•Function/Method coverage
•Branch coverage
•Decision coverage
•Condition coverage
•Condition/decision coverage
•Modified condition/decision coverage
•Path coverage
•Loop coverage
•Mutation adequacy
•…

Basic	Coverage

Advanced	Coverage

14 14

Line Coverage

Percentage of source code lines executed by test cases.
• For developer easiest to work with

• Precise percentage depends on layout?
– int x = 10; if (z++ < x) y = x+z;

• Requires mapping back from binary?

In practice, coverage not based on lines, but on
control flow graph

15 15

Deriving a Control Flow Graph

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

Splitting	multiple	
conditions	depends
on	goal	of	analysis

16 16

Statement coverage

Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (int z) {
int x = 10;
if (z++ < x) {
x=+ z;

}
}

Coverage:
executed statements

statements

17 17

Statement coverage

Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (int z) {
int x = 10;
if (z++ < x) {
x=+ z;

}
}

Coverage:
executed statements

statements

@Test
void testFoo() {

foo(10);
}

18 18

Statement coverage

Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (int z) {
int x = 10;
if (z++ < x) {
x=+ z;

}
}

Coverage:
executed statements

statements

@Test
void testFoo() {

foo(10);
}

19 19

Statement coverage

Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (int z) {
int x = 10;
if (z++ < x) {
x=+ z;

}
}

Coverage Level:
executed statements

statements

@Test
void testFoo() {

foo(5);
}
// 100% Statement coverage

20 20

Control Flow Based
Adequacy Criteria

Every block /
Statement?

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

Input:	“a”
Trace:	b2,b3,b4,b5,b6,b7,b3,b8

21 21

Branch / Edge Coverage

Every branch going out of node executed at least
once
•Decision-, all-edges-, coverage
•Coverage: percentage of edges hit.

Each branch predicate must be both true and false

22 22

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

Branch Coverage

One longer input:
“a\n\n”

Alternatively:
Block (“a”) and
“\n” and
“\n\n”

23 23

Infeasible Test Requirements

Statement coverage criterion cannot be satisfied for many
programs.

24 24

Coverage Level

Given a set of test requirements TR and a test set T,
the coverage level is the ratio of the number of test
requirements satisfied by T to the size of TR.

TR = {flavor=chocolate, flavor=vanilla, flavor=mint}
Test set 1 T1 = {3 chocolate cones, 1 vanilla cone}
Coverage Level = 2/3 = 66.7%

Coverage levels helps evaluate the goodness of a
test set, especially in the presence of infeasible test
requirements.

25 25

Subsumption

Criteria Subsumption: A test criterion C1 subsumes C2 if and only if
every set of test cases that satisfies criterion C1 also satisfies C2

Must be true for every set of test cases

Edge
Coverage

EC

Node
Coverage

NC

subsumes

Subsumption is a rough guide for comparing criteria, although it’s
hard to use in practice.

Which one is stronger?

26 26

More powerful coverage criterion helps find
more bugs!

print x

Path [N1, N2, N3, N4, N5]:
satisfies node coverage but not edge coverage.
The corresponding test case passes. No bug found.

Path [N1, N3, N4, N5]: buffer overflow bug!

int d[2];

N1: if (x >= 0 && x < 2)
{ N2: print (x); }

N3: if (y > 0)
{ N4: print (d[x] + y); }

N5: exit (0);

27 27

Path Coverage

for I = 1...N

if ...

x[i] += 100; x[i] *= 100;

endfor I = 1...N

if ...

x[i] += 100; x[i] *= 100;

Adequacy	criterion:	each	path	must	be	executed	at	least	once	
Coverage:

#	executed	paths
#	paths

28 28

Path-based criteria?

All paths?

Which paths?

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

29 29

Branch vs Path Coverage

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How	many	test	cases	
to	achieve	branch	
coverage?

30 30

Branch vs Path Coverage

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How	many	test	cases	to	achieve	
branch	coverage?

Two,	for	example:

1. cond1:	true,	cond2:	true
2. cond1:	false,	cond2:	false

31 31

Branch vs Path Coverage

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How	about	path	
coverage?

32 32

Branch vs Path Coverage

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How	about	path	
coverage?

Four:

1. cond1:	true,	cond2:	true
2. cond1:	false,	cond2:	true
3. cond1:	true,	cond2:	false
4. cond1:	false,	cond2:	false

33 33

Branch vs Path Coverage
if(cond1)

f1();
else

f2();
if(cond2)

f3();
else

f4();
if(cond3)

f5();
else

f6();
if(cond4)

f7();
else

f8();
if(cond5)

f9();
else

f10();
if(cond6)

f11();
else

f12();
if(cond7)

f13();
else

f14();

How	many	test	cases	for	
path	coverage?

