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Symbolic model checking

Model is represented symbolically using Boolean formulas

Model checking is performed on the symbolic
representation directly

BDD-based
e Use specialized data structure, Binary Decision Diagrams, to represent and
manipulate sets of states
SAT-based (most of this class)

e Represent sets of executions using Boolean formulas in Conjunctive Normal
Form (CNF)

o Use efficient SAT(isfiability)-solvers for reasoning
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SAT-based Model Checking

Bounded Model Checking
e |s there a counterexample of k-steps

Unbounded Model Checking
 Induction and k-Induction (k-IND)

e Interpolation Based Model Checking (IMC)
e Property Directed Reachability (IC3/PDR)
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Mathematical Induction

To proof that a property P(n) holds for all natural numbers n

1. Show that P(0) is true

2. Show that P(k+1) is true for some natural number k, using an
Inductive Hypothesis that P(k) is true
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Example: Mathematical Induction

Show by induction that P(n) is true
n(n + 1)
2

0(0 + 1)

Base Case: P(0)is 0 = 5

IH: Assume P(k), show P(k+1)

O+ +k+(k+1)

k(k
MEED 1 (k + 1)
Rk 1)+2(k+1)

(et D (Bt 1) 1)
2

IIIIIIIIIIII



Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

N—-1

Init(Xg) A (A Tr XZ,XZH)) A Bad(Xn) & L
1=0

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv

Inductive

Inv(X)A Tr(X, X" = Inv(X')

Inv = —Bad Safe
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Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv

e [|nitiation Initial € Inv
e Safety InvNnBad=0
* Consecution TR(an) C Inv i.e., if s € Inv and st

thent € Inv



Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv

e [|nitiation Initial € Inv
e Safety InvnNBad=0
* Consecution TR(an) C Inv i.e., if s € Inv and st
thent € Inv
Wwarerioo  System S is safe if Reach N Bad = 0



Induction: Simple Example

Is pc=3 = odd(x) an inductive invariant?

1: x := 1;

2:y = 2;

while * do {
3: assert odd(x);
4: X:= X + Y,
5: y =y + 2

o\
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Inductive Invariants: Simple Example

Is pc=3 = (odd(x) A 7odd(y)) an inductive invariant? J
; ; z ;, at|pc =3: Inv = odd(x) A—odd(y)

while * do {
3: assert odd(x);
assert lodd(y)
4: X:= X + VY,
5: y =y + 2

-
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Checking Invariance is reducible to SAT!

Inputs
e A transition system P = (V, Init, Tr, Bad)
o A formula [(V) over variables V

Decide whether | is a safe inductive invariant
o Use SAT to check that  Ingt A =T is UNSAT

» Use SAT to check that  I(V) A Tr(V, V') A =I(V") is UNSAT

e Use SAT to check that I A Bad is UNSAT

If all checks are UNSAT, I(V) is a safe inductive invariant

If a check fails, interpretation depends on the failing check:

e Check 1: missing initial states

e Check 2: not closed under a step of transition relation

e Check 3: not safe (true invariant, but not good enough for property)
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Complete SAT-based Model Checker

(Don't try this at home)

Inputs
e A transition system P = (V, Init, Tr, Bad)

For every propositional formula Cand(V) over variables V
 If Cand(V) is a safe inductive invariant, return True

If got here, return False
Is this algorithm sound?

Is this algorithm complete?
Is this algorithm efficient?

IIIIIIIIIIII
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Maximal Inductive Subset

Let L be a set of formulas, P=(V, Init, Tr, Bad) a program

A subset X of L is a maximal inductive subset iff it is the
largest subset of X such that

Init(u) = Npexl(u)
Neexl(u) A Tr(u,v) = Apext(v)

A Maximal Inductive Subset is unique
e inductive invariants are closed under conjunction

Cormac Flanagan, K. Rustan M. Leino~ Houdini, an Annotation Assistant for ESC/Java. FME 2001- 500-517
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Minimal Unsatisfiable Subset

Let o be a formulaand A ={a,, ..., a,} be atomic propositions occurring
negatively in ¢

Assume ¢ Na; N --- Aa, is UNSAT

A minimal unsatisfiable subset (MUS) of ¢ is the smallest subset X C A
such that ¢ 1 X'is UNSAT

There are efficient algorithms for computing MUS (a.k.a. UNSAT core)
for propositional formulas

