Bounded Model Checking (BMC)

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

% WATERLOO

SAT-based Model Checking

Main idea

Translate the model and the specification to
propositional formulas (p, =P, PVa, PAG, P—4...)

Reduce the model checking problem to satisfiabil,
of propositional formulas

O
o O
Use efficient tools (SAT solvers) for solving the
satisfiability problem

IIIIIIIIIIII

Modeling with Propositional Formulas

= =

Finite-State System is modeled as (V, INIT, T):

e V —finite set of Boolean variables stat.e =
e Boolean variables: a b ¢ = 8 states: 000,001,... valua.tlon to
e INIT(V) — describes the set of initial states variables

e INIT=-aA-b
e T(V,V’) - describes the set of transitions

e T(a,b,c,a’,b’,c’)=(c’ & (aAb)Vc) note: c=¢, andc' =c¢,,
Property:
* p(V) - describes the set of states satisfying p

e R=aV-c (Bad=-p=-aAc)
%) WATERLOO 3

Modeling in CNF (Tseitin encoding)

g=aAb

T(a,b,c,g,p,a’,b’,c’) =

g—aAb,
pegVeg,

c'— P
Each circuit element is a constraint

IIIIIIIIIIII

Bounded model checking (BMC)
for checking AGp

Given
A finite transition system M= (V, INIT(V), T(V,V’))
e A safety property AG p, where p = p(V)
e Abound k

Determine

e Does M contain a counterexample to p of
k transitions (or fewer) ?

* BMC can handle all of LTL formulas

A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, Y. Zhu, DAC'99
%) WATERLOO 5

Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying —p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

IIIIIIIII

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

g=aAb

T(a,b,c,a’,b’,c’) =

C g<—aAb,

p<—gVe,

c—p

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

fM’k =INITOAToATIA e ATy

ai ai ai
g g g
INITOb I : I h b I
P T P (o P T

ao: bOrCOI alrb1;C1r ak—1rbk-1rck-1t aktbkrckr
gOlpo gllpl gk—lrpk-l gklpk
INIT, = INIT(V,)
UUUUUUUUUUU T =T(Vi,\Vi.1)

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

fox =Vico, « (—P;) [Sometimes f,\ = —py]

IIIIIIIIIIII

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

Check whether f =1, Af issatisfiable

If f is satisfiable then M |# AGp
The satisfying assignment is a counterexample

IIIIIIIIIIII

%) WATERLOO 10

BMC for checking AG p with SAT

Unfold the model k times: Biere, et al. TACAS99

e U=TO AT A LLATR
10> = 1(V,)

T =T(V;,Vis1)
P = p(V,)

d d d k
<0> b b b —p<k>
. Py . TR

e Use SAT solver to check satisfiability of

1<0> A U A _|p<k>

e |f satisfiable: the satisfying assignment describes a
counterexample of length k

e |f unsatisfiable: property has no counterexample of length k

IIIIIIIIIIII

%) WATERLOO 11

Example — shift register

Shift register of 3 bits: <x, vy, z>
Transition relation:
T(xy,zx,y,2’) = Xoy Ayez A =1

error

Initial condition:
INIT(x,y,z) = x=0 v y=0 v z=0

Specification: AG (x=0 v y=0 v z=0)

IIIIIIIIIIII

12

Propositional formula for k=2

fM’2 = (Xo=0 Vv y5=0 v z,=0) A

(X0 Yo A Y1029 A Zp=1) A

INIT = x=0 v y=0 v z=0

T=xXeyAyez A=

1

(X300 Y1 A Yoo 27 A 2,=1)
f(p,Z = Vi=0,..2 (Xi=1 ANY=1 A Zi=1)

Satisfying assignment: 101 011 111

This is a counterexample!

IIIIIIIIIIII

P=x=0vy=0vz=0

13

A remark

In order to describe a computation of length k by a propositional formula we
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

UNIVERSITY OF

WATERLOO

14

BMC for checking o=AGp

1. k=1

2. Build a propositional formula f,* describing all prefixes
of length k of paths of M from an initial state

3. Build a propositional formula f(Pk describing all prefixes
of length k of paths satisfying F—p

4. If (fy* Af,¥) is satisfiable,
return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.

IIIIIIIIIIII

15

Bounded Model Checking

-

IIIIIIIIIIII

16

Bounded Model Checking

IIIIIIIIIIII

17

>

Bounded Model Checking

IIIIIIIIIIII

WATERLOO

18

BMC for checking AFp (p=EG—p)

Is there an infinite path in M
e From an initial state

e all of its states satisfying —p
e Over k+1 states ?