2n	test	cases,	where	n	is	
the	number	of	conditions

34 34

Test Path

A test path is a path p [possibly of length 0] that starts at
some node in N0 and ends at some node in Nf.

Test path examples:
• [1, 2, 3, 5, 6, 7]
• [1, 2, 3, 5, 6, 2, 3, 5, 6, 7]

35 35

Paths and Semantics

Some paths in a control flow graph may not correspond to program
semantics.
In path coverage, we generally only talk about the syntax of a graph --
its nodes and edges -- and not its semantics.

β is never
executed!

36 36

Syntactical and Semantic Reachability

A node n is syntactically reachable from m if there
exists a path from m to n.
A node n is semantically reachable if one of the
paths from m to n can be reached on some input.

Standard graph algorithms when applied to Control
Flow Graph can only compute syntactic
reachability.

Semantic reachability is undecidable.

37 37

Reachability

Let reachG(X) denote the sub-graph of G that is
(syntactically) reachable from X, where X is either a node,
an edge, a set of nodes, or a set of edges.

In this example, reachG(1) is the whole graph G.

38 38

Syntactical Reachability

39 39

Connect Test Cases and Test Paths

Connect test cases and test paths with a mapping pathG from test
cases to test paths
• e.g., pathG[t] is the set of test paths corresponding to test case t.

• Usually just write path, as G is obvious from the context

• Lift the definition of path to test set T by defining path(T)

• Each test case gives at least one test path. If the software is deterministic,
then each test case gives exactly one test path; otherwise, multiple test cases
may arise from one test path.

40 40

Deterministic and Nondeterministic CFG

41 41

Connecting Test Cases, Test Paths, and CFG

42 42

Node Coverage

Node coverage: For each node n ∈ reachG[N0], TR contains a
requirement to visit node n.
Node Coverage [NC]: TR contains each reachable node in G.
TR = {n0,n1,n2,n3,n4,n5,n6}

a.k.a. statement coverage

43 43

Edge Coverage (a.k.a. Branch Coverage)

Edge Coverage [EC]: TR contains each reachable path of length up to
1, inclusive, in G.
TR = {[1,2], [2,4], [2,3], [3,5], [4,5], [5,6] [6,7], [6,2]}

44 44

Edge Pair Coverage

Edge-Pair Coverage [EPC]: TR contains each reachable path of length
up to 2, inclusive, in G.
TR= {[1,2,3], [1,2,4], [2,3,5], [2,4,5], [3,5,6], [4,5,6]}

45 45

Simple Path

A path is simple if no node appears more than once in the path, except
that the first and last nodes may be the same.

Some properties of simple paths:
• no internal loops;
• can bound their length;
• can create any path by composing simple paths; and
• many simple paths exist [too many!]

46 46

Simple Path Examples

Simple path examples:
• [1, 2, 3, 5, 6, 7]
• [1, 2, 4]
• [2,3,5,6,2]

Not simple Path: [1,2,3,5,6,2,4]

47 47

Prime Path

Because there are so many simple paths, let’s
instead consider prime paths, which are simple
paths of maximal length.

A path is prime if it is simple and does not appear
as a proper subpath of any other simple path.

48 48

Prime Path Examples

Prime path examples:
• [1, 2, 3, 5, 6, 7]
• [1, 2, 4, 5, 6, 7]
• [6, 2, 4, 5, 6]

Not a prime path: [3, 5, 6, 7]

49 49

Prime Path Coverage

Prime Path Coverage [PPC]: TR contains each prime path in G.

There is a problem with using PPC as a coverage criterion: a prime path
may be infeasible but contains feasible simple paths.
• How to address this issue?

50 50

More Path Coverage Criterions

Complete Path Coverage [CPC]: TR contains all paths in G.

Specified Path Coverage [SPC]: TR contains a specified set
S of paths.

51 51

Prime Path Example

Len 0
[1]
[2]
[3]
[4]
[5]
[6]
[7]!

Len 1
[1,2]
[2,4]
[2,3]
[3,5]
[4,5]
[5,6]
[6,7]!
[6,2]

Len 2 Len 3 Len 4

Simple
paths

Len 5

53 Simple Paths
12 Prime Paths

! means path terminates

52 52

Prime Path Example

Len 0
[1]
[2]
[3]
[4]
[5]
[6]

[7] !

