Algorithms for SAT

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

Syntax of Propositional Logic

An atomic formula has a form A_{i}, where $\mathrm{i}=1,2,3 \ldots$

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula $F, \neg F$ (called not F) is a formula
- For all formulas F and $G, F \wedge G$ (called and) and $F \vee G$ (called or) are formulas

Abbreviations

- use A, B, C, \ldots instead of A_{1}, A_{2}, \ldots
- use $F_{1} \rightarrow F_{2}$ instead of $\neg F_{1} \vee F_{2}$
(implication)
- use $F_{1} \leftrightarrow F_{2}$ instead of $\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)$

Syntax of Propositional Logic (PL)

$$
\begin{aligned}
\text { truth_symbol }::= & \top(\text { true }) \mid \perp(\text { false }) \\
\text { variable }::= & p, q, r, \ldots \\
\text { atom }::= & \text { truth_symbol } \mid \text { variable } \\
\text { literal }::= & \text { atom } \mid \neg \text { atom } \\
\text { formula }::= & \text { literal } \mid \\
& \neg \text { formula } \mid \\
& \text { formula } \wedge \text { formula } \mid \\
& \text { formula } \vee \text { formula } \mid \\
& \text { formula } \rightarrow \text { formula } \mid \\
& \text { formula } \leftrightarrow \text { formula }
\end{aligned}
$$

Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation $\sim v$
A clause is a disjunction of literals

- e.g., (v1 || ~v2 || v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

- e.g., (v1 || ~v2) \&\& (v3 || v2)

$$
\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)
$$

A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of conjunctions of literals

$$
\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)
$$

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation $\sim \mathrm{v}$
A clause is a disjunction of literals

- e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

- e.g., (v1 || ~v2) \&\& (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause in C
Boolean Satisfiability Problem (CNF-SAT):

- determine whether a given CNF C is satisfiable

CNF Examples

CNF 1

- ~b
- ~a || ~b || ~c
- a
- sat: $s(a)=$ True; $s(b)=$ False; $s(c)=$ False

CNF 2

- ~b
- ~a || b || ~c
- a
- ~a || c
- unsat

Algorithms for SAT

SAT is NP-complete

- solution can be checked in polynomial time
- no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, '60)

- smart enumeration of all possible SAT assignments
- worst-case EXPTIME
- alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff '01)

- conflict-driven clause learning
- extends DPLL with
- smart data structures, backjumping, clause learning, heuristics, restarts...
- scales to millions of variables
- N. Een and N. Sörensson, "An Extensible SAT-solver", in SAT 2013.

Background Reading: SAT

Home / Magazine Archive / August 2009 (Vol. 52, No. 8) / Boolean Satisfiability: From Theoretical Hardness... / Full Text

REVIEW ARTICLES

Boolean Satisfiability: From Theoretical Hardness to Practical Success

By Sharad Malik, Lintao Zhang
Communications of the ACM, Vol. 52 No. 8, Pages 76-82
10.1145/1536616.1536637

Comments

There are many practical situations where we need to satisfy several potentially conflicting constraints. Simple examples of this abound in daily life, for example, determining a schedule for a series of games that resolves the availability of players and venues, or finding a seating assignment at dinner consistent with various rules the host would like to impose. This also applies to applications in computing, for example, ensuring that a hardware/software system functions correctly with its overall behavior constrained by the behavior of its components and their

SIGN IN for Full Access

User Name
Password
, Forgot Password?
»Create an ACM Web Account

```
SIGN IN
```

[^0]
Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

SAT - Milestones

Problems impossible 10 years ago are trivial today

NP is the new P !

Solve any computational problem by effective reduction to SAT/SMT

- iterate as necessary

Graph k-Coloring

Given a graph $G=(V, E)$, and a natural number $k>0$ is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.

Formally:

- does there exists a function $\mathrm{f}: \vee \rightarrow[0 . . \mathrm{k})$ such that
- for every edge (u, v) in $E, f(u)!=f(v)$

Graph coloring for $\mathrm{k}>2$ is NP-complete

Problem: Encode k-coloring of G into CNF

- construct CNF C such that C is SAT iff G is k colorable

k-coloring as CNF

Let a Boolean variable $\mathrm{f}_{\mathrm{v}, \mathrm{i}}$ denote that vertex v has color i

- if $f_{v, i}$ is true if and only if $f(v)=i$

Every vertex has at least one color

$$
\bigvee_{0 \leq i<k} f_{v, i} \quad(v \in V)
$$

No vertex is assigned two colors

$$
\bigwedge_{0 \leq i<j<k}\left(\neg f_{v, i} \vee \neg f_{v, j}\right) \quad(v \in V)
$$

No two adjacent vertices have the same color

$$
\bigwedge\left(\neg f_{v, i} \vee \neg f_{u, i}\right) \quad((v, u) \in E)
$$

Davis Putnam Logemann Loveland DPLL PROCEDURE

References

Chapter 2: Decision Procedures for Propositional Logic

Texts in Theoretical Computer Science An EATCS Series

Daniel Kroening Ofer Strichman

Decision Procedures

An Algorithmic Point of View
Second Elition
https://link.springer.com/book/10.1007\%2F978-3-540-74105-3

Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given propositional logic (PL) formula F is satisfiable

- NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach

- Enumerate models (i.e., truth tables)
- Enumerate resolution proofs

Modern SAT solvers

- DPLL algorithm
- Davis-Putnam-Logemann-Loveland
- Combines model- and proof-based search
- Operates on Conjunctive Normal Form (CNF)

Pivot

C V p \quad D $\vee \neg$

C V D

$\operatorname{Res}(\{C, p\},\{D,!p\})=\{C, D\}$

Given two clauses $\{\mathrm{C}, \mathrm{p}\}$ and $\{\mathrm{D}, \mathrm{l}$ p that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup\{R\}$ is equivalent to F

Resolution Theorem

Let F be a set of clauses
$\operatorname{Res}(F)=F \cup\{R \mid R$ is a resolvent of two clauses in $F\}$

$$
\begin{aligned}
\operatorname{Res}^{0}(F) & =F \\
\operatorname{Res}^{n+1}(F) & =\operatorname{Res}\left(\operatorname{Res}^{n}(F)\right), \text { for } n \geq 0 \\
\operatorname{Res}^{*}(F) & =\bigcup_{n \geq 0} \operatorname{Res}^{n}(F)
\end{aligned}
$$

Theorem: A CNF F is UNAT iff Res* (F) contains an empty clause

Example of a resolution proof

A refutation of $\neg p \vee \neg q \vee r, p \vee r, q \vee r, \neg r$:

Resolution Proof Example

Show by resolution that the following CNF is UNSAT
$\neg b \wedge(\neg a \vee b \vee \neg c) \wedge a \wedge(\neg a \vee c)$

\perp

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to $\operatorname{Res}^{i}(\mathrm{~F})$ for any i . Let n be such that $\operatorname{Res}^{n+1}(F)$ contains an empty clause, but Res ${ }^{n}(F)$ does not. Then Res ${ }^{n}(F)$ must contain to unit clauses L and $\neg L$. Hence, it is UNSAT.
(Completeness) By induction on the number of different atomic propositions in F .
Base case is trivial: F contains an empty clause
IH: Assume F has atomic propositions A1, ... A_{n+1}
Let F_{0} be the result of replacing A_{n+1} by 0
Let F_{1} be the result of replacing A_{n+1} by 1
Apply IH to F_{0} and F_{1}. Restore replaced literals. Combine the two resolutions.

An inference rule is a tuple $\left(P_{1}, \ldots, P_{n}, C\right)$

- where, $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}, \mathrm{C}$ are formulas
- P_{i} are called premises and C is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

C Vp \quad D \vee ᄀp

C V D

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule

DP Procedure: SAT solving by resolution

Assume that input formula F is in CNF

1. Pick two clauses C_{1} and C_{2} in F that can be resolved
2. If the resolvent C is an empty clause, return UNSAT
3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses

DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions Proof search is restricted to unit resolution

- can be done very efficiently (polynomial time)

Case split restores completeness

DPLL can be described by the following two rules

- F is the input formula in CNF

$$
\begin{aligned}
& \frac{F}{F, p \quad \mid \quad F, \neg p} \text { split } p \text { and } \neg p \text { are not in } F \\
& \frac{F, C \vee \ell, \neg l}{F, C, \neg l} \text { unit }
\end{aligned}
$$

