Bounded Model Checking (BMC)

Automated Program Verification (APV) Fall 2019

Prof. Arie Gurfinkel

SAT-based Model Checking

Main idea

Translate the model and the specification to propositional formulas $(p, \neg p, p \lor q, p \land q, p \rightarrow q...)$

Reduce the model checking problem to satisfiability of propositional formulas

Use efficient tools (SAT solvers) for solving the satisfiability problem

Modeling with Propositional Formulas

Finite-State System is modeled as (V, INIT, T):

- V finite set of Boolean variables
 - Boolean variables: a b c → 8 states: 000,001,...
- INIT(V) describes the set of initial states
 - INIT = $\neg a \land \neg b$
- T(V,V') describes the set of transitions
 - $T(a,b,c,a',b',c') = (c' \leftrightarrow (a \land b) \lor c)$

state = valuation to variables

note: $c = c_t$ and $c' = c_{t+1}$

Property:

p(V) - describes the set of states satisfying p

Modeling in CNF (Tseitin encoding)

$$T(a,b,c,g,p,a',b',c') =$$

$$g \longleftrightarrow a \land b,$$

$$p \longleftrightarrow g \lor c,$$

$$c' \longleftrightarrow p$$

Each circuit element is a constraint

Bounded model checking (BMC) for checking AGp

Given

- A finite transition system M= (V, INIT(V), T(V,V'))
- A safety property AG p, where p = p(V)
- A bound k

Determine

 Does M contain a counterexample to p of k transitions (or fewer)?

* BMC can handle all of LTL formulas

Bounded model checking for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k

If a state satisfying ¬p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

Construct a formula $f_{M,k}$ describing all possible computations of M of length k

T(a,b,c,a',b',c') =
$$g \longleftrightarrow a \land b,$$

$$p \longleftrightarrow g \lor c,$$

$$c' \longleftrightarrow p$$

Construct a formula $f_{M,k}$ describing all possible computations of M of length k

$$f_{M,k} = INIT_{0} \wedge T_{0} \wedge T_{1} \wedge ... \wedge T_{k-1}$$

$$a_{0},b_{0},c_{0}, \quad a_{1},b_{1},c_{1}, \quad a_{k-1},b_{k-1},c_{k-1}, \quad a_{k},b_{k},c_{k},$$

$$g_{0},p_{0} \quad g_{1},p_{1} \quad g_{k-1},p_{k-1} \quad g_{k},p_{k}$$

$$INIT_{0} = INIT(V_{0})$$

$$T_{i} = T(V_{i},V_{i+1})$$

Construct a formula $f_{M,k}$ describing all possible computations of M of length k

Construct a formula $f_{\phi,k}$ expressing that $\phi = EF - p$ holds within k computation steps

$$\mathbf{f}_{\phi,k} = V_{i=0,..k} (\neg \mathbf{p}_i)$$
 [Sometimes $\mathbf{f}_{\phi,k} = \neg \mathbf{p}_k$]

$$p_i = p(V_i)$$

Construct a formula $f_{M,k}$ describing all possible computations of M of length k

Construct a formula $f_{\phi,k}$ expressing that $\phi = EF - p$ holds within k computation steps

Check whether $f = f_{M,k} \wedge f_{\phi,k}$ is satisfiable

If f is satisfiable then M |≠ AGp

The satisfying assignment is a counterexample

BMC for checking AG p with SAT

Unfold the model k times:

Biere, et al. TACAS99

• U =
$$T^{<0}$$
 \wedge $T^{<1}$ \wedge ... \wedge $T^{$

Use SAT solver to check satisfiability of

$$I^{<0>} \wedge U \wedge \neg p^{}$$

- If satisfiable: the satisfying assignment describes a counterexample of length k
- If unsatisfiable: property has no counterexample of length k

Example – shift register

Shift register of 3 bits: <x, y, z>

Transition relation:

Initial condition:

$$INIT(x,y,z) = x=0 \lor y=0 \lor z=0$$

Specification: AG ($x=0 \lor y=0 \lor z=0$)

Propositional formula for k=2

$$f_{M,2} = (x_0=0 \lor y_0=0 \lor z_0=0) \land$$

$$(x_1 \leftrightarrow y_0 \land y_1 \leftrightarrow z_0 \land z_1=1) \land$$

$$(x_2 \leftrightarrow y_1 \land y_2 \leftrightarrow z_1 \land z_2=1)$$

INIT =
$$x=0 \lor y=0 \lor z=0$$

T = $x' \leftrightarrow y \land y' \leftrightarrow z \land z'=1$

$$f_{\phi,2} = V_{i=0,...2} (x_i=1 \land y_i=1 \land z_i=1)$$

$P = x=0 \lor y=0 \lor z=0$

Satisfying assignment: 101 011 111

This is a counterexample!

A remark

In order to describe a computation of length k by a propositional formula we need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

BMC for checking ϕ =AGp

- 1. k=1
- 2. Build a propositional formula f_M^k describing all prefixes of length k of paths of M from an initial state
- Build a propositional formula f_o^k describing all prefixes of length k of paths satisfying F¬p
- 4. If $(f_M^k \wedge f_{\phi}^k)$ is satisfiable, return the satisfying assignment as a counterexample
- 5. Otherwise, increase k and return to 2.

INIT(V⁰) \wedge T(V⁰,V¹) \wedge ¬p(V¹)

INIT(V⁰) \wedge T(V⁰,V¹) \wedge T(V¹,V²) \wedge ¬p(V²)

INIT(V⁰) \wedge T(V⁰,V¹) $\wedge ... \wedge$ T(V^{k-1},V^k) $\wedge \neg$ p(V^k)

BMC for checking AFp ($\phi = EG - p$)

Is there an infinite path in M

- From an initial state
- all of its states satisfying ¬p
- Over k+1 states ?

If exists, there must also exist a lasso

BMC for checking AFp ($\phi = EG - p$)

An infinite path in M, from an initial state, over k+1 states, all satisfying $\neg p$:

$$f_{M}^{k} (V_{0},...,V_{k}) =$$

$$INIT(V_{0}) \wedge \bigwedge_{i=0,...,k-1} T(V_{i},V_{i+1}) \wedge \bigvee_{i=0,...,k-1} (V_{k}=V_{i})$$

• $V_k=V_i$ means bitwise equality: $\Lambda_{j=0,...n}$ ($v_{kj} \leftrightarrow v_{ij}$)

$$f_{\varphi}^{k}(V_{0},...,V_{k}) = \bigwedge_{i=0,...k} \neg p(V_{i})$$

Remark: BMC can handle all of LTL formulas

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough

- Need bound on length of the shortest counterexample.
 - diameter bound. The diameter is the maximum length of the shortest path between any two states.

Using such k is often **not practical** due to the size of the model

 Worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.

Terminates

- with a counterexample or
- with time- or memory-out
- => The method is suitable for **falsification**, not verification

Can be used for verification by choosing k which is large enough

- Need bound on length of the shortest counterexample.
 - diameter bound. The diameter is the maximum length of the shortest path between any two states.

Using such k is often **not practical**

Worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.

Bounded Model Checker for C CBMC

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find whether there exists an execution that violates the claim.

Programs and Claims

- Arbitrary ANSI-C programs
 - With bitvector arithmetic, dynamic memory, pointers, ...
- Simple Safety Claims
 - Array bound checks (i.e., buffer overflow)
 - Division by zero
 - Pointer checks (i.e., NULL pointer dereference)
 - Arithmetic overflow
 - User supplied assertions (i.e., assert (i > j))
 - etc

Why use a SAT Solver?

- SAT Solvers are very efficient
- Analysis is completely automated
- Analysis as good as the underlying SAT solver
- Allows support for many features of a programming language
 - bitwise operations, pointer arithmetic, dynamic memory, type casts

A (very) simple example (1)

Program

int x; int y=8, z=0, w=0;if (x)z = y - 1;else w = y + 1;assert (z == 7 || W == 9)

Constraints

$$y = 8,$$
 $z = x ? y - 1 : 0,$
 $w = x ? 0 : y + 1,$
 $z != 7,$
 $w != 9$

UNSAT

no counterexample
assertion always holds!

A (very) simple example (2)

Program

int x; int y=8, z=0, w=0;if (x)z = y - 1;else w = y + 1;assert (z == 5 || W == 9)

Constraints

$$y = 8,$$
 $z = x ? y - 1 : 0,$
 $w = x ? 0 : y + 1,$
 $z != 5,$
 $w != 9$

SAT counterexample found!

$$y = 8, x = 1, w = 0, z = 7$$

What about loops?!

- SAT Solver can only explore finite length executions!
- Loops must be bounded (i.e., the analysis is incomplete)

CBMC: C Bounded Model Checker

- Developed at CMU by Daniel Kroening and Ed Clarke
- Available at: http://www.cprover.org/cbmc
 - On Ubuntu: apt-get install cbmc
 - with source code
- Supported platforms: Windows, Linux, OSX
- Has a command line, Eclipse CDT, and Visual Studio interfaces
- Scales to programs with over 30K LOC
- Found previously unknown bugs in MS Windows device drivers

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification but for efficiency

Complex language features, such as

- Bit vector operators (shifting, and, or,...)
- Pointers, pointer arithmetic
- Dynamic memory allocation: malloc/free
- Dynamic data types: char s[n]
- Side effects
- float/double
- Non-determinism

DEMO

Using CBMC from Command Line

To see the list of claims

```
cbmc --show-claims -I include file.c
```

To check a single claim

```
cbmc --unwind n --claim x -I include file.c
```

- For help
 - cbmc --help

How does it work

Transform a programs into a set of equations

- 1. Simplify control flow
- Unwind all of the loops
- Convert into Single Static Assignment (SSA)
- 4. Convert into equations
- 5. Bit-blast
- 6. Solve with a SAT Solver
- 7. Convert SAT assignment into a counterexample

CBMC: Bounded Model Checker for C

A tool by D. Kroening/Oxford and Ed Clarke/CMU

Control Flow Simplifications

- All side effect are removed
 - e.g., j=i++ becomes j=i;i=i+1

- Control Flow is made explicit
 - continue, break replaced by goto

- All loops are simplified into one form
 - for, do while replaced by while

- All loops are unwound
 - can use different unwinding bounds for different loops
 - to check whether unwinding is sufficient special "unwinding assertion" claims are added

 If a program satisfies all of its claims and all unwinding assertions then it is correct!

Same for backward goto jumps and recursive functions


```
void f(...) {
  while(cond) {
    Body;
  Remainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

```
void f(...) {
  if(cond) {
    Body;
    while(cond) {
      Body;
  Remainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

```
void f(...) {
  if(cond) {
    Body;
    if(cond) {
      Body;
      while(cond) {
        Body;
  Remainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

Unwinding assertion

```
void f(...) {
  if(cond) {
    Body;
    if(cond) {
      Body;
      if(cond) {
        Body;
        while(cond) {
          Body;
  Remainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

Unwinding assertion

```
void f(...) {
  if(cond) {
    Body;
    if(cond) {
      Body;
      if(cond) {
        Body;
        assert(!cond);
                    Unwinding
                    assertion
  Remainder;
```

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

Positive correctness result!

Example: Sufficient Loop Unwinding

```
void f(...) {
    j = 1
    while (j <= 2)
        j = j + 1;
    Remainder;
}</pre>
```

unwind = 3

```
void f(...) {
 j = 1
 if(j <= 2) {
  j = j + 1;
   if(j <= 2) {
    j = j + 1;
     if(j <= 2) {
       j = j + 1;
       assert(!(j <= 2));
 Remainder;
```

Example: Insufficient Loop Unwinding

```
void f(...) {
    j = 1
    while (j <= 10)
        j = j + 1;
    Remainder;
}</pre>
```

unwind = 3

```
void f(...) {
 j = 1
 if(j <= 10) {
  j = j + 1;
   if(j <= 10) {
     j = j + 1;
     if(j <= 10) {
       j = j + 1;
       assert(!(j <= 10));
 Remainder;
```

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program

$$x = a;$$
 $y = x + 1;$
 $z = y - 1;$

Constraints

$$x = a & & \\ y = x + 1 & & \\ z = y - 1 & & \\ \end{matrix}$$

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times, use a new variable for the RHS of each assignment

What about conditionals?

Program

SSA Program

if
$$(v_0)$$

$$x_0 = y_0;$$
else
$$x_1 = z_0;$$

$$w_1 = x??;$$
What should 'x' be?

What about conditionals?

For each join point, add new variables with selectors

Adding Unbounded Arrays

$$v_{\alpha}[a] = e$$
 ρ $v_{\alpha} = \lambda i : \begin{cases} \rho(e) & : i = \rho(a) \\ v_{\alpha-1}[i] & : \text{ otherwise} \end{cases}$

Arrays are updated "whole array" at a time

$$A[1] = 5;$$
 $A_1 = \lambda i : i == 1 ? 5 : A_0[i]$

$$A[2] = 10;$$
 $A_2 = \lambda i : i == 2 ? 10 : A_1[i]$

$$A[k] = 20;$$
 $A_3 = \lambda i : i == k ? 20 : A_2[i]$

$$A_2[2] == 10$$
 $A_2[1] == 5$ $A_2[3] == A_0[3]$
 $A_3[2] == (k == 2 ? 20 : 10)$

Uses only as much space as there are uses of the array!

Example

```
int main() {
int main() {
                              int x, y;
   int x, y;
                                                          (y_1 = 8)
                              y_1 = 8;
   y=8;
                              if(x_0)
   if(x)
                                                         \land y_2 = y_1 - 1
                                y_2 = y_1 - 1;
     y--;
   else
                              else
                                                         \land y_3 = y_1 + 1
                                y_3 = y_1 + 1;
     y++;
                              y_4 = x_0 ? y_2 : y_3;
                                                         \land y_4 = x_0 ? y_2 : y_3)
                              assert
   assert
                                                        \implies (y_4 = 7 \lor y_4 = 9)
                                   (y_4 = = 7 | |
        (y==7 | |
                                  y_4 == 9);
        y == 9);
```


Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information

- Separate for each pointer
- Separate for each <u>instance</u> of each program location

Dereferencing operations are expanded into case-split on pointer object (not: offset)

Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic

Consists of pair <object, offset>

Dynamic Objects

Dynamic Objects:

- malloc/free
- Local variables of functions

Auxiliary variables for each dynamically allocated object:

- Size (number of elements)
- Active bit
- Type

malloc sets size (from parameter) and sets active bit

free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

Modeling with CBMC

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions

• assert(e) – aborts an execution when e is false, no-op otherwise

```
void assert (_Bool b) { if (!b) exit(); }
```

Non-determinism

nondet_int() – returns a non-deterministic integer value

```
int nondet_int () { int x; return x; }
```

Assumptions

• assume(e) - "ignores" execution when e is false, no-op otherwise

```
void assume (_Bool e) { while (!e); }
```


Example

```
int x, y;
void main (void)
{
    x = nondet_int ();

    assume (x > 10);
    y = x + 1;

    assert (y > x);
}
```

possible overflow assertion fails

Using nondet for modeling

Library spec:

"foo is given non-deterministically, but is taken until returned" CMBC stub:

```
int nondet_int ();
int is_foo_taken = 0;
int grab_foo () {
  if (!is_foo_taken)
    is_foo_taken = nondet_int ();
  return is_foo_taken; }
```

```
void return_foo ()
{ is_foo_taken = 0; }
```

Assume-Guarantee Reasoning (1)

Is foo correct?

Check by splitting on the argument of foo

```
int foo (int* p) { ... }
void main(void) {
  foo(x);
  foo(y);
```


Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

```
int foo (int* p) { __CPROVER_assume(p!=NULL); ... }
```

(G)Is foo guaranteed to be called with a non-NULL argument?

```
void main(void) {
    ...
    assert (x!=NULL);// foo(x);
    ...
    assert (y!=NULL); //foo(y);
    ...}
```


Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

This program is passed by CMBMC!

```
if (x > 0) {
   __CPROVER_assume (x < 0);
   assert (0); }</pre>
```

Assume must either be checked with assert or used as an idiom:

```
x = nondet_int ();
y = nondet_int ();
__CPROVER_assume (x < y);</pre>
```


Example: Prophecy variables

```
int x, y, v;
void main (void)
  v = nondet_int ();
  x = v;
  x = x + 1;
  y = nondet_int ();
  assume (v == y);
  assert (x == y + 1);
```

v is a *prophecy* variable it guesses the future value of y

assume blocks executions with a wrong guess

syntactically: x is changed before y semantically: x is changed after y

Context-Bounded Analysis with CBMC

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R contextswitches (per thread)

CBA via Sequentialization

- Reduce concurrent program P to a sequential (non-deterministic) program P' such that "P has error" iff "P' has error"
- 2. Check P' with CBMC

