
Software Model Checking

Testing, Quality Assurance, and Maintenance
Winter 2017

Prof. Arie Gurfinkel

2 2

(Temporal Logic) Model Checking

Automatic verification technique for finite state
concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in early
1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal
Logic (LTL), …

Verification procedure is an intelligent exhaustive
search of the state space of the design

• State-space explosion

3 3

Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware
Verification in Industry:
Intel, IBM, Motorola, etc.

4 4

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981

5 5

TEMPORAL LOGIC MODEL
CHECKING

6 6

Temporal Logic Model Checking

Yes/No +
Counter-example

SW/HW
Artifact

Correctness
properties

Temporal
logic

Finite
Model

Model
Extraction Translation

Model
Checker

Correct?

Abstraction

7 7

Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic
propositions
• S is a (finite) set of states
• s0 Î S is a start state
• I: S ® 2V is a labelling function that maps

each state to the set of propositional
variables that hold in it
– That is, I(S) is a set of interpretations

specifying which propositions are true
in each state

• R Í S ´ S is a transition relation

req req,
busy

busy

s0

s2

s1

s3

8 8

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!

9 9

Modal Logic

Extends propositional logic with modalities to qualify propositions
• “it is raining” – rain
• “it will rain tomorrow” –☐rain
– it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain
– it is raining in some possible futures

Modal logic formulas are interpreted over a collection of possible worlds
connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next,
always, eventually, and until

10 10

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

Tree of computationKripke Structure

11 11

CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over possible
futures
Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If j and ψ are CTL formulae, then so are: ¬ j , j Ù ψ , j Ú ψ

EX j : j holds in some next state

EF j : along some path, j holds in a future state

E[j U ψ] : along some path, j holds until ψ holds
EG j : along some path, j holds in every state

• Universal quantification: AX j , AF j , A[j U ψ], AG j

12 12

Examples: EX and AX

j

EX j (exists next)

j

AX j (all next)

j

13 13

Examples: EG and AG

j
j
j
j

EG j (exists global)

j
j
j jj
jj j j j

AG j (all global)

j

14 14

Examples: EF and AF

j

EF j (exists future)

j
j j

AF j (all future)

j

15 15

Examples: EU and AU

j
j
y

E[j U ψ] (exists
until)

j
j
j y
y

A[j U ψ] (all until)

y

16 16

CTL Examples

Properties that hold:
• (AX busy)(s0)
• (EG busy)(s3)
• A (req U busy) (s0)
• E (¬req U busy) (s1)
• AG (req ⇒ AF busy) (s0)

Properties that fail:
• (AX (req ∨ busy))(s3)

req req,
busy

busy

s0

s2

s1

s3

17 17

Some Statements To Express

An elevator can remain idle on the third floor with its doors closed
• EF (state=idle Ù floor=3 Ù doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly. Use property patterns

18 18

Semantics of CTL

K,s ⊨ j – means that formula j is true in state s. K is often omitted
since we always talk about the same Kripke structure
• E.g., s ⊨ p ∧¬q
π = π0 π1 … is a path
π0 is the current state (root)
πi+1 is a successor state of πi. Then,
AX j = "π × π1 ⊨ j EX j = $π × π1 ⊨ j
AG j = "π × "i × πi ⊨ j EG j = $π × "i × πi ⊨ j
AF j = "π × $i × πi ⊨ j EF j = $π × $i × πi ⊨ j
A[j U ψ] = "π × $i × πi ⊨ ψ ∧ " j × 0 £ j < i ⇒ πj ⊨ j
E[j U ψ] = $π × $i × πi ⊨ ψ ∧ " j × 0 £ j < i ⇒ πj ⊨ j