Len 1
[1,2]
[2,4]
[2,3]
[3,5]
[4,5]
[5,6]

[6,7] !
[6,2]

Len 2
[1,2,4]
[1,2,3]
[2,4,5]
[2,3,5]
[3,5,6]
[4,5,6]

[5,6,7] !
[5,6,2]
[6,2,4]
[6,2,3]

Len 3
[1,2,4,5]
[1,2,3,5]
[2,4,5,6]
[2,3,5,6]
[3,5,6,7]!
[3,5,6,2]
[4,5,6,7]!
[4,5,6,2]
[5,6,2,4]
[5,6,2,3]
[6,2,4,5]
[6,2,3,5]

Len 4
[1,2,4,5,6]
[1,2,3,5,6]
[2,4,5,6,7]!
[2,4,5,6,2]*
[2,3,5,6,7]!
[2,3,5,6,2]*
[3,5,6,2,4]

[3,5,6,2,3]*
[4,5,6,2,4]*
[4,5,6,2,3]

[5,6,2,4,5]*
[5,6,2,3,5]*
[6,2,4,5,6]*
[6,2,3,5,6]*

Simple
paths

Len 5
[1,2,4,5,6,7]!
[1,2,3,5,6,7]!

12 Prime Paths

! means path terminates.

* denotes path cycles.

x means not prime paths.

x
x
x
x
x
x

x
x
x
x
x
x

x

x
x
x
x
x
x

x
x
x

x
x
x
x

x

x
x
x
x
x

x
x

Check paths
without a x or *:

53 Simple Paths

53 53

Prime Path Example (2)

This graph has 38 simple paths
Only 9 prime paths

Prime Paths
[0, 1, 2, 3, 6]
[0, 1, 2, 4, 5]
[0, 1, 2, 4, 6]
[0, 2, 3, 6]
[0, 2, 4, 5]
[0, 2, 4, 6]
[5, 4, 6]
[4, 5, 4]
[5, 4, 5]5

0

2

1

3 4

6

54 54 25

Prime Path Example (2)

Len 0
[0]
[1]
[2]
[3]
[4]
[5]

[6] !

! means path terminates

Len 1
[0, 1]
[0, 2]
[1, 2]
[2, 3]
[2, 4]

[3, 6] !
[4, 6] !
[4, 5]
[5, 4]

Len 2
[0, 1, 2]
[0, 2, 3]
[0, 2, 4]
[1, 2, 3]
[1, 2, 4]

[2, 3, 6] !
[2, 4, 6] !
[2, 4, 5] !
[4, 5, 4] *
[5, 4, 6] !
[5, 4, 5] *

Len 4
[0, 1, 2, 3, 6] !
[0, 1, 2, 4, 6] !
[0, 1, 2, 4, 5] !

Simple
paths

5

0

2

1

3 4

6
9 Prime Paths

* denotes path cycles

Len 3
[0, 1, 2, 3]
[0, 1, 2, 4]

[0, 2, 3, 6] !
[0, 2, 4, 6] !
[0, 2, 4, 5] !
[1, 2, 3, 6] !
[1, 2, 4, 5] !
[1, 2, 4, 6] !

55 55

Examples of NC, EC, EPC, CPC
Node Coverage
TR = { 0, 1, 2, 3, 4, 5, 6 }
Test Paths:

Edge Coverage
TR = { [0,1], [0,2], [1,2], [2,3], [2,4], [3,6], [4,5], [4,6], [5,4] }
Test Paths:

Edge-Pair Coverage
TR = { [0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6],

[2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] }
Test Paths:

Complete Path Coverage
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6]
[0, 1, 2, 4, 5, 4, 5, 4, 6] [0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 6] …

5

0

2

1

3 4

6

[0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

[0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

[0, 1, 2, 3, 6] [0, 2, 3, 6] [0, 2, 4, 5, 4, 5, 4, 6] [
0, 1, 2, 4, 6]

56 56

Prime Path Coverage vs. Complete Path
Coverage

57 57

Prime Path Coverage vs. Complete Path
Coverage

[n0, n1, n3]
[n0, n2, n3]

[n0, n1, n3], [n0, n2, n3]

58 58

Prime Path Coverage vs. Complete Path
Coverage (2)

59 59

Prime Path Coverage vs. Complete Path
Coverage (2)

[q0, q1, q2], [q0, q1, q3, q4], [q3, q4, q1, q2],
[q1, q3, q4, q1], [q3, q4, q1, q3], [q4, q1, q3, q4]

[q0, q1, q2]
[q0, q1, q3, q4, q1, q3, q4, q1, q2]

60 60

Graph Coverage Criteria Subsumption

Node
Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path
Coverage

PPC

Complete Path
Coverage

CPC

61 61

How do we measure coverage?

First:
1. Parse the source code to build an Abstract Syntax Tree (AST)
2. Analyze the AST to build a Control Flow Graph (CFG)
3. Count points of interest

§ (total # of statements, branches, etc.)
4. Instrument the AST using the CFG

§ add tracing statements in the code

62 62

How do we measure coverage?

Then:
1. Transform AST back to instrumented code
2. Recompile and run the test suite on the recompiled code
3. Collect tracing data

§ (line 1 executed, line 3 executed, etc.)
4. Calculate coverage:

§ # traced points / total # points

63 63

Coverage May Affect Test Outcomes

Heisenberg effect
• the act of observing a system inevitably alters its state.