If exists, there must also exist a lasso

UNIVERSITY OF

WATERLOO

19

BMC for checking AFp (p=EG—p)

An infinite path in M, from an initial state, over k+1 states, all
satisfying —p:

ka (VOI""Vk) -
INIT(Vo) A Aicg ot T(ViVisa) A Vicg eeier (ViEVI)

* V\=V; means bitwise equality: Ai_g , (v; <> V;)

f(Pk (Vo,...,Vk) - /\i=0,"'k _'p(vl)

Remark: BMC can handle all of LTL formulas

IIIIIIIIIIII

20

Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
 Need bound on length of the shortest counterexample.

—diameter bound. The diameter is the maximum length of the
shortest path between any two states.

Using such k is often not practical due to the size of the model

— Worst case diameter is exponential. Obtaining better bounds is
sometimes possible, but generally intractable.

UNIVERSITY OF

WATERLOO o1

Bounded Model Checking

Terminates
e with a counterexample or

e with time- or memory-out
=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough

* Need bound on length of the shortest counterexample.

— diameter bound. The diameter is the maximum length of the shortest path
between any two states.

Using such k is often not practical

— Worst case diameter is exponential. Obtaining better bounds is sometimes
possible, but generally intractable.

UNIVERSITY OF

WATERLOO 29

Bounded Model Checker for C

CBMC

IIIIIIIIIIII

23

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

SAT UNSAT

(counterexample exists) (no counterexample found)

% WATERLOO o4

Programs and Claims

- Arbitrary ANSI-C programs

o With bitvector arithmetic, dynamic memory, pointers, ...

- Simple Safety Claims
e Array bound checks (i.e., buffer overflow)
e Division by zero
» Pointer checks (i.e., NULL pointer dereference)
 Arithmetic overflow
o User supplied assertions (i.e., assert (i > j))
e etc

UNIVERSITY OF

WATERLOO

25

Why use a SAT Solver?

- SAT Solvers are very efficient
- Analysis is completely automated
- Analysis as good as the underlying SAT solver

- Allows support for many features of a programming language
 bitwise operations, pointer arithmetic, dynamic memory, type casts

IIIIIIIIIIII

26

A (very) simple example (1)

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x?7y-1:0,
if (x) w=x7?70:y+1,

z =y - 1; z1=7,
else wl!=9

W=y + 1; 4
assert (z == 7 ||

w == 9)
%Y WATERLOO

D

UNSAT
no counterexample

assertion always holds!

27

A (very) simple example (2)

SAT

counterexample found!

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x?7y-1:0,
if (x) w=x7?70:y+1,

z =y - 1; z1=5,
else wl!=9

W=y + 1; 4
assert (z == 5 ||

w == 9)
%Y WATERLOO

D

y=8,x=1,w=0,z=7

28

What about loops?!

- SAT Solver can only explore finite length executions!
- Loops must be bounded (i.e., the analysis is incomplete)

Program
Claim
Bound (n)
SAT UNSAT
(counterexample exists) (no counterexample of

bound n is found)

CBMC: C Bounded Model Checker

- Developed at CMU by Daniel Kroening and Ed Clarke

- Available at: http://www.cprover.org/cbmc
* On Ubuntu: apt-get install cbmc
e with source code

- Supported platforms: Windows, Linux, OSX
- Has a command line, Eclipse CDT, and Visual Studio interfaces

- Scales to programs with over 30K LOC
- Found previously unknown bugs in MS Windows device drivers

30

http://www.cprover.org/cbmc

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as

« Bit vector operators (shifting, and, or,...)
« Pointers, pointer arithmetic
« Dynamic memory allocation: malloc/free

 Dynamic data types: char s[n]

o Side effects

e float/double

e Non-determinism

IIIIIIIIIIII

31

DEMO

%) WATERLOO

PN

Using CBMC from Command Line

- To see the list of claims

cbmc —--show-claims -I include file.c

- To check a single claim

cbmc —--unwind n —--claim x —I include file.c

- For help
e cbmc --help

33

>

How does it work

Transform a programs into a set of equations

1. Simplify control flow

Unwind all of the loops

Convert into Single Static Assignment (SSA)
Convert into equations

Bit-blast

Solve with a SAT Solver

Convert SAT assignment into a counterexample

T L R

IIIIIIIIIIII

WATERLOO

34

CBMC: Bounded Model Checker for C

A tool by D. Kroening/Oxford and Ed Clarke/CMU

C Program

SAFE

UNSAFE + CEX

IIIIIIIIIIII

35

Control Flow Simplifications

e All side effect are removed

e e.g., Jj=1i++becomes j=i;i=i+1

Control Flow is made explicit

e continue, break replaced by goto

All loops are simplified into one form

e for,do while replaced by while

36

Loop Unwinding

All loops are unwound

« can use different unwinding bounds for different loops

e to check whether unwinding is sufficient special “unwinding
assertion” claims are added

If a program satisfies all of its claims and all unwinding
assertions then it is correct!