19 19

Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace

S1 S2

S3

S2 S1S1 S2 S1

S2 S1S1 S2 S3

S2 S3S1 S3 S3

S2 S3S1 S1 S2

S2 S3S1 S3 S1

20 20

LTL Syntax

If j is an atomic propositional formula, it is a formula in LTL
If j and ψ are LTL formulas, so are j∧ ψ, j∨ ψ, ¬ j, j U ψ (until),
X j (next), Fj (eventually), G j (always)
Interpretation: over computations π: ω ⇒ 2V which assigns truth values
to the elements of V at each time instant
π ⊨ X j iff π 1 ⊨ j
π ⊨ G j iff "i × π i ⊨ j
π ⊨ Fj iff $i × π i ⊨ j
π ⊨ j U ψ iff $i × π i ⊨ ψ ∧ " j × 0 £ j < i ⇒ π j ⊨ j
Here, π i is the i ’th state on a path

21 21

Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties
Express:
• When a request occurs, it will eventually be acknowledged
– G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s
– G F q

• At most a finite number of states in each path satisfy ¬q (or property q
eventually stabilizes)
– F G q

• Action s precedes p after q
– [¬q U (q ∧ [¬p U s])]
– Note: hard to do correctly.

22 22

Safety and Liveness

Safety: Something “bad” will never happen
• AG ¬bad
• e.g., mutual exclusion: no two processes are in their critical section at once
• Safety = if false then there is a finite counterexample
• Safety = reachability

Liveness: Something “good” will always happen
• AG AF good
• e.g., every request is eventually serviced
• Liveness = if false then there is an infinite counterexample
• Liveness = termination

Every universal temporal logic formula can be decomposed into a
conjunction of safety and liveness

23 23

The Safety Verification Problem

Initial

Error

Is there a path from an initial to an error state?

Safe

24 24

State Explosion

How fast do Kripke structures grow?
• Composing linear number of structures yields exponential growth!

How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT).
– Do not need to represent and manipulate the entire model

• Abstraction
– Abstract away variables in the model which are not relevant to the formula

being checked
– Partial order reduction (for asynchronous systems)
– Several interleavings of component traces may be equivalent as far as

satisfaction of the formula to be checked is concerned
• Composition
– Break the verification problem down into several simpler verification

problems

25 25

Representing Models Symbolically

A system state represents an interpretation (truth assignment) for a set
of propositional variables V
• Formulas represent sets of states that satisfy it
– False = ∅, True = S
– req – set of states in which req is
– true – {s0, s1}
– busy – set of states in which busy is
– true – {s1, s3}
– req∨ busy = {s0, s1 , s3}

• State transitions are described by relations over two sets of variables: V
(source state) and V’ (destination state)
– Transition (s2, s3) is ¬req∧ ¬ busy ∧ ¬req’∧ busy’
– Relation R is described by disjunction of formulas for individual transitions

req req,
busy

busy

s0

s2

s1

s3

26 26

Pros and Cons of Model-Checking

Often cannot express full requirements
• Instead check several smaller simpler properties

Few systems can be checked directly
• Must generally abstract parts of the system and model the environment

Works better for certain types of problems
• Very useful for control-centered concurrent systems
– Avionics software
– Hardware
– Communication protocols

• Not very good at data-centered systems
– User interfaces, databases

27 27

Pros and Cons of Model Checking (Cont’d)

Largely automatic and fast

Better suited for debugging
• … rather than assurance

Testing vs model-checking
• Usually, find more problems by

exploring all behaviors of a downscaled system
than by

testing some behaviors of the full system

28 28

SOFTWARE MODEL CHECKING

29 29

Software Model Checking

Yes/No
Answer

Program
(e.g., C)

Correctness
property

Model of
the program

Model
Extraction

Model
Checker

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

30 30

http://seahorn.github.io

31 31

SeaHorn Architecture

 LLVM Opt

Devirt/Exc Elim

Property Instr

Lifting Assert

Heap Disambig

Array Abstraction

 VC Generation:
small, large, flat...