The original DPLL procedure

Incrementally builds a satisfying truth assignment M for the input CNF formula F
M is grown by

- deducing the truth value of a literal from M and F , or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value

DPLL: Illustration

M | F

Set of clauses

DPLL: Decide

Guessing (Decide)

$$
p \mid p \vee q, \neg q \vee r
$$

$$
p, \neg q \| p \vee q, \neg q \vee r
$$

DPLL: Boolean Constraint Propagation

Deducing (Unit Propagation or BCP)

$$
p \| p \vee q, \neg p \vee s
$$

$$
p, s \| p \vee q, \neg p \vee s
$$

DPLL: Backtracking

Backtracking

$$
p, \neg s, q \| p \vee q, s \vee q, \neg p \vee \neg q
$$

$$
p, s \| p \vee q, s \vee q, \neg p \vee \neg q
$$

Pure Literals

A literal is pure if only occurs positively or negatively.
Example:
$\varphi=\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \neg x_{2}\right) \wedge\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)$
$\neg x_{1}$ and x_{3} are pure literals
Pure literal rule :
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

$$
\varphi_{\neg x_{1}, x_{3}}=\left(x_{4} \vee \neg x_{5}\right) \wedge\left(x_{5} \vee \neg x_{4}\right)
$$

Preserve satisfiability, not logical equivalency!

DPLL Procedure

- Standard backtrack search
- DPLL(F) :
- Apply unit propagation
- If conflict identified, return UNSAT
- Apply the pure literal rule
- If F is satisfied (empty), return SAT
- Select decision variable x
- If $\operatorname{DPLL}(F \wedge x)=$ SAT return SAT
- return $\operatorname{DPLL}(F \wedge \neg x)$

The Original DPLL Procedure - Example

Guess 3

$$
1,2,3
$$

Deduce 4

$1,2,3$,
4

$$
\begin{gathered}
1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \\
\neg 1 \vee \neg 3 \vee \neg 4,1
\end{gathered}
$$

Conflict

The Original DPLL Procedure - Example

The Original DPLL Procedure - Example

assign Deduce 1	$\begin{gathered} 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \\ \neg 1 \vee \neg 3 \vee \neg 4,1 \end{gathered}$
$\underbrace{}_{\text {Deduce }} \sim^{2}$	$\begin{gathered} 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \\ \neg 1 \vee \neg 3 \vee \neg 4,1 \end{gathered}$
1,2	$\begin{gathered} 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \\ \neg 1 \vee \neg 3 \vee \neg 4,1 \end{gathered}$
1, 2, 3	$\begin{gathered} 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \\ \neg 1 \vee \neg 3 \vee \neg 4,1 \end{gathered}$

An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequentstyle calculi

Such calculi, however, cannot model meta-logical features such as backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of conditional transition rules

An Abstract Framework for DPLL

State

- fail or M || F
- where
- F is a CNF formula, a set of clauses, and
- M is a sequence of annotated literals denoting a partial truth assignment

Initial State

- $\emptyset \| F$, where F is to be checked for satisfiability

Expected final states:

- fail if F is unsatisfiable
- M || G
where
- M is a model of G
$-G$ is logically equivalent to F

Transition Rules for DPLL

Extending the assignment:

Decide $\mathbf{M}\left\|F, C \rightarrow M I^{d}\right\| F, C$

I or \neg occur in C
I is undefined in M

Notation: I^{d} is a decision literal

Transition Rules for DPLL

Repairing the assignment:

Transition Rules DPLL - Example

$$
\begin{array}{cc}
\begin{array}{cc}
\varnothing \| 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \\
\vee \neg 3 \vee \neg 4,1
\end{array} & \begin{array}{c}
\text { UnitProp } \\
1
\end{array} \\
\hline 1 \| 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \neg 3 \vee \\
\neg 4,1
\end{array} \quad \begin{gathered}
\text { UnitProp } \\
\hline 1,2 \| 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \\
\neg 3 \vee \neg 4,1
\end{gathered} \quad \begin{gathered}
\neg 2 \\
\text { Decide } 3
\end{gathered}
$$

Transition Rules DPLL - Example

$$
\begin{align*}
& \varnothing|\mid 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \\
& \vee \neg 3 \vee \neg 4,1 \\
& \text { UnitProp } \\
& 1 \text { || } 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \neg 3 \vee \\
& \neg 4,1 \\
& 1,2 \text { || } 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \\
& \neg 3 \vee \neg 4,1 \\
& 1,2,3^{\mathrm{d}} \| 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \\
& \neg 3 \vee \neg 4,1 \\
& 1,2,3 \text { || } 1 \vee 2,2 \vee \neg 3 \vee 4, \neg 1 \vee \neg 2, \neg 1 \vee \\
& \neg 3 \vee \neg 4,1 \\
& \text { UnitProp } \\
& \text { Decide } 3 \\
& \text { UnitProp } \\
& 4 \\
& \text { Backtrac } \\
& \text { k } 3
\end{align*}
$$

Transition Rules for DPLL (on one slide)

UnitProp $\quad M\|F, C \vee I \rightarrow M I\| F, C \vee I\left\{\begin{array}{c}M \vDash \neg C \\ I \text { is undefined in } M\end{array}\right.$
Decide $\quad \mathbf{M}\|F, C \rightarrow M I\| F, C \quad\left\{\begin{array}{l}I \text { or } \neg \text { l occur in } C \\ I \text { is undefined in } M\end{array}\right.$

Fail $\quad \mathbf{M} \| F, C \rightarrow$ fail

$$
\begin{gathered}
M \vDash \neg C \\
M \text { does not contain } \\
\text { decision literals }
\end{gathered}
$$

Backtrack $\quad M I^{d} N\|F, C \rightarrow M \neg I\|$

$$
\begin{gathered}
M I^{d} N\|F, C \rightarrow M \neg I\| \\
F, C
\end{gathered}\left\{\begin{array}{c}
M I^{d} N \vDash \neg C \\
I \text { is the last decision literal }
\end{array}\right.
$$

The DPLL System - Correctness

Some terminology

- Irreducible state: state to which no transition rule applies.
- Execution: sequence of transitions allowed by the rules and starting with states of the form \varnothing \|I F.
- Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with $\varnothing \| F$ and ending in $M \| F, M \vDash F$

Proposition (Completeness) If F is unsatisfiable, every exhausted execution starting with $\varnothing \| F$ ends with fail

Maintained in more general rules + theories

Modern DPLL: CDCL

Conflict Driven Clause Learning

- two watched literals - efficient index to find clauses that can be used in unit resolution
- periodically restart backtrack search
- activity-based decision heuristic to choose decision variable
- conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in

- Chapter 2 of Decision Procedures book
- ECE750 with Vijay Ganesh

Conflict Directed Clause Learning

Lemma learning

$$
\begin{aligned}
& \neg t, p, q, s \mid t \vee \neg p \vee q, \neg q \vee s, \neg p \vee \neg s \\
& \neg t, p, q, s|t \vee \neg p \vee q, \neg q \vee s, \neg p \vee \neg s| \neg p \vee \neg s \\
& \neg t, p, q, s|t \vee \neg p \vee q, \neg q \vee s, \neg p \vee \neg s| \neg p \vee \neg q \\
& \neg t, p, q, s|t \vee \neg p \vee q, \neg q \vee s, \neg p \vee \neg s| \neg p \vee t
\end{aligned}
$$

Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses deduced from the last decision

$$
\begin{aligned}
& \neg t, p, q, s \mid t \vee \neg p \vee q, \neg q \vee s, \neg p \vee \neg s \\
& \frac{\neg p \vee \neg s \quad \neg q \vee s}{\neg p \vee \neg q} \quad t \vee \neg p \vee q \\
& t \vee \neg p
\end{aligned}
$$

Trivial Resolution: at every resolution step, at least one clause is an input clause

Modern CDCL: Abstract Rules

Initialize	$\epsilon \mid F$	F is a set of clauses
Decide	$M\|F \Rightarrow M, \ell\| F$	ℓ is unassigned
Propagate	$M\left\|F, C \vee \ell \Rightarrow M, \ell^{C \vee \ell}\right\| F, C \vee \ell$	C is false under
Sat	$M \mid F \Rightarrow M$	F true under M
Conflict	$M\|F, C \Rightarrow M\| F, C \mid C$	C is false under
Learn	$M\|F\| C \Rightarrow M\|F, C\| C$	C C
Unsat	$M\|F\| \emptyset \Rightarrow U n s a t$	$\ell^{C \vee \ell} \in M$
Backjump	$M M^{\prime}\|F\| C \vee \ell \Rightarrow M \ell^{C \vee \ell} \mid F$	C is a learned clause
Resolve	$M\|F\| C^{\prime} \vee \neg \ell \Rightarrow M\|F\| C^{\prime} \vee C$	
Forget	$M\|F, C \Rightarrow M\| F$	
Restart	$M\|F \Rightarrow \in\| F$	

Conjuctive Normal Form

Every propositional formula can be put in CNF
PROBLEM: (potential) exponential blowup of the resulting formula

Tseitin Transformation - Main Idea

Introduce a fresh variable e_{i} for every subformula G_{i} of F

- intuitively, e_{i} represents the truth value of G_{i}

Assert that every e_{i} and G_{i} pair are equivalent
$\cdot \mathrm{e}_{\mathrm{i}} \leftrightarrow \mathrm{G}_{\mathrm{i}}$

- and express the assertion as CNF

Conjoin all such assertions in the end

Formula to CNF Conversion

```
def cnf (\phi):
    p, F = cnf_rec (\phi)
    return p ^ F
```

```
def cnf_rec ( \(\phi\) ):
```

def cnf_rec (ϕ):
if is_atomic (ϕ): return (ϕ, True)
if is_atomic (ϕ): return (ϕ, True)
elif $\phi==\psi \wedge \xi$:
elif $\phi==\psi \wedge \xi$:
q, $F_{1}=c n f _r e c(\psi)$
q, $F_{1}=c n f _r e c(\psi)$
$r, F_{2}=c n f _r e c(\xi)$
$r, F_{2}=c n f _r e c(\xi)$
p = mk_fresh_var ()
p = mk_fresh_var ()
\# C is CNF for $p \leftrightarrow(q \wedge r)$
\# C is CNF for $p \leftrightarrow(q \wedge r)$
$C=(\neg p \vee q) \wedge(\neg p \vee r) \wedge(p \vee \neg q \vee \neg r)$
$C=(\neg p \vee q) \wedge(\neg p \vee r) \wedge(p \vee \neg q \vee \neg r)$
return $\left(p, F_{1} \wedge F_{2} \wedge C\right)$
return $\left(p, F_{1} \wedge F_{2} \wedge C\right)$
elif $\phi==\psi \vee \xi$:

```
    elif \(\phi==\psi \vee \xi\) :
```

mk_fresh_var() returns a fresh variable not used anywhere before

Exercise: Complete cases for

$$
\phi==\psi \vee \xi, \phi==-\psi, \phi==\psi \leftrightarrow \zeta
$$

Tseitin Transformation: Example

$$
G: p \leftrightarrow(q \rightarrow r)
$$

$$
\begin{aligned}
\mathbf{G}: & \mathbf{e}_{\mathbf{0}} \wedge\left(\mathbf{e}_{\mathbf{0}} \leftrightarrow\left(\boldsymbol{p} \leftrightarrow \mathbf{e}_{\mathbf{1}}\right)\right) \wedge\left(\mathbf{e}_{\mathbf{1}} \leftrightarrow(\boldsymbol{q} \rightarrow \boldsymbol{r})\right) \\
& e_{1} \leftrightarrow(q \rightarrow r) \\
= & \left(e_{1} \rightarrow(q \rightarrow r)\right) \wedge\left((q \rightarrow r) \rightarrow e_{1}\right) \\
= & \left(\neg e_{1} \vee \neg q \vee r\right) \wedge\left((\neg q \vee r) \rightarrow e_{1}\right) \\
= & \left(\neg e_{1} \vee \neg q \vee r\right) \wedge\left(\neg q \rightarrow e_{1}\right) \wedge\left(r \rightarrow e_{1}\right) \\
= & \left(\neg e_{1} \vee \neg q \vee r\right) \wedge\left(q \vee e_{1}\right) \wedge\left(\neg r \vee e_{1}\right)
\end{aligned}
$$

Tseitin Transformation: Example

$G: p \leftrightarrow(q \rightarrow r)$

$$
\begin{aligned}
\mathbf{G}: & \left.\mathbf{e}_{0} \wedge\left(\mathbf{e}_{0} \leftrightarrow\left(\mathbf{p} \leftrightarrow \mathbf{e}_{1}\right)\right) \wedge\left(\mathbf{e}_{1} \leftrightarrow \mathbf{q} \rightarrow \boldsymbol{r}\right)\right) \\
& e_{0} \leftrightarrow\left(p \leftrightarrow e_{1}\right) \\
= & \left.\left(e_{0} \rightarrow\left(p \leftrightarrow e_{1}\right)\right) \wedge\left(\left(p \leftrightarrow e_{1}\right)\right) \rightarrow e_{0}\right) \\
= & \left(e_{0} \rightarrow\left(p \rightarrow e_{1}\right)\right) \wedge\left(e_{0} \rightarrow\left(e_{1} \rightarrow p\right)\right) \wedge \\
& \left(\left(\left(p \wedge e_{1}\right) \vee\left(\neg p \wedge \neg e_{1}\right)\right) \rightarrow e_{0}\right) \\
= & \left(\neg e_{0} \vee \neg p \vee e_{1}\right) \wedge\left(\neg e_{0} \vee \neg e_{1} \vee p\right) \wedge \\
& \left(\neg p \vee \neg e_{1} \vee e_{0}\right) \wedge\left(p \vee e_{1} \vee e_{0}\right)
\end{aligned}
$$

Tseitin Transformation: Example

$G: p \leftrightarrow(q \rightarrow r)$

$$
G: e_{0} \wedge\left(e_{0} \leftrightarrow\left(p \leftrightarrow e_{1}\right)\right) \wedge\left(e_{1} \leftrightarrow(q \rightarrow r)\right)
$$

$$
G: e_{0} \wedge\left(\neg e_{0} \vee \neg p \vee e_{1}\right) \wedge\left(\neg e_{0} \vee p \vee \neg e_{1}\right) \wedge\left(e_{0}\right.
$$

$$
\left.\vee p \vee e_{1}\right) \wedge\left(e_{0} \vee \neg p \vee \neg e_{1}\right) \wedge
$$

$$
\left(\neg e_{1} \vee \neg q \vee r\right) \wedge\left(e_{1} \vee q\right) \wedge\left(e_{1} \vee \neg r\right)
$$

Tseitin Transformation [1968]

Used in practice

- No exponential blow-up
- CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F':

- F^{\prime} is equisatisfiable to F
- Every model of F' can be translated (i.e., projected) to a model of F
- Every model of F can be translated (i.e., completed) to a model of F'

No model is lost or added in the conversion

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c
p cnf 53
1-540
-15340
-3 -4 0
Format details

- comments start with c
- header line: p cnf nbvar nbclauses
- nbvar is \# of variables, nbclauses is \# of clauses
- each clause is a sequence of distinct numbers terminating with 0
- positive numbers are variables, negative numbers are negations

BOUNDED MODEL CHECKING

SAT-based Model Checking

Main idea
Translate the model and the specification to propositional formulas

$$
(p, \neg p, p \vee q, p \wedge q, p \rightarrow q \ldots)
$$

Reduce the model checking problem to satisfiabilitv, of propositional formulas

Use efficient tools (SAT solvers) for solving the satisfiability problem

Modeling with Propositional Formulas

Finite-State System is modeled as (V, INIT, T):

- V - finite set of Boolean variables
- Boolean variables: a b c $\rightarrow 8$ states: $000,001, \ldots$
- INIT(V) - describes the set of initial states
state $=$
valuation to variables
- INIT= $=$ a \wedge-b
- $T\left(V, V^{\prime}\right)$ - describes the set of transitions
- $T\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(c^{\prime} \leftrightarrow(a \wedge b) \vee c\right) \quad$ note: $c=c_{t}$ and $c^{\prime}=c_{t+1}$

Property:

- $p(V)$ - describes the set of states satisfying p

Modeling in CNF (Tseitin encoding)

$$
\begin{gathered}
T\left(a, b, c, g, p, a^{\prime}, b^{\prime}, c^{\prime}\right)= \\
g \leftrightarrow a \wedge b, \\
p \leftrightarrow g \vee c,
\end{gathered}
$$

$$
c^{\prime} \leftrightarrow p
$$

Each circuit element is a constraint

Bounded model checking (BMC) for checking AGp

Given

- A finite transition system $\mathrm{M}=\left(\mathrm{V}, \operatorname{INIT}(\mathrm{V}), \mathrm{T}\left(\mathrm{V}, \mathrm{V}^{\prime}\right)\right)$
- A safety property $A G p$, where $p=p(V)$
- A bound k

