Induction, k-Induction, and
Symbolic Model Checking

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

% WATERLOO

Symbolic model checking

Model is represented symbolically using Boolean formulas

Model checking is performed on the symbolic
representation directly

BDD-based
e Use specialized data structure, Binary Decision Diagrams, to represent and
manipulate sets of states
SAT-based (most of this class)

e Represent sets of executions using Boolean formulas in Conjunctive Normal
Form (CNF)

o Use efficient SAT(isfiability)-solvers for reasoning

UNIVERSITY OF

WATERLOO

SAT-based Model Checking

Bounded Model Checking
e |s there a counterexample of k-steps

Unbounded Model Checking
 Induction and k-Induction (k-IND)

e Interpolation Based Model Checking (IMC)
e Property Directed Reachability (IC3/PDR)

IIIIIIIIIIII

Mathematical Induction

To proof that a property P(n) holds for all natural numbers n

1. Show that P(0) is true

2. Show that P(k+1) is true for some natural number k, using an
Inductive Hypothesis that P(k) is true

%) WATERLOO

Example: Mathematical Induction

Show by induction that P(n) is true
n(n + 1)
2

0(0 + 1)

Base Case: P(0)is 0 = 5

IH: Assume P(k), show P(k+1)

O+ +k+(k+1)

k(k
MEED 1 (k + 1)
Rk 1)+2(k+1)

(et D (Bt 1) 1)
2

IIIIIIIIIIII

Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

N—-1

Init(Xg) A (A Tr XZ,XZH)) A Bad(Xn) & L
1=0

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv

Inductive

Inv(X)A Tr(X, X" = Inv(X')

Inv = —Bad Safe

IIIIIIIIIIII

Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv

e [|nitiation Initial € Inv
e Safety InvNnBad=0
* Consecution TR(an) C Inv i.e., if s € Inv and st

thent € Inv

Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv

e [|nitiation Initial € Inv
e Safety InvnNBad=0
* Consecution TR(an) C Inv i.e., if s € Inv and st
thent € Inv
Wwarerioo System S is safe if Reach N Bad = 0

Induction: Simple Example

Is pc=3 = odd(x) an inductive invariant?

1: x := 1;

2:y = 2;

while * do {
3: assert odd(x);
4: X:= X + Y,
5: y =y + 2

o\

%) WATERLOO

Inductive Invariants: Simple Example

Is pc=3 = (odd(x) A 7odd(y)) an inductive invariant? J
; ; z ;, at|pc =3: Inv = odd(x) A—odd(y)

while * do {
3: assert odd(x);
assert lodd(y)
4: X:= X + VY,
5: y =y + 2

-

% WATERLOO 10

Checking Invariance is reducible to SAT!

Inputs
e A transition system P = (V, Init, Tr, Bad)
o A formula [(V) over variables V

Decide whether | is a safe inductive invariant
o Use SAT to check that Ingt A =T is UNSAT

» Use SAT to check that I(V) A Tr(V, V') A =I(V") is UNSAT

e Use SAT to check that I A Bad is UNSAT

If all checks are UNSAT, I(V) is a safe inductive invariant

If a check fails, interpretation depends on the failing check:

e Check 1: missing initial states

e Check 2: not closed under a step of transition relation

e Check 3: not safe (true invariant, but not good enough for property)

UNIVERSITY OF

WATERLOO

Complete SAT-based Model Checker

(Don't try this at home)

Inputs
e A transition system P = (V, Init, Tr, Bad)

For every propositional formula Cand(V) over variables V
 If Cand(V) is a safe inductive invariant, return True

If got here, return False
Is this algorithm sound?

Is this algorithm complete?
Is this algorithm efficient?

IIIIIIIIIIII

12

Maximal Inductive Subset

Let L be a set of formulas, P=(V, Init, Tr, Bad) a program

A subset X of L is a maximal inductive subset iff it is the
largest subset of X such that

Init(u) = Npexl(u)
Neexl(u) A Tr(u,v) = Apext(v)

A Maximal Inductive Subset is unique
e inductive invariants are closed under conjunction

Cormac Flanagan, K. Rustan M. Leino~ Houdini, an Annotation Assistant for ESC/Java. FME 2001- 500-517

13

>

Minimal Unsatisfiable Subset

Let o be a formulaand A ={a,, ..., a,} be atomic propositions occurring
negatively in ¢

Assume ¢ Na; N --- Aa, is UNSAT

A minimal unsatisfiable subset (MUS) of ¢ is the smallest subset X C A
such that ¢ 1 X'is UNSAT

There are efficient algorithms for computing MUS (a.k.a. UNSAT core)
for propositional formulas

IIIIIIIIIIII

WATERLOO

14

Solving US

fresh
propositional
variables

Reduce MI
N\ |

Input : L\ I — a set of lemmas a e transition relation (in BV)
Output: £ QL the MIS of L relative to

O (/\Lieﬁ(prez- = Lz(u))) A Tr(u,v) A (\/Liec(pOSti A ﬂLi(v)))
Sat_Add(B2P(y)) — called once |

/
v do e cenaisi)
Sat_Checkpoint() SATMUS |
Sat_Add(pre;) for all L; € L' /
C' = MUS({—post; | L; € L'})
if |C| = |£'| then return £’

/ . —/ .
£ 1Li | (mposti) € C} //[incremental SAT]

Sat_Rollback()
end

© 00 N & Ok W N O+

p—t
o

[Y
[Y

UNIVERSITY OF

WATERLOO

15

A Synchronous Mealy Machine

output
state register
register
X, > g0 g
. combinational .
L g logic of the A\ W
transition function R
: and the outputs
state feed back

UNIVERSITY OF

WATERLOO Molitor and Mohnke. Equivalence Checking of Digital Circuits. 2004

16

Terminology for Sequential Synthesis

The set of reachable states is the set of all possible valuations of the
registers after arbitrary long execution from the initial state

Combinational synthesis — changing the combinational logic of the
circuit without knowledge of reachable states

Sequential synthesis — modifies the circuit so that its behavior is
preserved in the reachable states, but arbitrary changes are allowed on
the unreachable states

Sequentially equivalent nodes — nodes having the same or opposite
polarity in all reachable states

IIIIIIIIIIII

WATERLoo https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_pss.pdf

17

https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_pss.pdf

AlIG: And-Inverter-Graph

A data structure for representing and manipulating arbitrary propositional
formulas

A graph with 3 kinds of nodes
e input: one output, correspond to variables

e output: one input, correspond to functions, outputs
e AND: two (or more) inputs, one outputs, correspond to AND

An input/output of any node can be negated

Hash-Cons
 AND nodes are kept in a hash table keyed on their children
e only one node is created for any syntactic function

UNIVERSITY OF

WATERLOO

18

'S N
i S T AIGER
A gk
4-bit adder < 95 oD
AN e’e D
L gf \\

toggle flip-flop

y[31] 6 8
enable
x[2] yi2]

IIIIIIIIIIII

with enable & reset

http://fmv.jku.at/aiger/ 19

Latch Correspondence Problem

DEFINITION 10.1 (LATCH PERMUTATION PROBLEM) Given two sequen-
tial circuits F (1), F2) ¢ Fn.m.k» the latch permutation equivalence problem
which is also referred as latch correspondence problem is the decision problem
as to whether a correspondence © between the latches of F\Y) and F?) ex-
ists, such that the two synchronous sequential circuits FY) and F?) have their
combinational parts functionally equivalent using this correspondence. More
formally, the problem is to find a permutation = € Per(Ny) such that for all
J € Ny,

1 1 1 2 2 2
/\;')(xl,...,mn,u;()l),...,ugr()k)) :)\g.)(wl,...,xn,ug),...,ué))

and for all 7 € Ny,
s

7r(].)(:131, e Ty Uy e Uy

hold. (For the notations, we refer to Chapter 8 Section 1.)

