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Syntax of Propositional Logic

An atomic formula has a form A, wherei=1, 2, 3 ...

Formulas are defined inductively as follows:

e All atomic formulas are formulas
e For every formula F, =F (called not F) is a formula
e For all formulas F and G, F A G (called and) and F v G (called or) are

formulas
Abbreviations
e use A, B, C, ... instead of A, A,, ...
e use F; — F, instead of °F, v F, (implication)
e use F1 < F,instead of (Fy — F,) A (F2 — Fy) (iff)
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Syntax of Propositional Logic (PL)

truth_symbol ::= T (true) | L (false)

variable :=p,q, 1, ...
atom ::= truth_symbol | variable
literal ::= atom|—atom
formula ::= literal |
—formula |
formula A formula |

formul

formul

a V formula |

a — formula |

formul
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Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation ~v

A clause is a disjunction of literals
e e.g. (V1] ~v2]| v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of
disjunctions of literals (i.e., a conjunction of clauses):

e e.g., (V1| ~v2) && (v3 || v2) n my
AV Lij)

1=1 5=1
A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of

conjunctions of literals
n T,
VA Lis)

i=1 j=1
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Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals

e e.g., (V1| ~v2]| v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses

e e.g., (V1| ~v2) && (v3 || v2)
An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in ¢ to true

An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):

o determine whether a given CNF C is satisfiable
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CNF Examples

CNF 1

s ~b

*~a|l~b]l~c

°a

e sat: s(a) = True; s(b) = False; s(c) = False

CNF 2
e ~b
*~al|bfl~c
e a
e ~allc
e unsat
WATERLOO



Algorithms for SAT

SAT is NP-complete

e solution can be checked in polynomial time
e no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)

e smart enumeration of all possible SAT assignments
e worst-case EXPTIME

* alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
o conflict-driven clause learning
e extends DPLL with

— smart data structures, backjumping, clause learning, heuristics, restarts...
e scales to millions of variables

e N. Een and N. Sorensson, “An Extensible SAT-solver”, in SAT 2013.
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Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers
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from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf
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SAT - Milestones

Problems impossible 10 years ago are trivial today

year | Milestone _________

1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984  Binary Decision Diagrams

1992 DIMACS SAT challenge

1994  SATO: clause indexing

1997 GRASP: conflict clause
learning

1998 Search Restarts

2001  zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause
management

2010 Blocked clause elimination

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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NP is the new P!

Solve any computational problem by effective reduction to SAT/SMT

e iterate as necessary

IIIIIIIIIIII

Problem

encode >

< decode

SAT/SMT
Solver
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Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of

G such that no two adjacent vertices have the

same color.

Formally:

» does there exists a function f: V - [0..k) such that
 for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
e construct CNF C such that C is SAT iff G is k-

colorable

IIIIIIIIIIII

https://en.wikipedia.org/wiki/Graph_coloring
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k-coloring as CNF

Let a Boolean variable f, ; denote that vertex v has color i
e if f,;is true if and only if f(v) =i

Every vertex has at least one color

\/ fo,i (veV)
No vertex is assigned two colors

N foiV=fus) (veV)

0<i<j<k

No two adjacent vertices have the same color

N (AfoiV=fui) ((v,u) € E)

13



Davis Putnam Logemann Loveland

DPLL PROCEDURE

IIIIIIIIIIII
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Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given
propositional logic (PL) formula F is satisfiable

e NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naive approach
e Enumerate models (i.e., truth tables)
 Enumerate resolution proofs
Modern SAT solvers
e DPLL algorithm
— Davis-Putnam-Logemann-Loveland
 Combines model- and proof-based search
* Operates on Conjunctive Normal Form (CNF)

UNIVERSITY OF

WATERLOO
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Propositional Resolution [ Pivot

Cvp DV p

CvD
M

Res({C, p}. {D. 'p}) = {C, D}

Given two clauses {C, p} and {D, !p} that contain a literal p
of different polarity, create a new clause by taking the union

of literals in C and D

IIIIIIIIIIII
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Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent
of two clauses Xand Y in F. Then, F U {R} s

equivalent to F

IIIIIIIIIIII
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Resolution Theorem

Let F be a set of clauses

Res(F) = FU{R | R is a resolvent of two clauses in F'}
Res’(F) =F

Res" ™ (F) = Res(Res"(F)), forn >0
Res™(F) = U Res" (F)

n>0

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

IIIIIIIIIIII
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Example of a resolution proof

A refutation of -pV —-qVr, pVvr, qVr, —-r:

pV-ogVr

_'P\/ﬁq

NS
\/

UNIVERSITY OF
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Resolution Proof Example

Show by resolution that the following CNF is UNSAT

—“bA(maVbV-c)ANaA (—aV c)

—a VbV —c a

b\ —c b a —-a V ¢

IIIIIIIIIIII
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Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Res/(F) for any i.
Let n be such that Res"*'(F) contains an empty clause, but Res"(F) does
not. Then Res"(F) must contain to unit clauses L and ~L. Hence, it is
UNSAT.

(Completeness) By induction on the number of different atomic
propositions in F.

Base case is trivial: F contains an empty ,use-

IH: Assume F has atomic propositions A1, ... A,
Let F, be the result of replacing A, by O

Let F, be the result of replacing A, by 1

Apply IH to Fy, and F, . Restore replaced literals. Combine the two
resolutions.

IIIIIIIIIIII

WATERLOO
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Proof System P,....P,-C

An inference rule is a tuple (P4, ..., P, C)
e where, P4, ..., P,, C are formulas

e P, are called premises and C is called a conclusion
e intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

e nodes are labeled by formulas
e for each node n, (parents(n), n) is an inference rule in P



Propositional Resolution

Cvp DV -p

cCvbD

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

IIIIIIIIIIII
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DP Procedure: SAT solving by resolution

Assume that input formula F is in CNF

1. Pick two clauses C;, and C, in F that can be
resolved

2. If the resolvent C is an empty clause, return
UNSAT

3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses

IIIIIIIIIIII
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DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions

Proof search is restricted to unit resolution
e can be done very efficiently (polynomial time)
Case split restores completeness

DPLL can be described by the following two rules
e F is the input formula in CNF

split pand —parenotinF

F,p | F,—up
F, Cv{,~? .
nit
,C,f

Davis, Martin; Logemann, George; Loveland, Donald (1962).
"A Machine Program for Theorem Proving".
BT AT e C.ACM. 5 (7): 394—-397. d0i:10.1145/368273.368557
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The original DPLL procedure

Incrementally builds a satisfying truth assignment
M for the input CNF formula F

M is grown by

e deducing the truth value of a literal from M and F, or
e guessing a truth value

If a wrong guess for a literal leads to an
iInconsistency, the procedure backtracks and tries
the opposite value

IIIIIIIIIIII
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DPLL: lllustration

IIIIIIIIIIII
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DPLL: Decide

Guessing (Decide)

plpvag—-qvr

¥

p,—q|pvag —-qvr

IIIIIIIIIIII
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DPLL: Boolean Constraint Propagation

Deducing (Unit Propagation or BCP)

p|l pvag—pvs

¥

p,slpvag,—pvs

IIIIIIIIIIII
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DPLL: Backtracking

Backtracking

P, S, g | pPvqg,svq,—pv—(Qq

Y

p,slpva,sva,—pv—q

IIIIIIIIIIII
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Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p=(=x1 Vxo)A(x3 V-x2)A(xaV—x5)A(X5V —xa)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xixz = (X4 V 7x5) A (x5 V xa)

Preserve satisfiability, not logical equivalency!

32



DPLL Procedure

» Standard backtrack search

» DPLL(F) :

Apply unit propagation

If conflict identified, return UNSAT
Apply the pure literal rule

If F is satisfied (empty), return SAT
Select decision variable x

» |f DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)

vy v v v v

IIIIIIIIIIII
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The Original DPLL Procedure — Example

assign 1v2,2v-3v4 12,
Deduce 1 —1v=3va4,)

1 1v2,2v-3v4-1v-a2,
Deduce —2 - 1Tv-3v-4,1

1, 2 1v2,2v-3v4 -1v—-2,
Guess 3 —1v=-3v-4,1
1,2,3 1v2|]2v-3v4—-1v—-2
Deduce 4 ~1v-3v—4,1
1, 2, 3, 1v2,2v-3vi4 -1v—-2,

4 —1v—=3v-41

Conflict
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The Original DPLL Procedure — Example

assign 1v2,2v-3v4 12,
Deduce 1 —1v=3va4,)

1 1v2,2v-3v4-1v-a2,
Deduce —2 - 1Tv-3v-4,1

1, 2 1v2,2v-3v4 -1v—-2,
Guess 3 —1v=-3v-4,1
1,2,3 1v2|]2v-3v4—-1v—-2
Deduce 4 ~1v-3v—4,1
1, 2, 3, 1v2,2v-3vi4 -1v—-2,

4 —1v—=3v-41

Undo 3
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The Original DPLL Procedure — Example

assign
Deduce 1

1
Deduce —2
1, 2
Guess —3
1,2,3

Model
Found

IIIIIIIIIIII

1v2,2v-3v4 -1v-2,

1v2,2v-3v4 -1v-2,

1v2,2v-3v4 -1v—-2,

1v2,2v-3v4 -1v—-2,




An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-
style calculi

Such calculi, however, cannot model meta-logical features such as
backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of
conditional transition rules
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An Abstract Framework for DPLL

State

o failorM | F
e where
— F is a CNF formula, a set of clauses, and
— M is a sequence of annotated literals denoting a partial truth assignment

Initial State

* @ | F, where F is to be checked for satisfiability
Expected final states:

e fail if F is unsatisfiable
M| G
where

— M is a model of G
— G is logically equivalent to F

IIIIIIIIIIII
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Transition Rules for DPLL

Extending the assignment:

ME-C
UnitProp M| FECvI->MI|F Cvl

|l is undefined in M

|l or -l occurin C
Decide M|F,C >MI‘|FC . . .
|l is undefined in M

Notation: 19 is a decision literal

IIIIIIIIIIII
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Transition Rules for DPLL

Repairing the assignment:

_ ME-C
Fail M || F, C — fail
does not contain

decision literals

MIdN E -C
Backtrack MIYN|FFCo>M-I | F,C . .
|l is the last decision
literal

IIIIIIIIIIII
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Transition Rules DPLL — Example

IIIIIIIIIIII

@" 1V2,2V—|3V4,—|1V—|2,—|1
V—|3V—|4,1

111v2,2v-3v4,-1v-2,-1v-3v

- 4,1
1,2|1v2,2v-3v4,-1v-2,-1v
—|3V—|4,1
1,2,39|1v2,2v-3v4,-1v-2,=-1v
—|3V—|4,1

1,2,39,4|1v2,2v-3vid —-1v-—
2,—|1V—|3V—|4,1

UnitProp
1

UnitProp
—2

Decide 3

UnitProp
4

Backtrac
k3

41



Transition Rules DPLL — Example

IIIIIIIIIIII

@" 1V2,2V—|3V4,—|1V—|2,—|1
V—|3V—|4,1

111v2,2v-3v4,-1v-2,-1v-3v

- 4,1
1,2|1v2,2v-3v4,-1v-2,-1v
—|3V—|4,1
1,2,39|1v2,2v-3v4,-1v-2,=-1v
—|3V—|4,1

1,2,3|1v2,2v-3vé4-1v-2,-1v
—-3v-=4,1

UnitProp
1

UnitProp
—2

Decide 3

UnitProp
4

Backtrac
k3

42



Transition Rules for DPLL (on one slide)

ME-C

UnitP M||F,Cv|—>MI||F,CvI{
nEerop |l is undefined in M

M F,Cos M| FC {Ior—.loccurinc
D . ) —> y
ecide | is undefined in M

_ ME-C
Fail M | F, C — fail
M does not contain
decision literals
MI9N E-C
Backtrack MIN|F,C—o> M-l |
F,C | is the last decision literal
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The DPLL System — Correctness

Some terminology
e Irreducible state: state to which no transition rule applies.

e Execution: sequence of transitions allowed by the rules and starting with
states of the form @ I F.

e Exhausted execution: execution ending in an irreducible state
Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with
@I Fand endinginMIIF, MEF

Proposition (Completeness) If F is unsatisfiable, every exhausted
execution starting with @ I| F ends with fail

Maintained in more general rules + theories

IIIIIIIIIIII
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Modern DPLL: CDCL

Conflict Driven Clause Learning

e two watched literals — efficient index to find clauses that can be
used in unit resolution

e periodically restart backtrack search
e activity-based decision heuristic to choose decision variable
e conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in
e Chapter 2 of Decision Procedures book
« ECE750 with Vijay Ganesh

IIIIIIIIIIII
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Conflict Directed Clause Learning
Lemma learning

—t,p,q,s |tvapvVvag,—qVvs,—pVv-—s

—t,p,qs|ltvapvag,-qvVvs,—pv-—-s|—pv-—s

—t,p,q,s|tvapvag —-qvVvs,—pv-—s|—pv-q

—t,p,q,s|tvapvag,—-qvVvs,—pv—-s|—pvt

IIIIIIIIIIII
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Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses
deduced from the last decision

—t,p,q,s |tv—=pvag,—qVvs,apVv s

“pV-q tvVv-pVq

tV-p

Trivial Resolution: at every resolution step, at least one clause is an
input clause

B WATERLSS p



Modern CDCL: Abstract Rules

Initialize €| F F is a set of clauses
/~  Decide M| F =>M,?¢ | F ? is unassigned
Propagate M |F,Cv¢ = M, ¢Vt | F,cv¢  Cis false under M
S Sat M|F > M F true under M
4 Conflict M|F,C =M | F,C|C C is false under M
Learn M|F|C=M]| F,C|C
\_ Unsat M| F|® = Unsat
Backiump ~ MM'|F|Cv¢= M{V*|F CSM—-teM
Resolve M|F|CVv-¢=M|F|CVC Ve M
Forget M|F,C = M| F C is a learned clause
Restart M|F= ¢ | F [Nieuwenhuis, Oliveras, Tinelli JLACM 06] customized

IIIIIIIII
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Conjuctive Normal Form

p Y =CNF @ > YNANY =
p — Y = CONF VY
=(p V) = CNF - A\ =)
—(p A ) = CNF i V =)
2 — CNF ©

(e AY)VE =conr (PVE) AW VE)

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

IIIIIIIIIIII
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Tseitin Transformation — Main Ildea

Introduce a fresh variable e; for every subformula G;
of F

e intuitively, e; represents the truth value of G;
Assert that every e; and G, pair are equivalent
c g G

e and express the assertion as CNF

Conjoin all such assertions in the end

IIIIIIIIIIII
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Formula to CNF Conversion

def cnf (¢): mk_fresh_var() returns a fresh

p, F = cnf_rec (4) variable not used anywhere before
return p A F

def cnf_rec (¢):
if is_atomic (¢): return (¢, True)
elif ¢ == ¢ A E:
d, F1 = cnf_rec (V)
r, F, = cnf_rec (§)

p = mk_fresh_var ()
# C 1s CNF for p<>*(qgAr)
C = (=pvq)A(=pVr)A(pV-qV-r)
return (p, F1AF,AC)
elif ¢ == Yv&: Exercise: Complete cases for