Precision:scalars,
pointers, memory

 Crab

Template Inv

 Spacer

 Front-end Middle-end Back-end

 C/C++ LLVM bitcode Horn Clauses

 BMC

32 32

SeaHorn Usage

> sea pf FILE.c
Outputs sat for unsafe (has counterexample); unsat for safe
Additional options
• --cex=trace.xml outputs a counter-example in SV-COMP’15 format
• --show-invars displays computed invariants
• --track={reg,ptr,mem} track registers, pointers, memory content
• --step={large,small} verification condition step-semantics
– small == basic block, large == loop-free control flow block

• --inline inline all functions in the front-end passes
Additional commands
• sea smt – generates CHC in extension of SMT-LIB2 format
• sea clp -- generates CHC in CLP format (under development)
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end

33 33

Verification Pipeline

clang | pp | ms |opt | horn

front-end

compile pre-process

mixed
semantics

optimize

VC gen &
solve

34 34

In Our Programming Language…

All variables are global
Functions are in-lined
int is integer
• i.e., no overflow

Special statements:

skip do nothing
assume(e) if e then skip else abort
x,y=e1,e2 x, y are assigned e1,e2 in parallel
x=nondet() x gets an arbitrary value
goto L1,L2 non-deterministically go to L1 or L2

35 35

From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Step

Property: EF (pc = 5)

36 36

Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1

37 37

Modeling in Software Model Checking

Software Model Checker works directly on the source code of a program
• but it is a whole-program-analysis technique
• requires the user to provide the model of the environment with which the

program interacts
– e.g., physical sensors, operating system, external libraries, specifications,

etc.

Programing languages already provide convenient primitives to describe
behavior
• programming languages are extended to modeling and specification

languages by adding three new features
– non-determinism: like random values, but without a probability distribution
– assumptions: constraints on “random” values
– assertions: an indication of a failure

38 38

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (bool b) { if (!b) error(); }

int nondet_int () { int x; return x; }

void assume (bool e) { while (!e) ; }

39 39

Using nondet for modeling

Library spec:
• “foo is given via grab_foo(), and is busy until returned via return_foo()”

Model Checking stub:

int nondet_int ();
int is_foo_taken = 0;
int grab_foo () {
if (!is_foo_taken)
is_foo_taken = nondet_int ();

return is_foo_taken; }

void return_foo ()
{ is_foo_taken = 0; }

40 40

Software Model Checking Workflow

1. Identify module to be analyzed
– e.g., function, component, device driver, library, etc.

2. Instrument with property assertions
– e.g., buffer overflow, proper API usage, proper state change, etc.
– might require significant changes in the program to insert necessary

monitors
3. Model environment of the module under analysis
– provide stubs for functions that are called but are not analyzed

4. Write verification harness that exercises module under analysis
– similar to unit-test, but can use symbolic values
– tests many executions at a time

5. Run Model Checker

6. Repeat as needed

41 41

Types of Software Model Checking

Bounded Model Checking (BMC)
• look for bugs (bad executions) up to a fixed bound
• usually bound depth of loops and depth of recursive calls
• reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction
Refinement (CEGAR)
• Construct finite-state abstraction of a program
• Analyze using finite-state Model Checking techniques
• Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)
• Iteratively apply BMC with increasing bound
• Generalize from bounded-safety proofs
• reduce the problem to many SAT/SMT queries and generalize from SAT/SMT

reasoning

42 42

PREDICATE ABSTRACTION
AND COUNTEREXAMPLE
GUIDED ABSTRACTION-
REFINEMENT

43 43

Model Checking Software by Abstraction

Programs are not finite state
• integer variables
• recursion
• unbounded data structures
• dynamic memory allocation
• dynamic thread creation
• pointers
• …

43

Program

Model Checker

Ü Build a finite abstraction
Ä… small enough to analyze
Ä… rich enough to give

conclusive results

Abstraction

44 44

Software Model Checking and Abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:
BP abstracts P implies that K’ approximates K

45 45

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model Checking,
SLAM Project, Microsoft,

Ball & Rajamani

Counterexample-
guided Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-
example

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

46 46

The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

Program Property Expected
Answer

False

47 47

An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction
(with y<=2)

48 48

Boolean (Predicate) Programs (BP)

Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions, plus

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1), p2 = ch(a2,b2), ...

b1 = ch(b1,¬b1), b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown

if a then
true

else
if b then

false
else *

49 49

Detour: Pre- and Post-Conditions

A Hoare triple {P} C {Q} is a logical statement that holds
when

For any state s that satisfies P, if executing statement C on s
terminates with a state s’, then s’ satisfies Q.