UNIVERSITY OF

WATERLOO Molitor and Mohnke. Equivalence Checking of Digital Circuits. 2004

20

Solving Latch Correspondence by MIS

Simulate the circuit with random inputs

|dentify candidate equivalence classes

o latches H and K are candidates if in every simulation either
—H=KorH=-K

Refine candidate equivalences using BMC
o for every candidate H=K, use BMC to find a (short) counterexample

For all remaining candidates, compute Maximal Inductive Subset
e each call to SAT removes at least one candidate
e converges in linear time in the number of candidates

UNIVERSITY OF

WATERLOO

21

_ _ Sheeran, Singh, Stalmarck Checking Safety
K-|nduct|on Properties Using Induction and a SAT-Solver.
FMCAD 2000
Induction
P(s,)

Vi.P(s;) = P(s;.1)

Vi.P(s;)

k-step Induction

P(so..k-1)

Vi.P(s; isi1) = P(Si)

Vi.P(s;)

UNIVERSITY OF

WATERLOO

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

22

2-Induction: Simple Example

Is pc=3 -> odd(x) 2-inductive invariant?

Program

1: x := 1;

2:y = 2;

while * do {
3: assert odd(x);
4: X =X + Y,
5: y =y + 2

}

6:

IIIIIIIIIIII

2-Base

X = 1;

y = 2;
assert odd(x)
X 1= X + VY;

y 1=y + 2;

assert odd(x)

2-IND

assume
X 1= X
y =Yy
assume
X 1= X
y =Yy
assert

odd(x)
Tt Y
+ 2;
odd(x)
Tt Y
+ 2;
odd(x)

23

W UNIVERSITY OF WATERLOO

/N FACULTY OF ENGINEERING

@ Department of Electrical &
Computer Engineering

Induction and Strong Induction

Induction Principle
Init(vy) = Inv(v,) Inv(ve) ATr = Inv(vi) —Bad(v)

Tr[Inv]i
- Inv(v;)

Strong Induction Princible
Inv(vg) ATr AInv(v)) ATr A+ Alnv(v,_))ATr - Inv(vy)

A 7 N 7

Init(l_,

Tr[Inv]® - Inv(v,)

24

1-IndInv

Init

W UNIVERSITY OF WATERLOO

/7N FACULTY OF ENGINEERING

@ Department of Electrical &
Computer Engineering

Bad

25

k-IndInv

Init

W UNIVERSITY OF WATERLOO

/7N FACULTY OF ENGINEERING

@ Department of Electrical &
Computer Engineering

Bad

26

Example circuit in Verilog

reg [7:0] ¢ =0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

o

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering

1-Inductive Invariant

reg [7:0] c=0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

O

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering

1-IndInv

28

2-Inductive Invariant

reg [7:0] c=0;

always
if(c == 64

c = 0;
else

c =c¢c + 1;
end

assert property(c < 66);

O

UNIVERSITY OF WATERLOO
FACULTY OF ENGINEERING
Department of Electrical &
Computer Engineering

2-IndInv

29

K-induction with a SAT solver (IND)

Recall:
U =T0>AT<T> A ATk
Two formulas to check:
e Base case:

0> A Uy > P<0>_ pskt>
 Induction step:
U A P<0> pP<kt>= p<k

If both are valid, then P always holds.

If not, increase k and try again.

IIIIIIIIIIII

30

Simple path assumption

Unfortunately, k-induction is not complete.
e Some properties are not k-inductive for any k.

4.‘.4:

Simple path restriction:

e There is a path to -P iff there is a simple path to -P (path with no repeated
states).

UNIVERSITY OF

WATERLOO

31

Induction over simple paths

Let simple(s,) be defined as:
* Vi,jin0.k=(i#]j)=>s#s;
k-induction over simple paths:

P(so..k-1)

Vi- simple(sg i) A P(S; k1) = P(S;)

Vi- P(s;)

Must hold for k large enough, since a simple path cannot be

unboundedly long. Length of longest simple path is called

recurrence diameter.

UUUUU

N

...with a SAT solver

For simple path restriction, let
Sk = Vvi=0..k, u=t+1..k: °vvinV v, =v,
(where V is the set of state variables).

Two formulas to check
e Base case

0> A Uy = P<0> Pkt
e Induction step
S A Ug A P<0> P<k1> = pe<k>

If both are valid, then P always holds.
If not, increase k and try again.

UNIVERSITY OF

WATERLOO

33

Termination

Termination condition
k is the length of the longest simple path of the form
P*-P
This can be exponentially longer than the diameter.
e example
— loadable mod 2N counter where P is (count # 2N-1)
— diameter = 1
— longest simple path = 2N

Useful special cases
e P is a tautology (k=0)
e P is inductive invariant (k=1)

UNIVERSITY OF

WATERLOO

34

BDD-BASED SYMBOLIC
REACHABILITY

IIIIIIIIIIII

35

Forward Reachability Analysis with BDDs

All safety properties
DOGS AG P h0|d7 reduce to reachability

analysis

. Rp=R,;V Img(R,

IIIIIIIIIIII

4
WATERLOO 36 36

Representing Sets as Prop. Formulas

[F]

states satisfying F,i.e. {0 | 0 EF}

[F.] N[F,]
[F,] U[F,]
[F]

[F.] € [F]

F

propositional formula over V
F,N\F,

F,VF,

—~ F

F, = F,

i.e. F; A = F, unsatisfiable

37

BDDs in a nutshell

Typically mean Reduced Ordered Binary Decision Diagrams (ROBDDs)
Canonical representation of Boolean formulas
Often substantially more compact than a traditional normal form

Can be manipulated very efficiently
« Conjunction, Disjunction, Negation, Existential Quantification

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.

% WATERLOO 38

Running Example~ Comparator

aq dj of b,

f=1<a,=b;Aa,=b,

IIIIIIIIIIII

39

Conjunctive Normal Form
f

\
l \
a1=b1 A aZ=b2
\ \
l | I \

ai,=>byAbyj=>a; A a,=Db,Ab,=a

R T T

(—a;vby)A(=byva)A(-a,Vby)A(-byVay)

(-byva;)A(-a;vby)A(-a,Vby)A(-byVay)

‘ Not Canonical ‘

IIIIIIIIIIII

40

Truth Table (1)

Still Not Canonical

41

UNIVERSITY OF

%) WATERLOO

Truth Table (2)
I T T T

A~ 4 A4 A4 a4 aAa A A 0O 0O 0O o0 o o o o
.~ A4 4 A4 0O 0 OO0 A A a4 a0 o o o
.~ A4 0O 0O A A OO0 2 A OO0 =~ 2 o o
-~ O - O -~ O -~ O - O =~ O =~ O =~ o
-~ O O O O - OO OO0 -~ O O © O =

Canonical if you fix variable order. ‘

WAI But always exponential in # of variables. Let’s try to fix this. ‘ 4

Shannon’s /| Boole’s Expansion

Every Boolean formula f(a,, a4, ..., a,) can be written as
(ap A f(true, a4, ..., a,)) vV (-ay A f(false, aq, ..., a,))
or, simply,
ITE (a, f(true, a4, ..., a,), f(false, a4, ..., a,))

where ITE stands for If-Then-Else
The formula f(true, ay, ..., a,) is called the cofactor of f w.r.t. a,

The formula f(false, aq, ..., a,) is called the cofactor of f w.r.t. -a,

% WATERLOO 43

Representing a Truth Table using a Graph

‘ Binary Decision Tree (in this case ordered) ‘

IIIIIIIIIIII

44

Binary Decision Tree: Formal Definition

Balanced binary tree. Length of each path = # of variables
Leaf nodes labeled with either O or 1

Internal node v labeled with a Boolean variable var(v)
» Every node on a path labeled with a different variable

Internal node v has two children— low(v) and high(v)

Each path corresponds to a (partial) truth assignment to variables
 Assign 0 to var(v) if low(v) is in the path, and 1 if high(v) is in the path

Value of a leaf is determined by:

« Constructing the truth assignment for the path leading to it from the root
« Looking up the truth table with this truth assignment

UNIVERSITY OF

WATERLOO

45

Binary Decision Tree

IIIIIIIIIIII

46

Binary Decision Tree

IIIIIIIIIIII

WATERLOO 47

Tree

ision

Dec

Binary

48

UNIVERSITY OF

% WATERLOO

Tree

on

Binary Decis

49

UNIVERSITY OF

% WATERLOO

Tree

ision

Dec

Binary

50

UNIVERSITY OF

% WATERLOO

Binary Decision Tree (BDT)

(2 () (2 (2

01 01 OO) G)
DO OO0 OO0 00000 O®© OC

‘ Canonical if you fix variable order (i.e., use ordered BDT) ‘

B But still exponential in # of variables. Let’s try to fix this. ‘ 51

Reduced Ordered BDD

Conceptually, a ROBDD is obtained from an ordered BDT (OBDT) by
eliminating redundant sub-diagrams and nodes

Start with OBDT and repeatedly apply the following two operations as
long as possible

1. Eliminate duplicate sub-diagrams. Keep a single copy. Redirect edges
into the eliminated duplicates into this single copy.

2. Eliminate redundant nodes. Whenever low(v) = high(v), remove v and
redirect edges into v to low(v).

« Why does this terminate?

ROBDD is often exponentially smaller than the corresponding OBDT

IIIIIIIIIIII

52

OBDT to ROBDD

o

53

OBDT to ROBDD

o

OBDT to ROBDD

o

95

OBDT to ROBDD

o

56

OBDT to ROBDD

o

Y

OBDT to ROBDD

o

58

OBDT to ROBDD

o

59

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

IIIIIIIIIIII

Ifa,=0andb;=1thenf=0
irrespective of the values of a,

66

OBDT to ROBDD

OBDT to ROBDD

OBDT to ROBDD

IIIIIIIIIIII

69

OBDT to ROBDD

IIIIIIIIIIII

70

OBDT to ROBDD

IIIIIIIIIIII

71

OBDT to ROBDD

IIIIIIIIIIII

72

OBDT to ROBDD

Let’s move things
around a little bit so
that the BDD looks

IIIIIIII

73

OBDT to ROBDD

Bryant gave a linear-time
algorithm (called Reduce) to
convert OBDT to ROBDD.

In practice, BDD packages don’t
use Reduce directly. They apply
the two reductions on-the-fly as
new BDDs are constructed from
existing ones. Why?

%) WATERLOO

>

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
e fi=f, o ?

IIIIIIIIIIII

WATERLOO

75

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
 f1 =f, & BDD(fy) and BDD(f,) are isomorphic
* fis unsatisfiable < 7?

UNIVERSITY OF

WATERLOO

76

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
 f1 =f, & BDD(fy) and BDD(f,) are isomorphic
* fis unsatisfiable < BDD(f) is the leaf node “0”
* fisvalid < ?

UNIVERSITY OF

WATERLOO

77

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas
- f, = f, & BDD(fy) and BDD(f,) are isomorphic
« fis unsatisfiable < BDD(f) is the leaf node “0”
» fis valid < BDD({) is the leaf node “1”

« BDD packages do these operations in constant time

Logical operations can be performed efficiently on BDDs
* Polynomial in argument size

BDD size depends critically on the variable ordering
« Some formulas have exponentially large sizes for all ordering
 Others are polynomial for some ordering and exponential for others

UNIVERSITY OF

WATERLOO

78

ROBDD and variable ordering

®

79

ROBDD and variable ordering

ROBDD and variable ordering

ROBDD and variable ordering

ROBDD and variable ordering

ROBDD and variable ordering

>

ROBDD and variable ordering

IIIIIIIIIIII

WATERLOO

Let’s move things
around a little bit so
that the BDD looks

85

ROBDD and variable ordering

8 nodes

.......... a<b <a,<b

11 nodes

a;<a <b <b

86

ROBDD and variable ordering

‘?xn+2\

W UNIVERSITY O a <b < ...<a <b
% WATERLO

ROBDD and variable ordering

‘3xn+2\

W UNIVERSITY O a <b < ...<a <b
% WATERLO

>

BDD Operations

True ~ BDD(TRUE)

False~ BDD(FALSE)

Var = v BDD(v)

Not = BDD(f) — BDD(-f)

And -~ BDD(f;) x BDD(f,) — BDD(f; A f5)
Or =~ BDD(f;) x BDD(f,) — BDD(f; v f,)

Exists = BDD(f) x v — BDD(3 v. f)

IIIIIIIIIIII

WATERLOO

89

Basic BDD Operations

IIIIIIIIIIII

True

®

False

90

BDD Operations: Not

IIIIIIIIIIII

o(1)

o(1)

91

BDD Operations: Not

o(1) o(1)

Swap “0” and “1”

O(n)

IIIIIIIIIIII

%) WATERLOO 92

BDD Operations: And

Suppose this |s
the BDD for f

What formula What formula
does this does this
represent? represent?

UNIVERSITY OF

%) WATERLOO

93

BDD Operations: And

Suppose this is
the BDD for f

fv=0 fv=1

f,=0 and f,., are known as the co-factors of f w.r.t. v

f= (X Afyeo) V(Y Afyey)

IIIIIIIIIIII

94

BDD Operations: And

Suppose this is
the BDD for f

fv=0 fv=1

f,-0 and f,., are known as the co-factors of f w.r.t. v

f= (—. VvV A fv=0) Vv (V A fv=1)

IIIIIIIIIIII

95

BDD Operations: And (Simple Cases)

IIIIIIIIIIII

And (f, @)) =@

And (,@)) = f
And ())= f

And (@)) 0

96

BDD Operations: And (Complex Case)

& " 4
g g

(~ v, Afo) V (V4 A)

IIIIIIIIIIII

N\

(-V,AQo) V (V2 A g4)

97

BDD Operations: And (Complex Case 1)

Vi = Vo

& 4
g g

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

N\

(- V, Ado) V (V4 A gq)

98

BDD Operations: And (Complex Case 1)

Vi =V

(-Vv, AX)V(vyAY)

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

1y

N\

(- V, Ado) V (V4 A gq)

99

BDD Operations: And (Complex Case 1)

Vi=V,

Compute recursively

(- Vv, A (fo N 90)) V (vq A (f4 A d1))

(~ v, Afo) V (V4 Af)

IIIIIIIIIIII

A

(-V, AQo) V (V4 A gq)

100

BDD Operations: And (Complex Case 1)

R

Vi=V,

What if fg A gg=f A g4 ?

Return fy A g

7

(- V., A (fo A o)) V (vq A (f1 A Gq))

(~ v, Afo) V (V4 A fy)

IIIIIIIIIIII

1y

N\

(- V, AQo) V (V4 A G4)

101

BDD Operations: And (Complex Case 2)

A
4

Vi <V

(~ v, Afo) V (V4 A fy)

IIIIIIIIIIII

orderlng

(v1 appears before
Vo, in the variable

AN T
<

(-V,Ado) V (V2 A G4)

102

BDD Operations: And (Complex Case 2)

Vi<V,

WhatiffAg=f,Ag?

Returnfy A g

R V2

(-v,A(foAQ)) V(vqA(f AQ))

@

(~ v, Afo) V (V4 A) TA g

IIIIIIIIIIII

O(ny X ny)

103

BDD Operations: And

BDD bddAnd (BDD f, BDD g)
if (f == g || f == True) return g
if (g True) return f
if (f False || g == False) return False

v = (var(f) < var(g)) ? var(f) - var(g)
f0 = (v == var(f)) ? low(f) - f
f1 = (v == var(f)) ? high(f) - f

(v == var(g)) ? low (g) -~ g
(v == var(g)) ? high (g) - g

g0
gl

T = bddAnd (f1, gl); E = bddAnd (f0, go0)
if (T == E) return T

returns unique BDD
for ite(v,T,E)

return mkUnique (v, T, E) _

% WATERLOO 104

BDD Operations: Or

Or(f,9)

IIIIIIIIIIII

105

BDD Operations: Exists

Exists(“0”,v) = ?

