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Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are 

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2        (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1)                   (iff)
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Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula
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Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation  ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of 
disjunctions of literals (i.e., a conjunction of clauses):
• e.g., (v1 || ~v2) && (v3 || v2)

A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of 
conjunctions of literals
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Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation  ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction 
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it 
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause 
in C
Boolean Satisfiability Problem (CNF-SAT):  
• determine whether a given CNF C is satisfiable
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CNF Examples

CNF 1
• ~b
• ~a || ~b || ~c
• a
• sat: s(a) = True;  s(b) = False; s(c) = False

CNF 2
• ~b
• ~a || b || ~c
• a
• ~a || c
• unsat
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Algorithms for SAT

SAT is NP-complete
• solution can be checked in polynomial time
• no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf
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Background Reading: SAT
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S. A. Seshia 1 

Some Experience with SAT Solving 
Sanjit A. Seshia 

Speed-up of 2012 solver over other solvers 
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Figure 4: SAT Solvers Performance
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from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf  
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SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams 

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause 

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause 

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of 
variables from 

HW designs Courtesy Daniel le Berre
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NP is the new P!

Solve any computational problem by effective reduction to SAT/SMT
• iterate as necessary

Problem

encode

decode

SAT/SMT
Solver
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Graph k-Coloring

Given a graph G = (V, E), and a natural number 
k > 0 is it possible to assign colors to vertices of 
G such that no two adjacent vertices have the 
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring
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k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V )

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V )

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)
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DPLL PROCEDURE
Davis Putnam Logemann Loveland
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References

Chapter 2: Decision Procedures for 
Propositional Logic

https://link.springer.com/book/10.1007%2F978-3-540-74105-3
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Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given 
propositional logic (PL) formula F is satisfiable
• NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach
• Enumerate models (i.e., truth tables)
• Enumerate resolution proofs

Modern SAT solvers
• DPLL algorithm
– Davis-Putnam-Logemann-Loveland

• Combines model- and proof-based search
• Operates on Conjunctive Normal Form (CNF)
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Propositional Resolution

Res({C, p}, {D, !p}) = {C, D}

Given two clauses {C, p} and {D, !p} that contain a literal p 
of different polarity, create a new clause by taking the union 
of literals in C and D

C ∨ p              D ∨ ¬p

C ∨ D
Resolvent

Pivot
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Resolution Lemma

Lemma: 
Let F be a CNF formula. Let R be a resolvent
of two clauses X and Y in F. Then,  F ∪ {R} is 
equivalent to F
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Resolution Theorem

Let F be a set of clauses

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

Res(F ) = F [ {R | R is a resolvent of two clauses in F}

Res0(F ) = F

Resn+1(F ) = Res(Resn(F )), for n � 0

Res⇤(F ) =
[

n�0

Resn(F )
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Example of a resolution proof
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Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)
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Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resi(F) for any i. 
Let n be such that Resn+1(F) contains an empty clause, but Resn(F) does 
not. Then Resn(F) must contain to unit clauses L and ¬L. Hence, it is 
UNSAT.

(Completeness) By induction on the number of different atomic 
propositions in F. 
Base case is trivial: F contains an empty clause.
IH: Assume F has atomic propositions A1, … An+1 

Let F0 be the result of replacing An+1 by 0
Let F1 be the result of replacing An+1 by 1
Apply IH to F0 and F1 . Restore replaced literals. Combine the two 
resolutions.
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Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that 
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P 

P1, . . . , Pn ` C
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Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single 
propositional resolution rule

C ∨ p              D ∨ ¬p

C ∨ D
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DP Procedure: SAT solving by resolution

Assume that input formula F is in CNF

1. Pick two clauses C1 and C2 in F that can be 
resolved

2. If the resolvent C is an empty clause, return 
UNSAT

3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses
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DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions

Proof search is restricted to unit resolution

• can be done very efficiently (polynomial time)

Case split restores completeness 

DPLL can be described by the following two rules

• F is the input formula in CNF

Davis, Martin; Logemann, George; Loveland, Donald (1962). 

"A Machine Program for Theorem Proving".