IIIIIIIIIIII
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Solving US

fresh
propositional
variables

Reduce MI
N\ |

Input : L\ I — a set of lemmas a e transition relation (in BV)
Output: £ QL the MIS of L relative to

O (/\Lieﬁ(prez- = Lz(u))) A Tr(u,v) A (\/Liec(pOSti A ﬂLi(v)))
Sat_Add(B2P(y)) — called once |

/
v do e cenaisi)
Sat_Checkpoint() SATMUS |
Sat_Add(pre;) for all L; € L' /
C' = MUS({—post; | L; € L'})
if |C| = |£'| then return £’

/ . —/ .
£ 1Li | (mposti) € C} //[ incremental SAT]

Sat_Rollback()
end

© 00 N & Ok W N O+

p—t
o

[Y
[Y
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A Synchronous Mealy Machine

output
state register
register
X, > g0 g
. combinational .
L g logic of the A\ W
transition function R
: and the outputs
state feed back

UNIVERSITY OF

WATERLOO Molitor and Mohnke. Equivalence Checking of Digital Circuits. 2004
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Terminology for Sequential Synthesis

The set of reachable states is the set of all possible valuations of the
registers after arbitrary long execution from the initial state

Combinational synthesis — changing the combinational logic of the
circuit without knowledge of reachable states

Sequential synthesis — modifies the circuit so that its behavior is
preserved in the reachable states, but arbitrary changes are allowed on
the unreachable states

Sequentially equivalent nodes — nodes having the same or opposite
polarity in all reachable states

IIIIIIIIIIII

WATERLoo https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_pss.pdf
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AlIG: And-Inverter-Graph

A data structure for representing and manipulating arbitrary propositional
formulas

A graph with 3 kinds of nodes
e input: one output, correspond to variables

e output: one input, correspond to functions, outputs
e AND: two (or more) inputs, one outputs, correspond to AND

An input/output of any node can be negated

Hash-Cons
 AND nodes are kept in a hash table keyed on their children
e only one node is created for any syntactic function

UNIVERSITY OF

WATERLOO
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'S N
i S T AIGER
A gk
4-bit adder < 95 oD
AN e’e D
L gf \\

toggle flip-flop

y[31] 6 8
enable
x[2] yi2]
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Latch Correspondence Problem

DEFINITION 10.1 (LATCH PERMUTATION PROBLEM) Given two sequen-
tial circuits F (1), F2) ¢ Fn.m.k» the latch permutation equivalence problem
which is also referred as latch correspondence problem is the decision problem
as to whether a correspondence © between the latches of F\Y) and F?) ex-
ists, such that the two synchronous sequential circuits FY) and F?) have their
combinational parts functionally equivalent using this correspondence. More
formally, the problem is to find a permutation = € Per(Ny) such that for all
J € Ny,

1 1 1 2 2 2
/\;' )(xl,...,mn,u;()l),...,ugr()k)) :)\g. )(wl,...,xn,ug),...,ué))

and for all 7 € Ny,
s

7r(].)(:131, e Ty Uy e Uy

hold. (For the notations, we refer to Chapter 8 Section 1.)

UNIVERSITY OF

WATERLOO Molitor and Mohnke. Equivalence Checking of Digital Circuits. 2004
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Solving Latch Correspondence by MIS

Simulate the circuit with random inputs

|dentify candidate equivalence classes

o latches H and K are candidates if in every simulation either
—H=KorH=-K

Refine candidate equivalences using BMC
o for every candidate H=K, use BMC to find a (short) counterexample

For all remaining candidates, compute Maximal Inductive Subset
e each call to SAT removes at least one candidate
e converges in linear time in the number of candidates

UNIVERSITY OF

WATERLOO
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_ _ Sheeran, Singh, Stalmarck Checking Safety
K-|nduct|on Properties Using Induction and a SAT-Solver.
FMCAD 2000
Induction
P(s,)

Vi.P(s;) = P(s;.1)

Vi.P(s;)

k-step Induction

P(so..k-1)

Vi.P(s; isi1) = P(Si)

Vi.P(s;)

UNIVERSITY OF

WATERLOO

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
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2-Induction: Simple Example

Is pc=3 -> odd(x) 2-inductive invariant?