Coverage analysis changes the code by adding
tracing statements

Instrumentation can change program behaviour

64 64

Enabled In-code Assertions Mess Up
Branch Coverage Reporting

assert P
Turned into:

if assertion-enabled then
if P then skip()
else abort()

else skip()

Thus 4 branches!

Reported as such

Assertions shouldn’t fail

Resulting branch coverage
reports:
• Not useful with assertion

checking enabled
• Without it, they miss invariants

65 65

Coverage: Useful or Harmful?

Measuring coverage (% of satisfied test obligations) can be a useful
indicator ...
• Of progress toward a thorough test suite, of trouble spots requiring more

attention

... or a dangerous seduction
• Coverage is only a proxy for thoroughness or adequacy
• It’s easy to improve coverage without improving a test suite (much easier

than designing good test cases)

The only measure that really matters is effectiveness

66 66

EXERCISES

67 67

Exercise 1: Bridge Coverage

Bridge Coverage (BC): If removing an edge adds
unreachable nodes to the graph, then this edge is a bridge.
The set of test requirements for BC contains all bridges.
Assume that a graph contains at least two nodes, and all
nodes in a graph are reachable from the initial nodes.
(a) Does BC subsume Node Coverage (NC). If yes, justify

your answer. If no, give a counterexample.
(b) Does NC subsume BC? If yes, justify your answer. If no,

give a counterexample

68 68

Bridge Coverage: Part (a)

Bridge Coverage does not subsume Node Coverage.

TRBC = {[1,2], [2,3], [3,5]}
TRNC = {[1, 2, 3,4, 5}
Test path [1,2,3,5] satisfies BC, but not NC because node 4 is not
visited.

1

5

2

3

4

69 69

Bridge Coverage: Part (b)

NC subsumes BC

Key points for the proof:
• For any bridge [a, b], any test case that visits b must also visit the edge

[a, b] (can be proved by contradiction).

• Any test set that satisfies NC must visit node b (TR of NC contains all
nodes, including node b). Therefore, for any bridge [a, b], the test set will
visit it. Therefore, NC subsumes BC.

70 70

Exercise 2 (1/2)

Answer questions [a]-[g] for the graph defined by the following sets:
• N ={1, 2, 3, 4, 5, 6, 7}
• N0 = {1}
• Nf = {7}
• E = {[1, 2], [1, 7], [2, 3], [2, 4], [3, 2], [4, 5], [4, 6], [5, 6], [6, 1]}

Also consider the following test paths:
• t0 = [1, 2, 4, 5, 6, 1, 7]
• t1 = [1, 2, 3, 2, 4, 6, 1, 7]

71 71

Exercise 2 (2/2)

[a] Draw the graph.
[b] List the test requirements for EPC. [Hint: You should get 12

requirements of length 2].
[c] Does the given set of test paths satisfy EPC? If not, identify

what is missing.
[d] List the test requirements for NC, EC and PPC on the

graph.
[e] List a test path that achieve NC but not EC on the graph.
[f] List a test path that achieve EC but not PPC on the graph.

72 72

Exercise 2: Partial Solutions (1/2)

[a] Draw the graph.
[b] List the test requirements for EPC. [Hint: You should get 12
requirements of length 2].
• The edge pairs are: {[1, 2, 3], [1, 2, 4], [2, 3, 2], [2, 4, 5], [2, 4, 6], [3, 2, 3], [3,

2, 4], [4, 5, 6], [4, 6, 1], [5, 6, 1], [6, 1, 2], [6, 1, 7] }
[c] Does the given set of test paths satisfy EPC? If not, identify what is
missing.
• No. Neither t0 nor t1 visits the following edge-pairs: {[3, 2, 3], [6, 1, 2]}

73 73

Exercise 2: Partial Solutions (2/2)

[d] TR for NC, EC, and PPC.
• TRNC =
• TREC =
• TRPPC = {[3, 2, 4, 6, 1, 7], [3, 2, 4, 5, 6, 1, 7], [4, 6, 1, 2, 3], [4, 5, 6, 1, 2, 3], [3,

2, 3], [2, 3, 2], [1, 2, 4, 5, 6, 1], [1, 2, 4, 6, 1], [2, 4, 6, 1, 2], [2, 4, 5, 6, 1, 2], [4,
6, 1, 2, 4], [4, 5, 6, 1, 2, 4], [5, 6, 1, 2, 4, 5], [6, 1, 2, 4, 6], [6, 1, 2, 4, 5, 6]}

[e] A test path that achieve NC but not EC.
• [1, 2, 3, 2, 4, 5, 6, 1, 7] does not cover edge [4, 6].

[f] A test path that achieve EC but not PPC.
• [1, 2, 3, 2, 4, 5, 6, 1, 2, 4, 6, 1, 7] does not cover prime paths such as [3,2,3].