C. ACM. 5 (7): 394–397. doi:10.1145/368273.368557

!
!,# | !,¬# split    & '() ¬& '*+ (,- .( /

!, 0∨ℓ,¬ℓ
!, 0, ¬ℓ unit

https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/368273.368557
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The original DPLL procedure

Incrementally builds a satisfying truth assignment 
M for the input CNF formula F

M is grown by 
• deducing the truth value of a literal from M and F, or
• guessing a truth value

If a wrong guess for a literal leads to an 
inconsistency, the procedure backtracks and tries 
the opposite value
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DPLL: Illustration

M | F

Partial model Set of clauses
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DPLL: Decide

Guessing (Decide)

p, ¬q | p Ú q, ¬q Ú r

p  |  p Ú q, ¬q Ú r
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DPLL: Boolean Constraint Propagation

Deducing (Unit Propagation or BCP)

p, s| p Ú q, ¬p Ú s

p |  p Ú q, ¬p Ú s
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DPLL: Backtracking

Backtracking

p, s | p Ú q, s Ú q, ¬pÚ ¬q

p, ¬s,  q  |  p Ú q, s Ú q, ¬pÚ ¬q
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Pure Literals

A literal is pure if only occurs positively or negatively.
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DPLL Procedure
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The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3, 

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Conflict



35 35

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3, 

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Undo 3
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The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Model 
Found

Guess ¬3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, 

¬ 1 Ú ¬ 3 Ú ¬ 4, 1
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An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-
style calculi

Such calculi, however, cannot model meta-logical features such as 
backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of 
conditional transition rules
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An Abstract Framework for DPLL

State
• fail or M ‖ F
• where
– F is a CNF formula, a set of clauses, and
– M is a sequence of annotated literals denoting a partial truth assignment

Initial State
• ∅ ‖ F, where F is to be checked for satisfiability

Expected final states:
• fail if F is unsatisfiable
• M ‖ G

where 
– M is a model of G 
– G is logically equivalent to F
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Transition Rules for DPLL

Extending the assignment:

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C  ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

Notation: ld is a decision literal
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Transition Rules for DPLL

Repairing the assignment:

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain 
decision literals

M ld N ‖ F, C ® M ¬l ‖ F, C Backtrack
M ld N ⊨ ¬C

l is the last decision 
literal
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Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
41, 2, 3d, 4 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬

2, ¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Decide  3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrac
k 3
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Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
4

Decide  3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrac
k 3

1, 2, 3 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1
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Transition Rules for DPLL (on one slide)

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain 
decision literals

M ld N ‖ F, C ® M ¬l ‖
F, C 

Backtrack
M ld N ⊨ ¬C

l is the last decision literal
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The DPLL System – Correctness

Some terminology

• Irreducible state: state to which no transition rule applies.

• Execution: sequence of transitions allowed by the rules and starting with 

states of the form ∅ ǁ F.

• Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with 

∅ ǁ F and ending in M ǁ F,  M ⊨ F

Proposition (Completeness) If F is unsatisfiable, every exhausted 

execution starting with ∅ ǁ F ends with fail

Maintained in more general rules + theories



45 45

Modern DPLL: CDCL

Conflict Driven Clause Learning
• two watched literals – efficient index to find clauses that can be 

used in unit resolution 
• periodically restart backtrack search
• activity-based decision heuristic to choose decision variable
• conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in
• Chapter 2 of Decision Procedures book
• ECE750 with Vijay Ganesh
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Conflict Directed Clause Learning

Lemma learning

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬q

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ t
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Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses 
deduced from the last decision

Trivial Resolution: at every resolution step, at least one clause is an 
input clause

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬p ∨ ¬s ¬q ∨ s

¬p ∨ ¬q t ∨ ¬p ∨ q

t ∨ ¬p
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Modern CDCL: Abstract Rules
Initialize !| # # $% & %'( )* +,&-%'%
Decide . # ⟹ ., ℓ # ℓ $% -2&%%$32'4
Propagate . #, 5 ∨ ℓ ⟹ ., ℓ7∨ℓ #, 5 ∨ ℓ 5 $% *&,%' -24'8 .

Sat . |# ⟹ . # (8-' -24'8 .

Conflict . #, 5 ⟹ . #, 5 | 5 5 $% *&,%' -24'8 .
Learn . # | 5 ⟹ . #, 5 | 5
Unsat . # ∅ ⟹ :2%&(

Backjump ..′ # | 5 ∨ ℓ ⟹ .ℓ7∨ℓ # ̅5 ⊆ .,¬ℓ ∈ .′

Resolve . # | 5′ ∨ ¬ℓ ⟹ . # | 5′ ∨ 5 ℓ7∨ℓ ∈ .

Forget . #, 5 ⟹ . # 5 is a learned clause

Restart . # ⟹ ! # [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Model

Proof
Conflict

Resolution
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Conjuctive Normal Form

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

'$  )CNF '!  ^  ! '
'!  )CNF ¬' _  
¬(' _  ) )CNF ¬' ^ ¬ 
¬(' ^  ) )CNF ¬' _ ¬ 
¬¬' )CNF '
(' ^  ) _ ⇠ )CNF (' _ ⇠) ^ ( _ ⇠)
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Tseitin Transformation – Main Idea

Introduce a fresh variable ei for every subformula Gi
of F
• intuitively, ei represents the truth value of Gi

Assert that every ei and Gi pair are equivalent
• ei ↔ Gi

• and express the assertion as CNF

Conjoin all such assertions in the end
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Formula to CNF Conversion
def cnf (ɸ):
p, F = cnf_rec (ɸ)
return p ∧ F

def cnf_rec (ɸ):
if is_atomic (ɸ): return (ɸ, True)
elif ɸ == ψ ∧ ξ:
q, F1 = cnf_rec (ψ)
r, F2 = cnf_rec (ξ)

p = mk_fresh_var ()
# C is CNF for p«(q∧r)
C = (¬p∨q)∧(¬p∨r)∧(p∨¬q∨¬r)
return (p, F1∧F2∧C)

elif ɸ == ψ∨ξ:
…

Exercise: Complete cases for 

ɸ == ψ∨ξ, ɸ==¬ψ, ɸ == ψ«ξ

mk_fresh_var() returns a fresh 
variable not used anywhere before
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0 ^ (e0$ (p$ e1)) ^ (e1 $ (q®r)) 

e1 $ (q ! r)
= (e1 ! (q ! r)) ^ ((q ! r) ! e1)
= (¬e1 _ ¬q _ r) ^ ((¬q _ r) ! e1)
= (¬e1 _ ¬q _ r) ^ (¬q ! e1) ^ (r ! e1)
= (¬e1 _ ¬q _ r) ^ (q _ e1) ^ (¬r _ e1)
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0 ^ (e0 $ (p$ e1)) ^ (e1$ (q®r)) 

e0 $ (p $ e1)
= (e0 ! (p $ e1)) ^ ((p $ e1)) ! e0)
= (e0 ! (p ! e1)) ^ (e0 ! (e1 ! p)) ^

(((p ^ e1) _ (¬p ^ ¬e1)) ! e0)
= (¬e0 _ ¬p _ e1) ^ (¬e0 _ ¬e1 _ p) ^

(¬p _ ¬e1 _ e0) ^ (p _ e1 _ e0)
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Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r)) 

G : e0^ (¬e0_¬p_e1) ^ (¬e0_p_¬e1) ^ (e0
_p_e1) ^ (e0_ ¬ p_¬e1)  ̂

(¬e1_¬q_r)  ̂ (e1_q)  ̂ (e1_¬r)
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Tseitin Transformation [1968]

Used in practice
• No exponential blow-up
• CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:
• F’ is equisatisfiable to F

• Every model of F’ can be translated (i.e., projected) to a model of F

• Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion
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DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c 
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
Format details
• comments start with c
• header line: p cnf nbvar nbclauses
– nbvar is # of variables, nbclauses is # of clauses

• each clause is a sequence of distinct numbers terminating with 0
– positive numbers are variables, negative numbers are negations
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BOUNDED MODEL CHECKING
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SAT-based Model Checking

Main idea
Translate the model and the specification to  
propositional formulas

Reduce the model checking problem to satisfiability
of propositional formulas

Use efficient tools (SAT solvers) for solving the 
satisfiability problem

(p, ¬p, p∨q, p∧q, p→q… )

SAT 
∈ NPC…
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Modeling with Propositional Formulas

a
b c

Finite-State System is modeled as (V, INIT, T):
• V – finite set of Boolean variables

• Boolean variables: a b c è 8 states: 000,001,…
• INIT(V) – describes the set of initial states 

• INIT = ¬a ∧ ¬b 

• T(V,V’) – describes the set of transitions
• T(a,b,c,a’,b’,c’) = (c’ ↔ (a ∧ b) ∨ c) 

Property:
• p(V)  - describes the set of states satisfying p

• p = a∨ ¬c ( Bad = ¬p = ¬a∧ c )

00
0

01
0

11
1

10
1

10
0

00
1

01
1

11
0

00
1

01
1

state = 
valuation to 

variables

note:  c = ct and c' = ct+1
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Modeling in CNF (Tseitin encoding)

g

p

Each circuit element is a constraint

g = a ∧ b
c' = p

p = g ∨ c
T(a,b,c,g,p,a’,b’,c’) = 

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p

a
b c
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Given
• A finite transition system M= (V, INIT(V), T(V,V’))
• A safety property AG p, where p = p(V)
• A bound k

Determine
• Does M contain a counterexample to p of 

k transitions (or fewer) ?