Program

1: x := 1;

2:y = 2;

while * do {
3: assert odd(x);
4: X =X + Y,
5: y =y + 2

}

6:

IIIIIIIIIIII

2-Base

X = 1;

y = 2;
assert odd(x)
X 1= X + VY;

y 1=y + 2;

assert odd(x)

2-IND

assume
X 1= X
y =Yy
assume
X 1= X
y =Yy
assert

odd(x)
Tt Y
+ 2;
odd(x)
Tt Y
+ 2;
odd(x)
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@ Department of Electrical &
Computer Engineering

Induction and Strong Induction

Induction Principle
Init(vy) = Inv(v,) Inv(ve) ATr = Inv(vi) —Bad(v)

Tr[Inv]i
- Inv(v;)

Strong Induction Princible
Inv(vg) ATr AInv(v)) ATr A+ Alnv(v,_ ) )ATr - Inv(vy)

A 7 N 7

Init(l_,

Tr[Inv]® - Inv(v,)

24



1-IndInv

Init

W UNIVERSITY OF WATERLOO

/7N FACULTY OF ENGINEERING

@ Department of Electrical &
Computer Engineering

Bad
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k-IndInv

Init

W UNIVERSITY OF WATERLOO

/7N FACULTY OF ENGINEERING

@ Department of Electrical &
Computer Engineering

Bad
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Example circuit in Verilog

reg [7:0] ¢ =0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

o

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering




1-Inductive Invariant

reg [7:0] c=0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

O

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering

1-IndInv
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2-Inductive Invariant

reg [7:0] c=0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

O

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering

2-IndInv
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K-induction with a SAT solver (IND)

Recall:
U =T0>AT<T> A ATk
Two formulas to check:
e Base case:

0> A Uy > P<0>_ pskt>
 Induction step:
U A P<0> pP<kt>= p<k

If both are valid, then P always holds.

If not, increase k and try again.

IIIIIIIIIIII
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Simple path assumption

Unfortunately, k-induction is not complete.
e Some properties are not k-inductive for any k.

4.‘.4:

Simple path restriction:

e There is a path to -P iff there is a simple path to -P (path with no repeated
states).

UNIVERSITY OF

WATERLOO
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Induction over simple paths

Let simple(s, ) be defined as:
* Vi,jin0.k=(i#]j)=>s#s;
k-induction over simple paths:

P(so..k-1)

Vi- simple(sg i) A P(S; k1) = P(S;)

Vi- P(s;)

Must hold for k large enough, since a simple path cannot be

unboundedly long. Length of longest simple path is called

recurrence diameter.

UUUUU
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...with a SAT solver

For simple path restriction, let
Sk = Vvi=0..k, u=t+1..k: °vvinV v, =v,
(where V is the set of state variables).

Two formulas to check
e Base case

0> A Uy = P<0> Pkt
e Induction step
S A Ug A P<0> P<k1> = pe<k>

If both are valid, then P always holds.
If not, increase k and try again.

UNIVERSITY OF

WATERLOO

33



Termination

Termination condition
k is the length of the longest simple path of the form
P*-P
This can be exponentially longer than the diameter.
e example
— loadable mod 2N counter where P is (count # 2N-1)
— diameter = 1
— longest simple path = 2N

Useful special cases
e P is a tautology (k=0)
e P is inductive invariant (k=1)

UNIVERSITY OF

WATERLOO
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BDD-BASED SYMBOLIC
REACHABILITY

IIIIIIIIIIII
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Forward Reachability Analysis with BDDs

All safety properties
DOGS AG P h0|d7 reduce to reachability

analysis

. Rp=R,;V Img(R,

IIIIIIIIIIII
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Representing Sets as Prop. Formulas

[F]

states satisfying F,i.e. {0 | 0 EF}

[F.] N[F,]
[F,] U[F,]
[F]

[F.] € [F]

F

propositional formula over V
F,N\F,

F,VF,

—~ F

F, = F,

i.e. F; A = F, unsatisfiable

37



BDDs in a nutshell

Typically mean Reduced Ordered Binary Decision Diagrams (ROBDDs)
Canonical representation of Boolean formulas
Often substantially more compact than a traditional normal form

Can be manipulated very efficiently
« Conjunction, Disjunction, Negation, Existential Quantification

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.
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Running Example~ Comparator

aq dj of b,

f=1<a,=b;Aa,=b,

IIIIIIIIIIII
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Conjunctive Normal Form
f

\
l \
a1=b1 A aZ=b2
\ \
l | I \

ai,=>byAbyj=>a; A a,=Db,Ab,=a

R T T

(—a;vby)A(=byva)A(-a,Vby)A(-byVay)

(-byva;)A(-a;vby)A(-a,Vby)A(-byVay)

‘ Not Canonical ‘

IIIIIIIIIIII
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Truth Table (1)

Still Not Canonical

41

UNIVERSITY OF
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Truth Table (2)
I T T T

A~ 4 A4 A4 a4 aAa A A 0O 0O 0O o0 o o o o
.~ A4 4 A4 0O 0 OO0 A A a4 a0 o o o
.~ A4 0O 0O A A OO0 2 A OO0 =~ 2 o o
-~ O - O -~ O -~ O - O =~ O =~ O =~ o
-~ O O O O - OO OO0 -~ O O © O =

Canonical if you fix variable order. ‘

WAI But always exponential in # of variables. Let’s try to fix this. ‘ 4




Shannon’s /| Boole’s Expansion

Every Boolean formula f(a,, a4, ..., a,) can be written as
(ap A f(true, a4, ..., a,)) vV (-ay A f(false, aq, ..., a,))
or, simply,
ITE (a, f(true, a4, ..., a,), f(false, a4, ..., a,))

where ITE stands for If-Then-Else
The formula f(true, ay, ..., a,) is called the cofactor of f w.r.t. a,

The formula f(false, aq, ..., a,) is called the cofactor of f w.r.t. -a,

% WATERLOO 43



Representing a Truth Table using a Graph

‘ Binary Decision Tree (in this case ordered) ‘

IIIIIIIIIIII
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Binary Decision Tree: Formal Definition

Balanced binary tree. Length of each path = # of variables
Leaf nodes labeled with either O or 1

Internal node v labeled with a Boolean variable var(v)
» Every node on a path labeled with a different variable

Internal node v has two children— low(v) and high(v)

Each path corresponds to a (partial) truth assignment to variables
 Assign 0 to var(v) if low(v) is in the path, and 1 if high(v) is in the path

Value of a leaf is determined by:

« Constructing the truth assignment for the path leading to it from the root
« Looking up the truth table with this truth assignment

UNIVERSITY OF

WATERLOO
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Binary Decision Tree

IIIIIIIIIIII
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Binary Decision Tree

IIIIIIIIIIII
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Tree

ision

Dec

Binary

48
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Tree

on

Binary Decis

49
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Tree

ision

Dec

Binary

50
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Binary Decision Tree (BDT)

(2 () (2 (2

01 01 OO ) G )
DO OO0 OO0 00000 O®© OC

‘ Canonical if you fix variable order (i.e., use ordered BDT) ‘

B But still exponential in # of variables. Let’s try to fix this. ‘ 51




Reduced Ordered BDD

Conceptually, a ROBDD is obtained from an ordered BDT (OBDT) by
eliminating redundant sub-diagrams and nodes

Start with OBDT and repeatedly apply the following two operations as
long as possible

1. Eliminate duplicate sub-diagrams. Keep a single copy. Redirect edges
into the eliminated duplicates into this single copy.

2. Eliminate redundant nodes. Whenever low(v) = high(v), remove v and
redirect edges into v to low(v).

«  Why does this terminate?

ROBDD is often exponentially smaller than the corresponding OBDT

IIIIIIIIIIII
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OBDT to ROBDD

o

53



OBDT to ROBDD

o




OBDT to ROBDD

o
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OBDT to ROBDD

o
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OBDT to ROBDD

o

Y



OBDT to ROBDD

o
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OBDT to ROBDD

o
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OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD

IIIIIIIIIIII

Ifa,=0andb;=1thenf=0
irrespective of the values of a,
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OBDT to ROBDD




OBDT to ROBDD




OBDT to ROBDD

IIIIIIIIIIII
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OBDT to ROBDD

IIIIIIIIIIII
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OBDT to ROBDD

IIIIIIIIIIII
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OBDT to ROBDD

IIIIIIIIIIII
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OBDT to ROBDD

Let’s move things
around a little bit so
that the BDD looks

IIIIIIII
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OBDT to ROBDD

Bryant gave a linear-time
algorithm (called Reduce) to
convert OBDT to ROBDD.

In practice, BDD packages don’t
use Reduce directly. They apply
the two reductions on-the-fly as
new BDDs are constructed from
existing ones. Why?

%) WATERLOO
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
e fi=f, o ?

IIIIIIIIIIII

WATERLOO
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
 f1 =f, & BDD(fy) and BDD(f,) are isomorphic
* fis unsatisfiable < 7?

UNIVERSITY OF

WATERLOO
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
 f1 =f, & BDD(fy) and BDD(f,) are isomorphic
* fis unsatisfiable < BDD(f) is the leaf node “0”
* fisvalid < ?

UNIVERSITY OF

WATERLOO
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
- f, = f, & BDD(fy) and BDD(f,) are isomorphic
« fis unsatisfiable < BDD(f) is the leaf node “0”
» fis valid < BDD({) is the leaf node “1”

« BDD packages do these operations in constant time

Logical operations can be performed efficiently on BDDs
* Polynomial in argument size

BDD size depends critically on the variable ordering
« Some formulas have exponentially large sizes for all ordering
 Others are polynomial for some ordering and exponential for others

UNIVERSITY OF

WATERLOO
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ROBDD and variable ordering

®
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ROBDD and variable ordering




ROBDD and variable ordering




ROBDD and variable ordering




ROBDD and variable ordering




ROBDD and variable ordering




>

ROBDD and variable ordering

IIIIIIIIIIII

WATERLOO

Let’s move things
around a little bit so
that the BDD looks
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ROBDD and variable ordering

8 nodes

.......... a<b <a,<b

11 nodes

a;<a <b <b

86



ROBDD and variable ordering

‘?xn+2\

W UNIVERSITY O a <b < ...<a <b
% WATERLO




ROBDD and variable ordering

‘3xn+2\

W UNIVERSITY O a <b < ...<a <b
% WATERLO
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BDD Operations

True ~ BDD(TRUE)

False~ BDD(FALSE)

Var = v BDD(v)

Not = BDD(f) — BDD(-f)

And -~ BDD(f;) x BDD(f,) — BDD(f; A f5)
Or =~ BDD(f;) x BDD(f,) — BDD(f; v f,)

Exists = BDD(f) x v — BDD(3 v. f)

IIIIIIIIIIII

WATERLOO
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Basic BDD Operations

IIIIIIIIIIII

True

®

False

90



BDD Operations: Not

IIIIIIIIIIII

o(1)

o(1)
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BDD Operations: Not

o(1) o(1)

Swap “0” and “1”

O(n)

IIIIIIIIIIII
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BDD Operations: And

Suppose this |s
the BDD for f

What formula What formula
does this does this
represent? represent?

UNIVERSITY OF

%) WATERLOO

93



BDD Operations: And

Suppose this is
the BDD for f

fv=0 fv=1

f,=0 and f,., are known as the co-factors of f w.r.t. v

f= (X Afyeo) V(Y Afyey)

IIIIIIIIIIII
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BDD Operations: And

Suppose this is
the BDD for f

fv=0 fv=1

f,-0 and f,., are known as the co-factors of f w.r.t. v

f= (—. VvV A fv=0) Vv (V A fv=1)

IIIIIIIIIIII
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BDD Operations: And (Simple Cases)

IIIIIIIIIIII

And (f, @) ) =@

And (,@)) = f
And () )= f

And (@) ) 0

96



BDD Operations: And (Complex Case)

& " 4
g g

(~ v, Afo) V (V4 A )

IIIIIIIIIIII

N\

(-V,AQo) V (V2 A g4)
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BDD Operations: And (Complex Case 1)

Vi = Vo

& 4
g g

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

N\

(- V, Ado) V (V4 A gq)

98



BDD Operations: And (Complex Case 1)

Vi =V

(-Vv, AX)V(vyAY)

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

1y

N\

(- V, Ado) V (V4 A gq)
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BDD Operations: And (Complex Case 1)

Vi=V,

Compute recursively

(- Vv, A (fo N 90)) V (vq A (f4 A d1))

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

A

(-V, AQo) V (V4 A gq)
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BDD Operations: And (Complex Case 1)

R

Vi=V,

What if fg A gg=f A g4 ?

Return fy A g

7

(- V., A (fo A o)) V (vq A (f1 A Gq))

(~ v, Afo) V (V4 A fy)

IIIIIIIIIIII

1y

N\

(- V, AQo) V (V4 A G4)
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BDD Operations: And (Complex Case 2)

A
4

Vi <V

(~ v, Afo) V (V4 A fy)

IIIIIIIIIIII

orderlng

(v1 appears before
Vo, in the variable

AN T
<

(-V,Ado) V (V2 A G4)
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BDD Operations: And (Complex Case 2)

Vi<V,

WhatiffAg=f,Ag?

Returnfy A g

R V2

(-v,A(foAQ)) V(vqA(f AQ))

@

(~ v, Afo) V (V4 A ) TA g

IIIIIIIIIIII

O(ny X ny)
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BDD Operations: And

BDD bddAnd (BDD f, BDD g)
if (f == g || f == True) return g
if (g True) return f
if (f False || g == False) return False

v = (var(f) < var(g)) ? var(f) - var(g)
f0 = (v == var(f)) ? low(f) - f
f1 = (v == var(f)) ? high(f) - f

(v == var(g)) ? low (g) -~ g
(v == var(g)) ? high (g) - g

g0
gl

T = bddAnd (f1, gl); E = bddAnd (f0, go0)
if (T == E) return T

returns unique BDD
for ite(v,T,E)

return mkUnique (v, T, E) \_

% WATERLOO 104



BDD Operations: Or

Or(f,9)

IIIIIIIIIIII
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BDD Operations: Exists

Exists(“0”,v) = ?

IIIIIIIIIIII
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BDD Operations: Exists

IIIIIIIIIIII

Exists(“0”,v) = “0”

Exists(“1”,v) = ?
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BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((-vAf)V(VAQ),v)="?

IIIIIIIIIIII
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BDD Operations: Exists

Exists(“0”,v) = “0”
Exists(“1”,v) = “1”

Exists((- v Af) vV (v Ag), v) = Or(f,g)

Exists((-V' Af)V(VAQ),V)="?

IIIIIIIIIIII
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BDD Operations: Exists O(n?)

Exists(“0”,v) = “0”
Exists(“1”,v) = “1”
Exists((-v Af) Vv (vAg), v)=0r(f,g)
Exists((-V' Af)V(V'AQ), V)=

(- v’ A Exists(f,v)) v (V' A Exists(g,V))

But f is SAT iff 3 V. f is not “0”. So why doesn’t this imply P = NP?

Because the BDD size changes!

IIIIIIIIIIII
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BDD Applications

SAT is great if you are interested to know if a solution exists

BDDs are great if you are interested in the set of all solutions
* How many solutions are there?
* How do you do this on a BDD?

BDDs are great for computing a fixed points
« Set of nodes reachable from a given node in a graph

UNIVERSITY OF
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Graph Reachability

Which nodes are reachable from “7°?

{2,3,5,6,7}

But what if the graph has trillions of nodes?

IIIIIIIIIIII
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Graph Reachability

‘ Use three Boolean variables ‘albicl to encode each node? \

IIIIIIIIIIII
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Graph Reachability

IIIIIIIIIIII
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Graph Reachability

IIIIIIIIIIII
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Graph Reachability

aANbA-c=7?

Key Idea 1: Every Boolean formula represents a set of nodes!

The nodes whose encodings satisfy the formula.

IIIIIIIIIIII
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Graph Reachability

aAbA-c={6}

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII
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Graph Reachability

aAb= 7

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII
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Graph Reachability

IIIIIIIIIIII
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Graph Reachability

axorb= ?

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII
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Graph Reachability

axorb = {2,3,4,5}

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII
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Graph Reachability

* Key Idea 2: Edges can also be represented by Boolean formulas
« An edge is just a pair of nodes
* Introduce three new variables— a’, b’, ¢’

* Formula @ represents all pairs of nodes (n,n’) that satisfy & when n is
encoded using (a,b,c) and n’ is encoded using (a’,b’,c’)

o7



Graph Reachability
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Graph Reachability
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Graph Reachability
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Graph Reachability

Variable renaming -
replace a’ with a
Image(S,R) =

(da,b,c.(SAR))[aYa’,b\b’,c\C’]

Key Idea 3: Given the BDD for a set of nodes S, and the BDD for
the set of all edges R, the BDD for all the nodes that are adjacent

to S can be computed using the BDD operations
%) WATERLOO 196




Graph Reachability Algorithm

S = BDD for initial set of nodes;
R = BDD for all the edges of the graph;

while (true) {
I = Image(S,R); // compute adjacent nodes to S

if (And(Not(S),I) == False) // no new nodes found

break;
S =0r(S,1I); // add newly discovered nodes to result

return S;

Symbolic Model Checking. Has been done for graphs with 10?° nodes.

%) WATERLOO
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Forward Reachability Analysis with BDDs

All safety properties
DOGS AG P h0|d7 reduce to reachability

analysis

. Rp=R,;V Img(R,

IIIIIIIIIIII
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