{P} C {Q}
Statement

Pre-condition
(boolean formula)

Post-condition
(boolean formula)

50 50

Detour: Weakest Liberal Pre-Condition

The weakest liberal precondition of a statement C with
respect to a post-condition Q (written WLP(C,Q)) is a
formula P such that

1. {P} C {Q}

2. for all other P’ such that {P’} C {Q},
P’ ⇒ P (P is weaker then P’).

51 51

Detour: Weakest Liberal Preconditions

{P} C {Q}
Statement

Pre-condition
(boolean formula)

Post-condition
(boolean formula)

{3>y} x = 3 {x>y}

{x>0} x = 2+y {y>0}

{*x>3 ⋁ x = &y} y=5 {*x>3}

{false} y=5 {y<0}

✘

✔

✔

✔

52 52

Calculating Weakest Preconditions

Assignment (easy)
• WLP (x=e, Q) = Q[x/e]
– Intuition: after an assignment, x gets the value of e, thus Q[x/e] is

required to hold before x=e is executed

Examples:
WLP (x:=0, x=y) = (x=y)[x/0] = (0==y)
WLP (x:=0, x=y+1) = (x=y+1)[x/0] = (0 == y+1)
WLP (y:=y-1,y<=2) = (y<=2)[y/y-1] = (y-1 <= 2)
WLP(y:=y-1,x=2) = (x=2)[y/y-1] = (x == 2)

53 53

Boolean Program Abstraction

Update p = ch(a, b) is an approximation of a concrete statement S
iff {a} S {p} and {b} S {¬p} are valid
• i.e., y = y – 1 is approximated by
– (x == 2) = ch(x ==2, x!=2), and
– (y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete statement S iff all of its
updates approximate S
• i.e., y = y – 1 is approximated by

(x == 2) = ch(x ==2, x!=2),

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete program iff all of its
statements approximate corresponding concrete statements

54 54

Computing An Abstract Update
// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate q) {

resT, resF = false, false;

// foreach monomial (full conjunction of literals) in P

foreach m : monomials(P) {

if (SMT_IS_VALID(“m ⇒ WLP(S,q)”) resT = resT ⋁ m;

if (SMT_IS_VALID(“m ⇒ WLP(S,¬q)”) resF = resF ⋁ m;

}

return “q = ch(resT, resF)”

}

55 55

absUpdate (y=y-1, p={y<=2}, q=(y<=2))

y = y - 1;

(y<=2) = ch (y<=2,f)

P is {y <= 2}
q is (y <= 2)

SMT Queries:
(y<=2) ⇒ (y–1) <= 2
¬(y<=2)⇒ (y–1) <= 2
(y<=2) ⇒ (y–1) > 2
¬(y<=2)⇒ (y–1) > 2

absUpdate

✔
✘

✘

✘

WLP(y=y-1,y<=2) is (y-1) <= 2

WLP(y=y-1,¬(y<=2)) is (y–1) > 2

56 56

Example: Abstracting Skip Statement

skip

p = ch (p , !p),
q = ch (q , !q),
z = ch (z , !z)

p is {x=0}
q is {y=0}
z is {x=y}

abs

57 57

Example: Abstracting Skip Statement

skip

p = ch (p||(q&&z), !p||(q&&!z)),
q = ch (q||(p&&z), !q||(p&&!z)),
z = ch (z||(p&&q), !z||(p!=q))

p is {x=0}
q is {y=0}
z is {x=y}

abs

58 58

The result of abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction
(with y<=2)

But what is the semantics of Boolean programs?