Key Idea

- 1. Divide execution into rounds based on context switches
- Execute executions of each context separately, starting from a symbolic state
- 3. Run all parts of Thread 1 first, then all parts of Thread 2
- 4. Connect executions from Step 2 using assume-statements

Sequentialization in Pictures

Guess initial value of each global in each round

Execute task bodies

- T₁
- T₂

Check that initial value of round i+1 is the final value of round i

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):

- for each global variable g, let g[r] be the value of g in round r
- 2. execute thread bodies sequentially
 - first thread 1, then thread 2
 - for global variables, use g[r] instead of g when running in round r
 - non-deterministically decide where to context switch
 - at a context switch jump to a new round (i.e., inc r)
- 3. check that initial value of round r+1 is the final value of round r
- 4. check user assertions


```
void main()
  initShared();
  initGlobals();

for t in [0,N) : // for each thread
    round = 0;
    T'<sub>t</sub>();
  checkAssumptions();
  checkAssertions();
```

```
initShared()
  for each global var g, g[0] = init_value(g);

initGlobals()
  for r in [1,R): //for each round
    for each global g: g[r] = i_g[r] = nondet();

checkAssumtpions()
  for r in [0,R-1):
    for each global g:
        assume (g[r] == i_g[r+1]);

checkAssertions()
    assert (saved_assert);
```

```
void T'<sub>t</sub>()
   Same as T<sub>t</sub>, but each statement 'st' is replaced with:
      contextSwitch(); st[g ← g[round]];
   and 'assert(e)' is replaced with:
      saved_assert = e;
```

```
void contextSwitch()
  int oldRound;

if (nondet()) return; // non-det do not context switch

oldRound = round;
  round = nondet_int();
  assume (oldRound < round <= R-1);</pre>
```

For more details, see

Akash Lal and Tom Reps. "Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis", in Proceedings of Computer Aided Verification, 2008.

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to specify many interesting claims

Use CBMC to check that this loop has a non-terminating execution

```
int dir=1;
while (x>0) {
    x = x + dir;
    if (x>10) {dir = -1*dir;}
    if (x<5) {dir = -1*dir;}
}</pre>
```


Symbolic Execution

Analysis of programs by tracking symbolic rather than actual values

a form of Static Analysis

Symbolic reasoning is used to reason about *all* the inputs that take the same path through a program

Builds constraints that characterize

- conditions for executing paths
- effects of the execution on program state

Symbolic Execution

Uses symbolic values for input variables.

Builds constraints that characterize the conditions under which execution paths can be taken.

Collects symbolic path conditions

 a path condition for a path P is a formula PC such that PC is satisfiable if and only if P is executable

Uses theorem prover (**constraint solver**) to check if a path condition is satisfiable and the path can be taken.


```
Path condition \rightarrow pc = true
                                                             x = X \leftarrow Input symbol
                                 Symbolic
                                                             \mathbf{r} = 0
                              program state
    int proc(int x) {
2
                                                                       X \leq 8
     int r = 0
                                                   X > 8
5
                                                                       x = X
                                                 x = X
     if (x > 8) {
                                                                       \mathbf{r} = 0
                                                 r = X - 7
      r = x - 7
                            X > X > 8 \land X > 5
     if (x < 5) {
                                                                        X \le 8 \land X \ge 5
10
                                                     X \le 8 \land X < 5
       r = x - 2
11
                              x = X
                                                                            x = X
                                                       x = X
12
                              r = X - 7
                                                                            \mathbf{r} = 0
                                                       r = X - 2
13
     return r
14
15 }
```

Satisfying assignments:

$$X = 9 \qquad X = 4$$

$$X = 4$$

$$X = 7$$

Test cases:

Symbolic Execution

Verification Condition Generation

Dynamic State Merging

Query Count Estimation

[Kuznetsov, Kinder, Bucur, Candea, PLDI'12]

Compositional SE /
Summaries
[Godefroid, POPL'07]

EXE (KLEE)

[Cadar et al., CCS'06]

DART (SAGE)

[Godefroid, PLDI'05]

State joining
[Hansen et al., RV'09]

BMC slicing
[Ganai&Gupta, DAC'08]

Boogie

[Barnett et al., FMCO'05]

F-Soft

[Ivancic et al., CAV'05]

CBMC

[Clarke et al., TACAS'04]

1 formula / path

1 formula / CFG