Determine

- Does M contain a counterexample to pof k transitions (or fewer) ?
* BMC can handle all of LTL formulas
A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99

Bounded model checking for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k If a state satisfying $\neg \mathfrak{p}$ is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

Bounded model checking with SAT

Construct a formula $\mathrm{f}_{\mathrm{M}, \mathrm{k}}$ describing all possible computations of M of length k

$$
\begin{gathered}
T\left(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)= \\
g \leftrightarrow a \wedge b \\
p \leftrightarrow g \vee c \\
c^{\prime} \leftrightarrow p
\end{gathered}
$$

Bounded model checking with SAT

Construct a formula $f_{M, k}$ describing all possible computations of M of length k

$$
f_{M, k}=I N T_{0} \wedge T_{0} \wedge T_{1} \wedge \ldots \wedge T_{k-1}
$$

Bounded model checking with SAT

Construct a formula $\mathrm{f}_{\mathrm{M}, \mathrm{k}}$ describing all possible computations of M of length k

Construct a formula $\mathrm{f}_{\varphi, k}$ expressing that $\varphi=\mathrm{EF} \neg \mathbf{p}$ holds within k computation steps
$\mathbf{f}_{\mathrm{p}, \mathrm{k}}=\mathrm{V}_{\mathrm{i}=0, \ldots \mathrm{k}}\left(\neg \boldsymbol{p}_{\mathrm{i}}\right) \quad$ [Sometimes $\left.\mathrm{f}_{\mathrm{p}, \mathrm{k}}=\neg \mathbf{p}_{\mathrm{k}}\right]$

$$
p_{i}=p\left(V_{i}\right)
$$

Bounded model checking with SAT

Construct a formula $\mathrm{f}_{\mathrm{M}, \mathrm{k}}$ describing all possible computations of M of length k
Construct a formula $\mathrm{f}_{\varphi, \mathrm{k}}$ expressing that $\varphi=\mathrm{EF} \neg \mathrm{p}$ holds within k computation steps
Check whether $f=f_{M, k} \wedge f_{\varphi, k}$ is satisfiable

If f is satisfiable then $\mathrm{M} \mid \neq \mathrm{AGp}$
The satisfying assignment is a counterexample

BMC for checking AG p with SAT

Unfold the model k times:
$\cdot \mathrm{U}=\mathrm{T}^{<0\rangle} \wedge \mathrm{T}^{<1\rangle} \wedge \ldots \wedge \mathrm{T}^{<k-1\rangle}$

Biere, et al. TACAS99

$$
\begin{gathered}
\mathrm{I}^{<0>}=I\left(\mathrm{~V}_{0}\right) \\
\mathrm{T}^{<\mathrm{i}>}=\mathrm{T}\left(\mathrm{~V}_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}+1}\right) \\
\mathrm{p}^{<\mathrm{k}>}=\mathrm{p}\left(\mathrm{~V}_{\mathrm{k}}\right) \\
\sim
\end{gathered}
$$

- Use SAT solver to check satisfiability of $\left.\right|^{<0\rangle} \wedge U \wedge \neg p^{<k>}$
- If satisfiable: the satisfying assignment describes a counterexample of length k
- If unsatisfiable: property has no counterexample of length k

Example - shift register

Shift register of 3 bits: <x, $y, z>$
Transition relation:
$T\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=x^{\prime} \leftrightarrow y \wedge y^{\prime} \leftrightarrow z \wedge z^{\prime}=1$

error
Initial condition:
$\operatorname{INIT}(x, y, z)=x=0 \vee y=0 \vee z=0$

Specification: $A G(x=0 \vee y=0 \vee z=0)$

Propositional formula for $\mathbf{k}=\mathbf{2}$

$$
\begin{aligned}
f_{M, 2}= & \left(x_{0}=0 \vee y_{0}=0 \vee z_{0}=0\right) \wedge \\
& \left(x_{1} \leftrightarrow y_{0} \wedge y_{1} \leftrightarrow z_{0} \wedge z_{1}=1\right) \wedge \\
& \left(x_{2} \leftrightarrow y_{1} \wedge y_{2} \leftrightarrow z_{1} \wedge z_{2}=1\right) \\
f_{\varphi, 2}= & V_{i=0, . .2}\left(x_{i}=1 \wedge y_{i}=1 \wedge z_{i}=1\right)
\end{aligned}
$$

$$
\text { INIT }=x=0 \vee y=0 \vee z=0
$$

$$
T=x^{\prime} \leftrightarrow y \wedge y^{\prime} \leftrightarrow z \wedge z^{\prime}=1
$$

$$
P=x=0 \vee y=0 \vee z=0
$$

Satisfying assignment: 101011111
This is a counterexample!