Same for backward goto jumps and recursive functions

%) WATERLOO 37

Loop Unwinding

void f(...) {
Qéile(cond) {
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

38

Loop Unwinding

void f(...) {
)
while(cond) {

}
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

39

Loop Unwinding

void f(...) { while() loops are unwound

. o iteratively
if(cond) { Break / continue replaced by
goto

if(cond) {
while(cond) {

}
}
}

Remainder;

}

WATERLOO

Unwinding assertion

void f(...) {
if(cond) {
if(cond) {
if(cond) {
while(cond) {

}
}

}
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

41

Unwinding assertion

void f(...) {

if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

}
! Unwinding
} } assertion
Remainder;
}
Y WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if

program runs longer than
bound permits

Positive correctness result!

42

Example: Sufficient Loop Unwinding

void f(...) {
Jj=1
while (7 <= 2)

Remainder;

}

unwind = 3

IIIIIIIIIIII

void f(...) {
j =1
if(j <= 2) {

if(j <= 2) {
if(j <= 2) {

assert(!(j <= 2));
}
}
}
}

Remainder;

}

43

Example: Insufficient Loop Unwinding

void f(...) {
Jj=1
while (7 <= 10)

Remainder;

}

unwind = 3

IIIIIIIIIIII

void f(...) {
j =1
if(j <= 10) {

if(j <= 10) {
if(j <= 10) {

assert(!(j <= 10));
}
}
}
}

Remainder;

}

44

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program Constraints

X = a; X =a &&
y = x + 1; y=x+1&&
z =y — 1; > z=y—-1&&
4 4

%) WATERLOO

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,
use a new variable for the RHS of each assignment

Program SSA Program
X=X4y; X1=x0%Y05
X=K*2; P X2=X1*2;
ali]=100; ai1ligl=100;

4 4

%) WATERLOO

46

What about conditionals?

Program SSA Program
1t (v) if (vp)
X =Y Xo = Yoo
else else
X = Z, p } Xl = Zo,
W = X; W, = X?77;
4 4

IIIIIIIIIIII

%) WATERLOO 47

What about conditionals?

Program SSA Program
1t (v) 1t (vy)

X = Yy Xo T Yo
else else

X = Z; p X1 = Zg

X, = Vg ? Xg
W = X; W, = X,
4

%) WATERLOO

Adding Unbounded Arrays

N { p(e) : i=p(a)

vala] =e P Voo = va—1[i] : otherwise

Arrays are updated “whole array” at a time

A[1] = 5: A=Ai:i==125:Afi
A[2] = 10: A,=Ai:i==2710:A[]

A[K] = 20 As=Ai:i==k? 20 :Ali]

XAMPISS Af2l==10 A5 AMf3]== Al

Ag[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

49

Example

int main() {
int x, y;
y=38;
if(x)
Y=
else

yt++;

b

assert

(y==7 1|1

y==9);

=

4

UNIVERSITY OF

WATERLOO

int main() {

int x, y;

y1=38;

if (xp)
yo=y1-1;

else

y3=y1tl;
y4= X0 7y2:¥3;
assert
(y4==7 ||
y4==9) ;

4

y1 = 3
yo =y1 — 1
y3 =y1 +1

Yya =2x0°Yy2 . Y3)

(ya =7Vys=9)

4

50

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information
e Separate for each pointer
e Separate for each instance of each program location

Dereferencing operations are expanded into case-split on pointer object
(not: offset)

» Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
e Consists of pair <object, offset>

UNIVERSITY OF

WATERLOO

51

Dynamic Objects

Dynamic Objects:
e malloc/ free
 Local variables of functions
Auxiliary variables for each dynamically allocated object:
e Size (number of elements)
e Active bit
e Type
malloc sets size (from parameter) and sets active bit
free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

UNIVERSITY OF

WATERLOO

52

Modeling with CBMC

% WATERLOO

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
e assert(e) — aborts an execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

Non-determinism
e nondet_int() — returns a non-deterministic integer value

int nondet_int () { int x; return x; }

Assumptions
e assume(e) — “ignores” execution when e is false, no-op otherwise

void assume (_Bool e) { while (l!e) ; }

UNIVERSITY OF

WATERLOO

Example

Gr=] UN

2 IVERSITY OF
% WATERLOO

95

Using nondet for modeling

Library spec:

“foo is given non-deterministically, but is taken until returned”

CMBC stub:

int nondet_int ();
int is_foo_taken = 0;
int grab _foo () {

if (!is_foo_taken)

is foo taken = nondet _int ();

4

return is_foo taken; }

%) WATERLOO

void return_foo ()

{ is_foo_taken = 0; }

Assume-Guarantee Reasoning (1)

Is foo correct?