IIIIIIIIIIII

106

BDD Operations: Exists

IIIIIIIIIIII

Exists(“0”,v) = “0”

Exists(“1”,v) = ?

107

BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((-vAf)V(VAQ),v)="?

IIIIIIIIIIII

108

BDD Operations: Exists

Exists(“0”,v) = “0”
Exists(“1”,v) = “1”

Exists((- v Af) vV (v Ag), v) = Or(f,g)

Exists((-V' Af)V(VAQ),V)="?

IIIIIIIIIIII

109

BDD Operations: Exists O(n?)

Exists(“0”,v) = “0”
Exists(“1”,v) = “1”
Exists((-v Af) Vv (vAg), v)=0r(f,g)
Exists((-V' Af)V(V'AQ), V)=

(- v’ A Exists(f,v)) v (V' A Exists(g,V))

But f is SAT iff 3 V. f is not “0”. So why doesn’t this imply P = NP?

Because the BDD size changes!

IIIIIIIIIIII

110

BDD Applications

SAT is great if you are interested to know if a solution exists

BDDs are great if you are interested in the set of all solutions
* How many solutions are there?
* How do you do this on a BDD?

BDDs are great for computing a fixed points
« Set of nodes reachable from a given node in a graph

UNIVERSITY OF

%) WATERLOO 111

Graph Reachability

Which nodes are reachable from “7°?

{2,3,5,6,7}

But what if the graph has trillions of nodes?

IIIIIIIIIIII

WATERLOO 112

Graph Reachability

‘ Use three Boolean variables ‘albicl to encode each node? \

IIIIIIIIIIII

% WATERLOO 113

Graph Reachability

IIIIIIIIIIII

WATERLOO 114

Graph Reachability

IIIIIIIIIIII

WATERLOO 115

Graph Reachability

aANbA-c=7?

Key Idea 1: Every Boolean formula represents a set of nodes!

The nodes whose encodings satisfy the formula.

IIIIIIIIIIII

116

Graph Reachability

aAbA-c={6}

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII

117

Graph Reachability

aAb= 7

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII

118

Graph Reachability

IIIIIIIIIIII

119

Graph Reachability

axorb= ?

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII

120

Graph Reachability

axorb = {2,3,4,5}

Key Idea 1: Every Boolean formula represents a set of nodes!

IIIIIIIIIIII

121

Graph Reachability

* Key Idea 2: Edges can also be represented by Boolean formulas
« An edge is just a pair of nodes
* Introduce three new variables— a’, b’, ¢’

* Formula @ represents all pairs of nodes (n,n’) that satisfy & when n is
encoded using (a,b,c) and n’ is encoded using (a’,b’,c’)

o7

Graph Reachability

WATERLOO 123

Graph Reachability

WATERLOO 124

Graph Reachability

125

Graph Reachability

Variable renaming -
replace a’ with a
Image(S,R) =

(da,b,c.(SAR))[aYa’,b\b’,c\C’]

Key Idea 3: Given the BDD for a set of nodes S, and the BDD for
the set of all edges R, the BDD for all the nodes that are adjacent

to S can be computed using the BDD operations
%) WATERLOO 196

Graph Reachability Algorithm

S = BDD for initial set of nodes;
R = BDD for all the edges of the graph;

while (true) {
I = Image(S,R); // compute adjacent nodes to S

if (And(Not(S),I) == False) // no new nodes found

break;
S =0r(S,1I); // add newly discovered nodes to result

return S;

Symbolic Model Checking. Has been done for graphs with 10?° nodes.

%) WATERLOO

127

Forward Reachability Analysis with BDDs

All safety properties
DOGS AG P h0|d7 reduce to reachability

analysis

. Rp=R,;V Img(R,

IIIIIIIIIIII

%) WATERLOO 128