59 59

BP Semantics: Overview

Over-Approximation
• treat “unknown” as non-deterministic
• good for establishing correctness of universal properties

Under-Approximation
• treat “unknown” as abort
• good for establishing failure of universal properties

Exact Approximation
• Treat “unknown” as a special unknown value
• good for verification and refutation
• good for universal, existential, and mixed properties

60 60

BP Semantics: Over-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: error();
5: if (nondet)
6: error();
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Over-
Approximation

Unknown is treated as non-deterministic

61 61

BP Semantics: Under-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Under-
Approximation

Unknown is treated as abort

62 62

BP Semantics: Exact Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Exact
Belnap KS

t

f

⊥ ⊤

“unknown”

“non-deterministic”

Unknown is treated as unknown

63 63

Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1
b2

b2

t

f

⊥ ⊤
Abstract

Over-Approx Belnap (Exact)Under-Approx

y = y - 1;

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1
b2

b2
b1?
b2

b1
b2?

b1
b2

b2
b1?
b2

b1
b2?

64 64

Summary: Program Abstraction

Abstract a program P by a Boolean program BP
Pick an abstract semantics for this BP:
• Over-approximating
• Under-approximating
• Belnap (Exact)

Yield relationship between K and K’:
• Over-approximation
• Under-approximation
• Belnap abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke
K’

Semantics

Abstraction Abstract
Semantics

65 65

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model Checking,
SLAM Project, Microsoft,

Ball & Rajamani

Counterexample-
guided Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-
example

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

66 66

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

1: ;

2: while (*)
3: ;
4: if (*)
5: error();
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat

67 67

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps

68 68

Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4

t

f

⊥ ⊤

69 69

can stop here

cause
Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
$n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

70 70

Finding Refinement Predicates

Recall
• each abstract state is a conjunction of predicates
– i.e., y<=2⋀x==2 y>2 ⋀ x!=2 etc.

• each abstract transition corresponds to a program statement

Result from
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of

{s1} C {s2}

C is the statement
corresponding to

the transition

71 71

Refinement via Weakest Liberal Precondition

If s1→s2 corresponds to a conditional statement
• refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
• Find a predicate p in s2 with uncertain value

– i.e., {s1} C {p} is not valid
• refine by adding WLP(C,p)

72 72

Finding New Predicate Example

{y>2⋀x==2} y = y-1 {y>2⋀x==2}

s1 → s2 is unknown

WLP(y = y–1, y>2) = y>3

{y>2⋀x==2} y = y-1 {y>2} ✘

new predicate

{y>2⋀x==2} y = y-1 {x==2} ✔

pc=2
y>2
x==2

pc=3
y>2
x==2

73 73

Example of Predicate Abstraction

Unlocked Locked

Error

Rel Acq

Acq

Rel

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

74 74

s:=U;
do {

assert(s=U); s:=L;

if(*){

assert(s=L); s:=U;

}
} while (*);

assert(s=L); s:=U;

Abstraction (via Boolean program)

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;
}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();

75 75

Abstraction (via Boolean program)

s:=U;
do {

assert(s=U); s:=L;

if(*){

assert(s=L); s:=U;

}
} while (*);

assert(s=L); s:=U;

U

L

L

L

L

U

L

U

U

U

E

L

E

76 76

Refined Boolean Abstraction

s:=U;
do {

assert(s=U); s:=L;

b := true;

if(*){

assert(s=L); s:=U;
b := b ? false : *;
}

} while (!b);

assert(s=L); s:=U;

b : (nPacketsOld == nPackets)

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;
}

} while(nPackets!=nPacketsOld);

KeReleaseSpinLock();

77 77

Refined Boolean Abstraction

s:=U;
do {

assert(s=U); s:=L;

b := true;

if(*){

assert(s=L); s:=U;
b := b ? false : *;
}

} while (!b);

assert(s=L); s:=U;