Bounded model checking (BMC)
for checking AGp

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
* BMC can handle all of LTL formulas
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Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying ¬p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem



63 63

Bounded model checking with SAT

Construct a formula fM,k describing all possible 
computations of M of length k

a
b cp

g
g = a ∧ b

p = g ∨ c

c' = p T(a,b,c,a’,b’,c’) = 

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p
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Bounded model checking with SAT

Construct a formula fM,k describing all possible 
computations of M of length k

fM,k = INIT0 Ù T0 Ù T1 Ù ... Ù Tk-1
a
b

cp

g a
b

cp

g a
b

cp

g
...INIT0

a0,b0,c0,

g0,p0

a1,b1,c1,

g1,p1

ak-1,bk-1,ck-1,

gk-1,pk-1

INIT0 = INIT(V0)

Ti = T(Vi,Vi+1)

ak,bk,ck,

gk,pk
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Bounded model checking with SAT

Construct a formula fM,k describing all possible 
computations of M of length k
Construct a formula fj,k expressing that  j=EF¬p holds 
within k computation steps

fj,k = Vi=0,..k (¬pi)      [Sometimes fj,k = ¬pk ]

pi = p(Vi)
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Bounded model checking with SAT

Construct a formula fM,k describing all possible 
computations of M of length k
Construct a formula fj,k expressing that  j=EF¬p holds 
within k computation steps
Check whether  f = fM,k Ù fj,k is satisfiable

If f is satisfiable then  M |¹ AGp
The satisfying assignment is a counterexample
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BMC for checking AG p with SAT

Unfold the model k times:
• U = T<0> ∧ T<1> ∧ ... ∧ T<k-1>

a
b

c

a
b

c

a
b

c...I<0> ¬p<k>

• Use SAT solver to check satisfiability of
I<0> ∧ U ∧ ¬p<k>

• If satisfiable:  the satisfying assignment describes a 
counterexample of length k

• If unsatisfiable: property has no counterexample of length k

Biere, et al. TACAS99

I<0> = I(V0)
T<i> = T(Vi,Vi+1)

p<k> = p(Vk)



68 68

Example – shift register

Shift register of 3 bits:   <x, y, z>
Transition relation:
T(x,y,z,x’,y’,z’) =    x’↔y  Ù y’↔ z   Ù z’=1

|____|
error

Initial condition:
INIT(x,y,z) =  x=0 Ú y=0 Ú z=0

Specification: AG ( x=0 Ú y=0 Ú z=0)
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Propositional formula for k=2

fM,2 = (x0=0 Ú y0=0 Ú z0=0) Ù
(x1↔ y0 Ù y1↔ z0 Ù z1=1) Ù
(x2↔ y1 Ù y2↔ z1 Ù z2=1)

fj,2 = Vi=0,..2 (xi=1 Ù yi=1 Ù zi=1)

Satisfying assignment: 101  011  111
This is a counterexample! 

INIT =  x=0 Ú y=0 Ú z=0

T = x’↔ y  Ù y’↔ z   Ù z’=1

P = x=0 Ú y=0 Ú z=0
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A remark

In order to describe a computation of length k by a propositional formula we 
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.
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BMC for checking j=AGp

1. k=1
2. Build a propositional formula fM

k describing all prefixes 
of length k of paths of M from an initial state

3. Build a propositional formula  fjk describing all prefixes 
of length k of paths satisfying F¬p

4. If  (fM
k Ù fjk )  is satisfiable,

return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.
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Bounded Model Checking

INIT

R1

¬p

INIT(V0) �T(V0,V1)�¬p(V1)



73 73

Bounded Model Checking

INIT

R1 R2

¬p

INIT(V0) �T(V0,V1) �T(V1,V2)�¬p(V2)
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Bounded Model Checking

INIT

R1 R2

¬p

……

INIT(V0)

Rk

�T(V0,V1) �…�T(Vk-1,Vk)�¬p(Vk)
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BMC for checking AFp (j=EG¬p)

Is there an infinite path in M
• From an initial state 
• all of its states satisfying ¬p
• Over k+1 states ?

If exists, there must also exist a lasso



76 76

BMC for checking AFp (j=EG¬p)

An infinite path in M, from an initial state, over k+1 states, all 
satisfying ¬p:

fM
k (V0,…,Vk) =

INIT(V0) Ù ⋀i=0,…k-1 T(Vi,Vi+1)  Ù ⋁i=0,…k-1 (Vk=Vi)

• Vk=Vi means bitwise equality: ⋀j=0,…n (vkj « vij)

fjk (V0,…,Vk) = ⋀i=0,…k ¬p(Vi)

Remark: BMC can handle all of LTL formulas
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Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
–diameter bound. The diameter is the maximum length of the 

shortest path between any two states.

Using such k is often not practical due to the size of the model
– Worst case diameter is exponential. Obtaining better bounds is 

sometimes possible, but generally intractable.



78 78

Bounded Model Checking

Terminates 
• with a counterexample or 
• with time- or memory-out

=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
– diameter bound. The diameter is the maximum length of the shortest path 

between any two states.

Using such k is often not practical
– Worst case diameter is exponential. Obtaining better bounds is sometimes 

possible, but generally intractable.