Check by splitting
on the argument of
foo

IIIIIIIIIIII

int foo (int* p) { .. }

void main(void) {

foo(x);

foo(y);

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

int foo (int* p) { _ CPROVER assume(p!=NULL); .. } J

(G)Is foo guaranteed to be called with a non-NULL argument?

void main(void) {

assert (x!=NULL);// foo(x);

assert (y!=NULL); //foo(y);
i

IIIIIIIIIIII

%) WATERLOO 58

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if (x > 0) {
__CPROVER_assume (x < 0);

This program is passed by CMBMC! | assert (@); } E

Assume must either be checked with assert or used as an idiom:

X

y

CPROVER _assume (x < Vy);

nondet_int ();

nondet_int ();

4

%) WATERLOO

Example: Prophecy variables

int x, y, v;
void main (void)

{

IIIIIIIIIIII

WATERLOO

60

Context-Bounded Analysis with CBMC

% WATERLOO

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

Context-Swtich
(T, preempted by T,)

Context-Swtich

Context-Swtich
(T4 preempted by T,) XESWH

(T, preempted by T,)

IIIIIIIIIIII

CBA via Sequentialization

1. Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2. Check P’ with CBMC

Two-Thread Concurrent

Program in C - Sequential Program
UNSAFE +
CEX OK

..........
%Y WATERLOO

63

>

Key Idea

1. Divide execution into rounds based on context switches
2. Execute executions of each context separately, starting from a

symbolic state

3. Run all parts of Thread 1 first, then all parts of Thread 2
4. Connect executions from Step 2 using assume-statements

T []

T, I

[

Round 0

Round 1

Round 2

IIIIIIIIIIII

WATERLOO

64

Sequentialization in Pictures

v v
glo]] | |al1]] | 9lZ]
T T T

T, T,

Guess initial value of each global in each round

Execute task bodies
° T1
° T2
Check that initial value of round i+1 is the final value of round i

IIIIIIIIIIII

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1. for each global variable g, let g[r] be the value of g in round r
2. execute thread bodies sequentially
— first thread 1, then thread 2
— for global variables, use g[r] instead of g when running in round r
— non-deterministically decide where to context switch
— at a context switch jump to a new round (i.e., incr)
3. check that initial value of round r+1 is the final value of round r
4. check user assertions

UNIVERSITY OF

WATERLOO 66

CBA Sequentialization 1/2

var

void main()
initShared();

checkAssumtpions ()

(o))
~

1 UNIVERSITY OF
WATERLOO

CBA Sequentialization: Task Body 2/2

void T’ ()

void contextSwitch()
int oldRound;

For more details, see
Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

%Y WATERLOO 68

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to
specify many interesting claims

Use CBMC to check that this
loop has a non-terminating
execution

int dir=1;

while (x>0) {
X = X + dir;
if (x>10) {dir = -1*dir;}
if (x<5) {dir = -1*dir;}

%) WATERLOO

>

Symbolic Execution

Analysis of programs by tracking symbolic rather than actual values
 a form of Static Analysis

Symbolic reasoning is used to reason about all the inputs that take the
same path through a program

Builds constraints that characterize
e conditions for executing paths
o effects of the execution on program state

IIIIIIIIIIII

WATERLOO

70

>

Symbolic Execution

Uses symbolic values for input variables.

Builds constraints that characterize the conditions under which
execution paths can be taken.

Collects symbolic path conditions

e a path condition for a path P is a formula PC such that PC is satisfiable if and
only if P is executable

Uses theorem prover (constraint solver) to check if a path condition is
satisfiable and the path can be taken.

IIIIIIIIIIII

WATERLOO

71

O 00 N o Ui w N BB

o O O Y
A W N R ©®

=
(V2]
-

Path condition —s pc = true
x = X<—— Input symbol

Symbolic _—~ "¢

int proc(int x) { Programstate /\
/

int r = 0 X>8‘ XSS\/
. x = X x=X
if (x > 8) { B
r=x-7 r=X-—-7 e
if (x < 5) { X>X>8A 5 X <8AX <5 XS<BAXZ>H
r=x -2 x X:X X:X X:X
} r r=X-7 . r=0
return r o _
Satisfying assignments:
X=9 X =4 X=7
Test cases:
proc(9) proc(4) proc(7)

UNIVERSITY OF

WATERLOO 79

Symbolic Execution

Dynamic State Merging

Query Count Estimation

[Kuznetsov, Kinder,
Bucur, Candea,

PLDI'12]

EXE (KLEE)

[Cadar et al., CCS’06]

DART (SAGE)

[Godefroid, PLDI'05]

Compositional SE /

Summaries
[Godefroid, POPL’07]

State joining

[Hansen et al., RV’'09]

Verification Condition

Generation

BMC slicing

[Ganai&Gupta, DAC’08]

Boogie
[Barnett et al., FMCO’05]

F-Soft

[lvancic et al., CAV’05]

CBMC

[Clarke et al., TACAS’04]

1 formula / path

1 formula / CFG

73