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

78 78

Inductive Invariant

Inductive invariant is the set of states
reachable at the head of the loop

Lock is held iff nPacketsOld == nPackets

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

(b ^ L) _ (¬b ^ U)

⌘ b () L

⌘ nPacketsOld = nPackets () Locked

79 79

Summary: Predicate Abstraction and CEGAR

Predicate abstraction with CEGAR is an effective technique for
analyzing behavioral properties of software systems

Combines static analysis and traditional model-checking

Abstraction is essential for scalability
• Boolean programs are used as an intermediate step
• Different abstract semantics lead to different abs.
– over-, under-, Belnap

Automatic abstraction refinement finds the “right” abstraction
incrementally

80 80

TRUST IN FORMAL METHODS

81 81

Idealized Development w/ Formal Methods

No expensive testing!
• Verification is exhaustive

Simpler certification!
• Just check formal arguments

Design Develop Verify (with FM) Certify Deploy

Can we trust formal methods tools? What can go wrong?

82 82

Trusting Automated Verification Tools

How should automatic verifiers be qualified for certification?

What is the basis for automatic program analysis (or other automatic
formal methods) to replace testing?

Verify the verifier
• (too) expensive
• verifiers are often very complex tools
• difficult to continuously adapt tools to project-specific needs

Proof-producing (or certifying) verifier
• Only the proof is important – not the tool that produced it
• Only the proof-checker needs to be verified/qualified
• Single proof-checker can be re-used in many projects

83 83

Active research area
• proof carrying code, certifying model checking, model carrying code etc.
• Few tools available. Some preliminary commercial application in the telecom domain.
• Static context. Good for ensuring absence of problems.
• Low automation. Applies to source or binary. High confidence.

Evidence Producing Analysis

X witnesses that P satisfies Q. X can be objectively and independently verified.
Therefore, EPA is outside the Trusted Computing Base (TCB).

Program P

Property Q

Proof X
EPA

do not trust “easy” to verify

Not that simple in practice !!!

84 84

An In-Depth Look…

Low level property
Program = (Text, Semantics)

Verifier

Proof Checker

Front-End
Environment model

VC

No + Counterexample

Yes + Proof

Good Bad

Compiler

Executable

Real Env Hardware
Good
Bad

?=?

Hard to
verify

Hard to
get right

Diff sem
used by
diff tools

Hard to
get right

85 85

Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment

86 86

Mitigating The Soundness Gap

Proof-producing verifier makes the soundness gap explicit
• the soundness of the proof can be established by a “simple” checker
• all assumptions are stated explicitly

Open questions:
• how to generate proofs for explicit Model Checking
– e.g., SPIN, Java PathFinder

• how to generate partial proofs for non-exhaustive methods
– e.g., KLEE, Sage

• how to deal with “intentional” unsoundness
– e.g., rational arithmetic instead of bitvectors, memory models, …

87 87

Vacuity: Mitigating Property Gap

Model Checking Perspective: Never trust a True answer from a Model
Checker

When a property is violated, a counterexample is a certificate that can
be examined by the user for validity

When a property is satisfied, there is no feedback!

It is very easy to formally state something very trivial in a very complex
way

88 88

MODULE main

VAR
send : {s0,s1,s2};
recv : {r0,r1,r2};

ack : boolean;
req : boolean;

ASSIGN
init(ack):=FALSE;
init(req):=FALSE;

init(send):= s0;
init(recv):= r0;

next (send) :=
case
send=s0:{s0,s1};
send=s1:s2;
send=s2&ack:s0;
TRUE:send;

esac;

next (recv) :=
case
recv=r0&req:r1;
recv=r1:r2;
recv=r2:r0;
TRUE: recv;

esac;

next (ack) :=
case
recv=r2:TRUE;
TRUE: ack;

esac;

next (req) :=
case
send=s1:FALSE;
TRUE: req;

esac;

SPEC AG (req -> AF ack)

89 89

Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment

