
Automated Program Verification with
Software Model Checking

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

2 2

Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments

and inputs

The algorithmic discovery of properties of program by inspection of the
source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification

3 3

Turing, 1936: “undecidable”

4 4

Undecidability

The halting problem

• does a program P terminates on input I

• proved undecidable by Alan Turing in 1936

• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem

• for any non-trivial property of partial functions, no general and effective
method can decide whether an algorithm computes a partial function with that

property

• in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial

property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

https://en.wikipedia.org/wiki/Halting_problem

5 5

Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants

6 6

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977]

Symbolic Execution

[King, 1976]

Automated Software Analysis

7 7

(Temporal Logic) Model Checking

Automatic verification technique for finite state

concurrent systems.

• Developed independently by Clarke and

Emerson and by Queille and Sifakis in early

1980’s.

• ACM Turing Award 2007

Specifications are written in propositional

temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal

Logic (LTL), …

Verification procedure is an intelligent exhaustive

search of the state space of the design

• Statespace explosion

8 8

Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware
Verification in Industry:
Intel, IBM, Motorola, etc.

9 9

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981

10 10

started PhD in MC at UofT

multi-valued model checking

2000

2006 SMC Yasm: safety, liveness,
multi-valued abstraction for MC

2010 Boxes abstract domain (SAS’10)

2012 UFO: MC + AI: SAS’12

2015 SeaHorn: MC (Spacer) and AI (Crab)

SV-COMP

BLAST

VMCAI’06

x + 2y < 10

z < 10

10

decision
node

true
terminal

false
edge

false
terminal

true
edge

VMCAI

11 11

Classical Model Checking* [EC81,QS82]

Not decidable!
To enable automation, Model Checking restricts the problem:
Model: Finite-state reactive systems
Specification: Propositional temporal logics

Formal
specification

Does the system satisfy
the specification ?

Model of a
system !

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to MC

12 12

Finite State Reactive Systems - Examples

Hardware designs
Controllers (elevator, traffic-light)
Communication protocols (when ignoring the message content)
High level (abstracted) description of infinite state systems

13 13

Model of a system
Kripke structure / transition system

14 14

Model of a system (cont.)
Kripke structure / transition system

States labeled by
atomic propositions
(AP)
• “x=0”,
• “Printer is busy”,
• “process in critical

section”,
• …

Reactive systems:

Set of states is finite,

But computations are infinite

p

q

p,q

p,q

q

p

p

p,q

15 15

Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic
propositions
• S is a (finite) set of states
• s0 Î S is a start state
• I: S ® 2V is a labelling function that maps

each state to the set of propositional
variables that hold in it
– That is, I(S) is a set of interpretations

specifying which propositions are true
in each state

• R Í S ´ S is a transition relation

req req,
busy

busy

s0

s2

s1

s3

16 16

From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: x =1;
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Transition

17 17

From Circuits to Kripke Structures

a
b c 000 010

111101

100

001 011

110

States = valuations to variables a,b,c
à 8 states: 000,001,…

Transitions:

a,b: inputs, change arbitrarily

c: state variable, updated according to circuit

c’ <-> (a ∧ b) ∨ c

18 18

Modal Logic

Extends propositional logic with modalities to qualify propositions
• “it is raining” – rain
• “it will rain tomorrow” –�rain
– it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain
– it is raining in some possible futures

Modal logic formulas are interpreted over a collection of possible worlds
connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next,
always, eventually, and until

19 19

Linear Time
• Every moment has a unique successor
• Infinite sequences (words)
• Linear Time Temporal Logic (LTL)

Branching Time
• Every moment has several successors
• Infinite tree
• Computation Tree Logic (CTL)

• Temporal Logics
− Express properties of event orderings in time

Temporal Logic
[A. Pnueli, FOCS 1977]

20 20

Propositional temporal logic

AP – a set of atomic propositions

Temporal operators:
Gp
Fp
Xp
pUq

Path quantifiers: A for all path
E there exists a path

21 21

LTL/CTL/CTL*

LTL – of the form Aψ
ψ - path formula, contains no path quantifiers

but any nesting of temporal operators
interpreted over infinite computation paths

CTL – path quantifiers and temporal operators appear in
pairs: AG, AU, AF, AX, EG, EU, EF, EX
interpreted over infinite computation trees

CTL* - Allows any combination of temporal operators and
path quantifiers. Includes both LTL and CTL

22 22

Illustration of CTL Semantics

EFp : AFp :

EGp : AGp :

“exists
reachable
state s.t.”

“all
reachable
states….”