¢ == WV, ¢==—, ¢ == Y>3¢

% WATERLOO 51



Tseitin Transformation: Example

G:po(g-o1)

G: ey /(e (p>ey)) N (e (g—1))

OBE® 1 ¢ (g 7)

| I
/\/J\/\

2

<

J

K

<

=
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Tseitin Transformation: Example

IIIIIIIIIIII

G:po(g-o1)

G: ey /(e (prey)) N (e (q—1))

eo <> (p <> €1)

(€0 = (p > €1)) A ((p <> e1)) = eo)
(eg = (p —e1)) A(eg — (e1 = p)) A
((pAer) V(mpA—er)) = eo)

(meg VpVer)A(—egV—er Vp) A
(—pV —e1 Veg) AlpVerVeg)
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Tseitin Transformation: Example

G:p+—(@—>r)

€9

OO}

G : ey /(6o (preq)) N (er < (q—1))

G:ep /N (—eV—pVves) N (—eVpV—eq) /(e
vpve,) N (egV—pV—e,) N

Q 0 (—e; Voqvr) A (e, Vg (e, V)

IIIIIIIIIIII
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Tseitin Transformation [1968]

Used in practice
* No exponential blow-up
e CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:
e F’ is equisatisfiable to F

e Every model of F’ can be translated (i.e., projected) to a model of F
e Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion

UNIVERSITY OF

WATERLOO
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DIMACS CNF File Format

Textual format to represent CNF-SAT problems

start with comments

cnf 5 3

-5 4 0

-1 534090

-3 -4 0
Format details

e comments start with ¢

e header line: p cnf nbvar nbclauses

— nbvar is # of variables, nbclauses is # of clauses

e each clause is a sequence of distinct numbers terminating with 0

— positive numbers are variables, negative numbers are negations

C
C
C
P
1

UNIVERSITY OF

WATERLOO
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BOUNDED MODEL CHECKING

IIIIIIIIIIII
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SAT-based Model Checking

Main idea

Translate the model and the specification to
propositional formulas (p, =P, PVa, PAG, P—4... )

Reduce the model checking problem to satisfiabil,
of propositional formulas

O
o O
Use efficient tools (SAT solvers) for solving the
satisfiability problem

IIIIIIIIIIII
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Modeling with Propositional Formulas

= =

Finite-State System is modeled as (V, INIT, T):

e V —finite set of Boolean variables stat.e =
e Boolean variables: a b ¢ = 8 states: 000,001,... valua.tlon to
e INIT(V) — describes the set of initial states variables

e INIT=-aA-b
e T(V,V’) - describes the set of transitions
e T(a,b,c,a’,b’,c’)=(c’ & (aAb)Vc) note: c=¢, andc' =c¢,,
Property:
* p(V) - describes the set of states satisfying p
ey R=aV-c  (Bad=-p=-aAc)

WATERLOO 59



Modeling in CNF (Tseitin encoding)

g=aAb

T(a,b,c,g,p,a’,b’,c’) =

g—aAb,
pegVeg,

c'— P
Each circuit element is a constraint
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Bounded model checking (BMC)
for checking AGp

Given
A finite transition system M= (V, INIT(V), T(V,V’))
e A safety property AG p, where p = p(V)
e Abound k

Determine

e Does M contain a counterexample to p of
k transitions (or fewer) ?

* BMC can handle all of LTL formulas

A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, Y. Zhu, DAC'99
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Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying —p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

IIIIIIIII
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Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

g=aAb

T(a,b,c,a’,b’,c’) =

C g<—aAb,

p<—gVe,

c—p
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Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

fM’k =INITOAToATIA e ATy

ai ai ai
g g g
INITOb I : I h b I
P T P (o P T

ao: bOrCOI alrb1;C1r ak—1rbk-1rck-1t aktbkrckr
gOlpo gllpl gk—lrpk-l gklpk
INIT, = INIT(V,)
UUUUUUUUUUU T =T(Vi,\Vi.1)
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Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

fox =Vico, « (—P;)  [Sometimes f,\ = —py]

IIIIIIIIIIII
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Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

Check whether f =1, Af issatisfiable

If f is satisfiable then M |# AGp
The satisfying assignment is a counterexample

IIIIIIIIIIII
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BMC for checking AG p with SAT

Unfold the model k times: Biere, et al. TACAS99

e U=TO AT A LLATR
10> = 1(V,)

T =T(V;,Vis1)
P = p(V,)

d d d k
<0> b b b —p<k>
. Py . TR

e Use SAT solver to check satisfiability of

1<0> A U A _|p<k>

e |f satisfiable: the satisfying assignment describes a
counterexample of length k

e |f unsatisfiable: property has no counterexample of length k

IIIIIIIIIIII
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Example — shift register

Shift register of 3 bits: <x, vy, z>
Transition relation:
T(xy,zx,y,2’) = Xoy Ayez A =1

error

Initial condition:
INIT(x,y,z) = x=0 v y=0 v z=0

Specification: AG ( x=0 v y=0 v z=0)

IIIIIIIIIIII
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Propositional formula for k=2

fM’2 = (Xo=0 Vv y5=0 v z,=0) A

(X0 Yo A Y1029 A Zp=1) A

INIT = x=0 v y=0 v z=0

T=xXeyAyez A=

1

(X300 Y1 A Yoo 27 A 2,=1)
f(p,Z = Vi=0,..2 (Xi=1 ANY=1 A Zi=1)

Satisfying assignment: 101 011 111

This is a counterexample!

IIIIIIIIIIII

P=x=0vy=0vz=0
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A remark

In order to describe a computation of length k by a propositional formula we
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

UNIVERSITY OF

WATERLOO
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BMC for checking o=AGp

1. k=1

2. Build a propositional formula f,* describing all prefixes
of length k of paths of M from an initial state

3. Build a propositional formula f(Pk describing all prefixes
of length k of paths satisfying F—p

4. If (fy* Af,¥) is satisfiable,
return the satisfying assignment as a counterexample

5.  Otherwise, increase k and return to 2.

IIIIIIIIIIII
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Bounded Model Checking

-
_______

IIIIIIIIIIII
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Bounded Model Checking

IIIIIIIIIIII
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>

Bounded Model Checking

IIIIIIIIIIII

WATERLOO
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BMC for checking AFp (p=EG—p)

Is there an infinite path in M
e From an initial state

e all of its states satisfying —p
e Over k+1 states ?

If exists, there must also exist a lasso

UNIVERSITY OF

WATERLOO
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BMC for checking AFp (p=EG—p)

An infinite path in M, from an initial state, over k+1 states, all
satisfying —p:

ka (VOI""Vk) -
INIT(Vo) A Aicg ot T(ViVisa) A Vicg eeier (ViEVI)

* V\=V; means bitwise equality: Ai_g , (v; <> V;)

f(Pk (Vo,...,Vk) - /\i=0,"'k _'p(vl)

Remark: BMC can handle all of LTL formulas

IIIIIIIIIIII
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Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
 Need bound on length of the shortest counterexample.

—diameter bound. The diameter is the maximum length of the
shortest path between any two states.

Using such k is often not practical due to the size of the model

— Worst case diameter is exponential. Obtaining better bounds is
sometimes possible, but generally intractable.

UNIVERSITY OF
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Bounded Model Checking

Terminates
e with a counterexample or

e with time- or memory-out
=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough

* Need bound on length of the shortest counterexample.

— diameter bound. The diameter is the maximum length of the shortest path
between any two states.

Using such k is often not practical

— Worst case diameter is exponential. Obtaining better bounds is sometimes
possible, but generally intractable.

UNIVERSITY OF
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