
Symbolic Execution Semantics for WHILE

Language

Arie Gurfinkel

April 2, 2017

1 Symbolic Execution Semantics

Symbolic execution semantics of the WHILE language are shown in Fig. 1. The
judgement in symbolic execution has a form 〈s, q, pc〉 ⇓ q′, pc′, where s is a state-
ment, q and q′ are the input and output symbolic environments, respectively,
and pc and pc′ are input and output path conditions, respectively. A symbolic
environment maps program variables to symbolic expressions. A path condi-
tion is a formula over symbolic expressions. Note that since WHILE language
does not have inputs, symbolic expressions are introduced into the state by the
havoc statement.

Unlike the concrete operational semantics, a statement might have several
executions. For example, both branches of an if-statement can be evaluated if
both the condition b and its negation ¬b are consistent with the current path
condition pc.

1



〈skip, q, pc〉 ⇓ q, pc

〈print state, q, pc〉 ⇓ q, pc

〈s1, q, pc〉 ⇓ q′′, pc′′ 〈s2, q′′, pc′′〉 ⇓ q′, pc′

〈s1 ; s2, q, pc〉 ⇓ q′, pc′

〈e, q〉 ⇓ n

〈x := e, q, pc〉 ⇓ q[x := n], pc

〈b, q〉 ⇓ v pc ∧ v is SAT 〈s1, q, pc ∧ v〉 ⇓ q′, pc′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc′

〈b, q〉 ⇓ v pc ∧ ¬v is SAT 〈s2, q, pc ∧ ¬v〉 ⇓ q′, pc′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc′

〈b, q〉 ⇓ v pc ∧ ¬v is SAT

〈while b do s, q, pc〉 ⇓ q, pc ∧ ¬v

〈b, q〉 ⇓ v pc ∧ v is SAT 〈s ; while b do s, q, pc ∧ v〉 ⇓ q′, pc′

〈while b do s, q, pc〉 ⇓ q′, pc′

V is a fresh constant

〈havoc x, q, pc〉 ⇓ q[x := V ]

Figure 1: Symbolic Execution Semantics of the WHILE language.

2 Operational Semantics

Operational semantics for the WHILE language is shown in Fig. 2. The judge-
ment in symbolic execution has a form 〈s, q〉 ⇓ q′, where s is a statement, q
and q′ are the input and output states, respectively. A (concrete) state (or an
environment) maps program variables to integers. Except for havoc statement,
the rules are deterministic – each input state has only one legal output state.

3 Operational Semantics of Concolic Execution

Let L be the set of program variables. For concolic execution, they are parti-
tioned into symbolic, Sym(L), and concrete, Con(L), variables. It is possible
that all variables are symbolic, i.e., Con(L) = ∅. For a variable a, we write

2



〈skip, q〉 ⇓ q 〈print state, q〉 ⇓ q

〈s1, q〉 ⇓ q′′ 〈s2, q′′〉 ⇓ q′

〈s1 ; s2, q〉 ⇓ q′

〈e, q〉 ⇓ n

〈x := e, q〉 ⇓ q[x := n]

〈b, q〉 ⇓ true 〈s1, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′
〈b, q〉 ⇓ false 〈s2, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

〈b, q〉 ⇓ false

〈while b do s, q〉 ⇓ q

〈b, q〉 ⇓ true 〈s ; while b do s, q〉 ⇓ q′

〈while b do s, q〉 ⇓ q′ 〈havoc x, q〉 ⇓ q[x := n]

Figure 2: Operational semantics of the WHILE language.

Sym(a) and Con(a) to indicate that it is symbolic or concrete, respectively.
A state of concolic execution is a triple q = 〈c, s, pc〉, where c is a concrete

state, s a symbolic environment, and pc is a formula called the path condition.
Given a state q = 〈c, s, pc〉, we write con(q) for c, sym(q) for s, and pc(q) for pc.
Symbolic environment, path condition, and concrete state are as in symbolic
and concrete execution, respectively. However, concrete state also has a value
for every symbolic variable. We call those concrete shadows. That is, if b is a
symbolic variable and q a concolic state, then sym(q)(b) is the symbolic value
of b, and con(q)(b) is the value of the concrete shadow of b. Given two concrete
states c1 and c2, we write c1 ≡con c2 to indicate that that they are identical on
the concrete variables:

c1 ≡con c2 ⇐⇒ ∀a ∈ Con(L) · c1(a) = c2(a)

Given a concrete state c and a symbolic state 〈s, pc〉, we write c |= 〈s, pc〉 to
indicate that the concrete state c is contained in the symbolic state.

The semantics of expressions is as usual with variables evaluated based
on their kind: concrete variables are evaluated over con(q) and symbolic over
sym(q):

con(a) 〈a, con(q)〉 ⇓ v

〈a, q〉 ⇓ v

sym(a) 〈a, sym(q)〉 ⇓ v

〈a, q〉 ⇓ v

For most statements, the semantics is extended by applying both symbolic
and concrete operational semantics in parallel. The last pre-condition ensures
that the concrete and symbolic states are chosen consistently.

〈s, con(q)〉 ⇓ c 〈s, sym(q), pc(q)〉 ⇓ s′, pc′ c |= 〈s′, pc′〉
〈s, q〉 ⇓ 〈c′, s′, pc′〉

Assignment of values to concrete variables is limited to concrete values only.
Thus, it is not possible to assign symbolic variables (or symbolic expressions) to
concrete variables. This can be done by either treating all variables as symbolic
(i.e., Con(L) = ∅), or concretizing symbolic state before assignment (which we

3



describe later on).
〈e, q〉 ⇓ n con(x) n ∈ Z

〈x := e, q〉 ⇓ q[x := n]

Assignment to symbolic variables also assigns to their concrete shadows.
At if-statement, concolic execution can chose to switch to the branch that is

not consistent with current concrete state, as long as the concrete state can be
adjusted. We only show one of the cases:

〈b, con(q)〉 ⇓ true
〈b, q〉 ⇓ v pc(q) ∧ ¬v is SAT c |= 〈sym(q), pc(q) ∧ ¬v〉

c ≡con con(q) 〈s2, 〈c, sym(q), pc(q) ∧ ¬v〉〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

In this case, according to the concrete state the branch condition b is true. At
the same time, according to symbolic state, the negation of the branch condition
¬b and the current path condition are satisfiable. The concolic execution can
proceed according to the else-branch, but the concolic state needs to be first
updated such that:

1. the concrete portion is updated to be consistent with the negation of the
branch condition

2. the path condition is extended with the negation of the path condition.

Note that it is only possible to take the else-branch if the condition value can
be controlled by the symbolic part of the state. Branch conditions that do not
depend on the input (such as iterations of the loops) can only be resolved one
way (i.e., either true or false).

Finally, concolic execution semantics provide concretization step that allows
to turn symbolic variables (or values) to their concrete values in the current
concrete state. The effect of concretization is captured by the so called con-
cretization constraints in the path condition:

sym(x) 〈x, con(q)〉 ⇓ n
〈x, sym(q)〉 ⇓ v 〈s, 〈con(q), sym(q)[x := n], pc(q) ∧ v = n〉〉 ⇓ q′

〈s, q〉 ⇓ q′

The rule says that if x is a symbolic variable with symbolic value v and it is
currently shadowed concretely by a concrete value n, then we can update the
symbolic value of x to n as long as we also update the path condition with v = n
to reflect the concretization step.

4


	Symbolic Execution Semantics
	Operational Semantics
	Operational Semantics of Concolic Execution