23 23

CTL formulas:
mutual exclusion: AG ¬(cs1 ∧ cs2)
non starvation: AG (request ⇒ AF grant)
“sanity” check: EF request
Communication protocols: A (¬get-msg) U send-msg

LTL formulas:
fairness: A(GF enabled ⇒ GF executed)
A(x=a ∧ y=b ⇒ XXXX z=a+b)

Properties in Temporal Logic - Examples

24 24

LTL/CTL/CTL*

CTL LTL

CTL*

A FG p

Along every path,
p holds globally

from some point

EG p

There is a path where
p holds globally

ACTL / ACTL*: The universal fragments of CTL/CTL* with only
universal path quantifiers

2O (|φ|) × O(|M|)O(|φ|×|M|)

2O (|φ|) × O(|M|)

25 25

Some Statements To Express

An elevator can remain idle on the third floor with its doors closed
• EF (state=idle Ù floor=3 Ù doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly. Use property patterns

26 26

Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties

Express:
• When a request occurs, it will eventually be acknowledged

– G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s

– G F q
• At most a finite number of states in each path satisfy ¬q (or property q

eventually stabilizes)

– F G q
• Action s precedes p after q
– [¬q U (q ∧ [¬p U s])]
– Note: hard to do correctly.

27 27

Safety and Liveness

Safety AG ¬bad
• e.g., mutual exclusion: no two

processes are in their critical section at
once

• if false then there is a finite cex
• Safety = reachability

Liveness AF good
• e.g., every request is eventually

serviced
• if false then there is an infinite cex
• Liveness = termination

* Every LTL formula can be decomposed into a safety property and a
liveness property

28 28

Model Checking

Temporal
logic formula

φ

MC

Finite state
model !

M ⊨ φ M ⊭ φ
(+counterexample)

29 29

Property types

Universal Existential
EG ¬bad

EF good

Safety AG ¬bad
• e.g., mutual exclusion: no two

processes are in their critical section at
once

• if false then there is a finite cex
• Safety = reachability

Liveness AF good
• e.g., every request is eventually

serviced
• if false then there is an infinite cex
• Liveness = termination

Combinations: AG EF reset
“along every possible execution, in every state there is a possible
continuation that will eventually reach a reset state”

A

A

r

30 30

The Safety Verification Problem

Initial

Error

Is there a path from an initial to an error state?

Safe

31 31

Mutual Exclusion Example
[by Willem Visser]

N1 ® T1
T1 Ù S0 ® C1 Ù S1
C1 ® N1 Ù S0

N2 ® T2
T2 Ù S0 ® C2 Ù S1
C2 ® N2 Ù S0

||

• Two process mutual exclusion protocol with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1)

• Initially both processes are in the Non-critical state and
the semaphore is available --- N1 N2 S0

32 32

Model for Mutual Exclusion

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Specification: M ╞AG EF (N1 ÙN2 Ù S0)
No matter where you are there is
always a way to get to the initial state

33 33

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

34 34

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example

35 35

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example

36 36

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example

37 37

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

No matter where you are there is
always a way to get to the initial state

Mutual Exclusion Example

38 38

Applications of Model Checking

§Emerging as an industrial standard for verification of hardware
designs: Intel, IBM, Cadence, Synopsis, …
§ HWMCC: annual competition of academic tools (http://fmv.jku.at/hwmcc15/)

§Emerging as software verification:
§ Industry: SLAM (Microsoft), F-Soft (NEC), …
§ Academic tools: CBMC, BLAST, UFO, CPAChecker, Smack, SeaHorn, …
§ SV-COMP: annual Software Verification competition (http://sv-comp.sosy-

lab.org/2018/)

39 39

Handbook of Model Checking (2017)

40 40

Handbook of Model Checking (2017)

What Is Model Checking?
Temporal Logic and Fair Discrete Systems.
Modeling.
Binary Decision Diagrams.
Propositional SAT Solving.
Procedures for Satisfiability Modulo Theories.
Automata Theory and Model Checking.
The mu-calculus as a Formalism for Verification.
BDD-Based Symbolic Model Checking.
SAT-Based Model Checking.
Explicit-State Model Checking.
Partial-Order Reduction.
Abstraction and Abstraction-Refinement.
Compositional Reasoning.
Interpolation: Proofs in the Service of Model
Checking.
Model Checking and Deduction.

Transfer of Model Checking Theory to Industrial
Practice.
Property Specification Languages for Hardware.
Predicate Abstraction for Program Verification
Model Checking Concurrent Software.
Combining Model Checking and Data-Flow
Analysis.
Combining Model Checking and Testing.
Symbolic Trajectory Evaluation.
Model Checking Procedural Programs.
Parameterized Systems.
Model Checking Security Protocols.
Games and Synthesis.
Symbolic Model Checking in Non-Bool. Domains.
Verification of Real-Time Systems.
Verification of Hybrid Systems.
Probabilistic Model Checking.
Model Checking and Process Algebra.

41 41

State Explosion

How fast do Kripke structures grow?
• Composing linear number of structures yields exponential growth!

How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT).

– Do not need to represent and manipulate the entire model

• Abstraction

– Abstract away variables in the model which are not relevant to the formula
being checked

– Partial order reduction (for asynchronous systems)

– Several interleavings of component traces may be equivalent as far as
satisfaction of the formula to be checked is concerned

• Composition
– Break the verification problem down into several simpler verification

problems

42 42

SOFTWARE MODEL CHECKING

43 43

Software Model Checking

Yes/No

Answer

Program

(e.g., C)

Correctness

property
Model of

the program

Model

Extraction

Model

Checker

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

44 44

45 45

A Magician’s Guide to Solving Undecidable
Problems
Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem
• e.g., model checking of finite-state systems

Choose one of
• Always terminate with some answer (over-approximation)
• Always make useful progress (under-approximation)

Extend procedure P to procedure Q that “solves” the undecidable
problem
• Ensure that Q is still a decision procedure whenever P is
• Ensure that Q either always terminates or makes progress

46 46

http://seahorn.github.io

47 47

Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage

48 48

SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM

Abstract Interpretation engine: Crab

SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution

Executable Counter-Examples

A framework for research and application of logic-based verification

http://seahorn.github.io)/

49 49

SeaHorn Workflow

Property
Checker

SeaHorn

TestGen

Code Under
Analysis
(CUA)

Verification
Problem (VP)

Bad +
Counterexample

(CEX)

Good +
Verification

Certificate (Cert)

Test harness
(Test)

Property
Spec

Verification
Environment

50 50

SeaHorn workflow components

Code Under Analysis (CUA)
• code being analyzed. Device driver, component, library, etc.

Verification Environment
• stubs for the environment with which CUA interacts
• e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, …

Property Checker
• static instrumentation of a program with a monitor that indicates when an error

has happened
• similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic

actions
• property spec is specific to a property checker

Verification Problem
• a prepared instance of program with embedded assertions, potentially simplified

by abstracting away irrelevant parts of execution
Test Gen
• generates a test harness that includes all stubs and stimuli to guide CUA to a

property failure discovered by the verifier

51 51

Developing a Static Property Checker

A static property checker is similar to a dynamic checker
• e.g., clang sanitizer (address, thread, memory, etc.)

A significant development effort for each new property
• new specialized static analyses to rule out trivial cases

• different instrumentations have affect on performance

Developed by a domain expert
• understanding of verification techniques is useful (but not required)

• 3-6 month effort for a new property
– but many things can be reused between similar properties

– e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
• memory safety (out of bound uses, null pointer)

– ongoing work to improve scalability and usability

• taint analysis (being developed by Princeton, see CAV 2018)

52 52

Architecture of Seahorn

Heap Abstraction

VC Generation

Precision:
- Integers
- Floating point
- Pointers
- Memory contents

 LLVM Opt:
- SSA
- DCE
- Peephole
- CFG Simplification

 Devirtualization
 and
 Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences

 Slicing Assertions

 Front-end Middle-end Back-end

 C/C++ LLVM bitcode Horn Clauses

PDR/IC3-based
Model checking

 Clang

Array Abstraction

Abstract Interp.
- Intervals
- DBMs
- LDDs

 BMC
 bitvectors

Template-based
 (Houdini)

53 53

DEMO

54 54

Types of Software Model Checking

Bounded Model Checking (BMC)

• look for bugs (bad executions) up to a fixed bound

• usually bound depth of loops and depth of recursive calls

• reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction
Refinement (CEGAR)

• Construct finite-state abstraction of a program

• Analyze using finite-state Model Checking techniques

• Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)

• Iteratively apply BMC with increasing bound

• Generalize from bounded-safety proofs

• reduce the problem to many SAT/SMT queries and generalize from SAT/SMT

reasoning

55 55

SYMBOLIC MODEL CHECKING

56 56

Symbolic model checking

Model is represented symbolically using Boolean formulas
Model checking is performed on the symbolic
representation directly

BDD-based
• Use specialized data structure, Binary Decision Diagrams, to represent and

manipulate sets of states
SAT-based
• Represent sets of executions using Boolean formulas in Conjunctive Normal

Form (CNF)
• Use efficient SAT(isfiability)-solvers for reasoning

57 57

Modeling with Propositional Formulas

a
b c

System is modeled as (V, INIT, T):

• V – finite set of Boolean variables
state = valuation to variables

• INIT(V) – describes the set of initial states
• T(V,V’) – describes the set of transitions

Atomic Propositions:
• p(V) - describes the set of states satisfying p

V = {a, b, c}
à 8 states: 000,001,…

T = (c’↔(a ∧ b) ∨ c)

INIT = ¬a ∧ ¬b

p = ¬a∧ c

000 010

111101

100

001 011

110

001 011

p p

58 58

Representing Sets as Prop. Formulas

[F]
states satisfying F , i.e. {! | ! ⊨ F }

F
propositional formula over V

[F1] ∩[F2] F1 ∧ F2

[F1] ∪[F2] F1 ∨ F2

[F] ¬ F

[F1] ⊆ [F2] F1 ⇒ F2

i.e. F1 ∧ ¬ F2 unsatisfiable

59 59

BDD-based model checking

Binary Decision Diagrams (BDDs)
are used to represent the transition relation and
sets of states.
can handle systems with hundreds of Boolean
variables.

[J.R. Burch, E.M. Clarke, K.L. McMillan,
D.L. Dill, L.J. Hwang, LICS’90]

a
b

c

10

ROBDD

60 60

Binary decision diagrams
(BDDs)

Data structure for representing
Boolean functions (propositional formulas)

Often concise in memory

Canonical representation

Most Boolean operations can be performed on
BDDs in polynomial time in the BDD size

[Bryant, 1986]

61 61

a
b

c

10

c

1 1

b
c

1 1

b

cc
b

0 11 0

a
b

cc

1 1 10

c c c

BDD for f(a,b,c) = (a ∧ b) ∨ c

Decision tree

a
b

c

10

ROBDD

62 62

INIT

Forward Reachability Analysis with BDDs

Bad=¬
p

Does AG p hold?

R1=R0∨ Img(INIT,T)
R2=R1∨
Img(R1,T)

… Rn=Rn-1∨ Img(Rn-

1,T)

All safety properties
reduce to reachability
analysis

Image(Q,T)(V’) = ∃V [Q(V) ∧ T(V,V’)]

Boolean operations
on BDDs T and Q

63 63

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):
• determine whether a given CNF C is satisfiable

64 64

Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf

65 65

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

66 66

SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of
variables from

HW designs Courtesy Daniel le Berre

67 67

SAT(isfiability)-Solvers

SAT is NP-complete
• but existing tools can solve problems with millions of variables

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ’01, MiniSat’03)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf

68 68

SAT-based Model Checking

Bounded Model Checking
• Is there a counterexample of k-steps

Unbounded Model Checking
• Induction and K-Induction (k-IND)
• Interpolation Based Model Checking (IMC)
• Property Directed Reachability (IC3/PDR)

69 69

Bounded Model Checking for AG p

Given
•A finite transition system M= (V, I(V), T(V,V’))
•A safety property AG p, where p = p(V)

Determine
•Does M allow a counterexample to p of
k transitions or fewer?

* BMC can handle all of LTL formulas

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99

70 70

BMC for checking AG p with SAT

Unfold the model k times:
• U = T<0> ∧ T<1> ∧ ... ∧ T<k-1>

a
b

c

a
b

c

a
b

c...I<0> ¬p<k>

• Use SAT solver to check satisfiability of
I<0> ∧ U ∧ ¬p<k>

• If satisfiable: the satisfying assignment describes a
counterexample of length k

• If unsatisfiable: property has no counterexample of length k

Biere, et al. TACAS99

I<0> = I(V0)

T<i> = T(Vi,Vi+1)

p<k> = p(Vk)

71 71

Bounded Model Checking

INIT

R1

¬p

INIT(V0) �T(V0,V1)�¬p(V1)

72 72

Bounded Model Checking

INIT

R1 R2

¬p

INIT(V0) �T(V0,V1) �T(V1,V2)�¬p(V2)

73 73

Bounded Model Checking

INIT

R1 R2

¬p

……

INIT(V0)

Rk

�T(V0,V1) �…�T(Vk-1,Vk)�¬p(Vk)

74 74

Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
– diameter bound. The diameter is the maximum length of the shortest path

between any two states.

Using such k is often not practical
– Worst case diameter is exponential. Obtaining better bounds is sometimes

possible, but generally intractable.

78 78

Unbounded SAT-based Model Checking

Induction and K-Induction (k-IND)

Interpolation Based Model Checking (IMC)

Property Directed Reachability (IC3/PDR)

79 79

SAT-Based Verification
(unbounded model checking)
Uses BMC for falsification

Simulates forward reachability analysis for verification

Identifies a termination condition
• all reachable states have been found: “fixed-point”

80 80

Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

81 81

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

82 82

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