A remark

In order to describe a computation of length k by a propositional formula we need $\mathrm{k}+1$ copies of the state variables.

With BDDs we use only two copies: for current and next states.

BMC for checking $\varphi=A G p$

1. $\mathrm{k}=1$
2. Build a propositional formula $f_{M}{ }^{k}$ describing all prefixes of length k of paths of M from an initial state
3. Build a propositional formula $f_{\varphi}{ }^{k}$ describing all prefixes of length k of paths satisfying $F \neg p$
4. If $\left(f_{M}{ }^{k} \wedge f_{\varphi}{ }^{k}\right)$ is satisfiable, return the satisfying assignment as a counterexample
5. Otherwise, increase k and return to 2 .

Bounded Model Checking

$\operatorname{INIT}\left(\mathrm{V}^{0}\right) \quad \wedge \mathrm{T}\left(\mathrm{V}^{0}, \mathrm{~V}^{1}\right) \wedge \neg p\left(\mathrm{~V}^{1}\right)$

Bounded Model Checking

$\operatorname{INIT}\left(\mathrm{V}^{0}\right) \quad \wedge \mathrm{T}\left(\mathrm{V}^{0}, \mathrm{~V}^{1}\right) \wedge \mathrm{T}\left(\mathrm{V}^{1}, \mathrm{~V}^{2}\right) \wedge \neg p\left(\mathrm{~V}^{\mathbf{2}}\right)$

Bounded Model Checking

$\operatorname{INIT}\left(\mathbf{V}^{0}\right) \wedge T\left(\mathbf{V}^{0}, \mathbf{V}^{1}\right) \wedge \ldots \wedge T\left(\mathbf{V}^{k-1}, \mathbf{V}^{k}\right) \wedge \neg p\left(\mathbf{V}^{k}\right)$

BMC for checking AFp ($\varphi=E G \neg p)$

Is there an infinite path in M

- From an initial state
- all of its states satisfying $\neg \mathbf{p}$
- Over k+1 states ?

If exists, there must also exist a lasso

BMC for checking AFp ($\varphi=E G \neg p)$

An infinite path in M, from an initial state, over $k+1$ states, all satisfying $\neg \mathrm{p}$:
$f_{M}{ }^{k}\left(V_{0}, \ldots, V_{k}\right)=$ $\operatorname{INIT}\left(\mathrm{V}_{0}\right) \wedge \Lambda_{i=0, \cdots k-1} T\left(V_{i}, V_{i+1}\right) \wedge V_{i=0, \cdots k-1}\left(V_{k}=V_{i}\right)$

- $\mathrm{V}_{\mathrm{k}}=\mathrm{V}_{\mathrm{i}}$ means bitwise equality: $\Lambda_{\mathrm{j}=0, \ldots, n}\left(v_{\mathrm{kj}} \leftrightarrow \mathrm{v}_{\mathrm{ij}}\right)$
$f_{\varphi}{ }^{k}\left(V_{0}, \ldots, V_{k}\right)=\Lambda_{i=0, \cdots k} \neg p\left(V_{i}\right)$

Remark: BMC can handle all of LTL formulas

Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough

- Need bound on length of the shortest counterexample.
-diameter bound. The diameter is the maximum length of the shortest path between any two states.

Using such k is often not practical due to the size of the model

- Worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.

Bounded Model Checking

Terminates

- with a counterexample or
- with time- or memory-out
=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough

- Need bound on length of the shortest counterexample.
- diameter bound. The diameter is the maximum length of the shortest path between any two states.
Using such k is often not practical
- Worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.

[^0]: ARTICLE CONTENTS:
 Introduction
 Boolean Satisfiability
 Theoretical hardness: SAT and

