SAT and Bounded Model Checking

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

% WATERLOO

Syntax of Propositional Logic

An atomic formula has a form A, wherei=1, 2, 3 ...

Formulas are defined inductively as follows:

e All atomic formulas are formulas
e For every formula F, =F (called not F) is a formula
e For all formulas F and G, F A G (called and) and F v G (called or) are

formulas
Abbreviations
e use A, B, C, ... instead of A, A,, ...
e use F; — F, instead of °F, v F, (implication)
e use F1 < F,instead of (Fy — F,) A (F2 — Fy) (iff)

IIIIIIIIIIII

Syntax of Propositional Logic (PL)

truth_symbol ::= T (true) | L (false)

variable :=p,q, 1, ...
atom ::= truth_symbol | variable
literal ::= atom|—atom
formula ::= literal |
—formula |
formula A formula |

formul

formul

a V formula |

a — formula |

formul

IIIIIIIIIIII

a < formula

Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation ~v

A clause is a disjunction of literals
e e.g. (V1] ~v2]| v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of
disjunctions of literals (i.e., a conjunction of clauses):

e e.g., (V1| ~v2) && (v3 || v2) n my
AV Lij)

1=1 5=1
A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of

conjunctions of literals
n T,
VA Lis)

i=1 j=1

IIIIIIIIIIII

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals

e e.g., (V1| ~v2]| v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses

e e.g., (V1| ~v2) && (v3 || v2)
An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in ¢ to true

An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):

o determine whether a given CNF C is satisfiable

IIIIIIIIIIII

CNF Examples

CNF 1

s ~b

*~a|l~b]l~c

°a

e sat: s(a) = True; s(b) = False; s(c) = False

CNF 2
e ~b
*~al|bfl~c
e a
e ~allc
e unsat
WATERLOO

Algorithms for SAT

SAT is NP-complete

e solution can be checked in polynomial time
e no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)

e smart enumeration of all possible SAT assignments
e worst-case EXPTIME

* alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
o conflict-driven clause learning
e extends DPLL with

— smart data structures, backjumping, clause learning, heuristics, restarts...
e scales to millions of variables

e N. Een and N. Sorensson, “An Extensible SAT-solver”, in SAT 2013.

UNIVERSITY OF

WATERLOO

http://minisat.se/downloads/MiniSat.pdf

Background Reading: SAT
G‘C I,C http://cacm.acm.org/magazines/

8/34498-boolean-satisfiability-from-theoretical-h L~RC ” C Boolean Satisfiability: From ... l I

X Find: I currency Previous Next | Options + |
TRUSTED INSIGHTS FOR COMPUTING’S LEADING PROFESSIONALS ACM.org Join ACM About Communications ACM Resources Alerts & Feeds E
SIGN IN

COMMUNICATIONS Search »

OF THE

A C M HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE | CAREERS MAGAZINE ARCHIVE

Home / Magazine Archive / August 2009 (Vol. 52, No. 8) / Boolean Satisfiability: From Theoretical Hardness... / Full Text

REVIEW ARTICLES

Boolean Satisfiability: From Theoretical Hardness to Practical
Success

By Sharad Malik, Lintao Zhang
Communications of the ACM, Vol. 52 No. 8, Pages 76-82
10.1145/1536616.1536637

Comments User Name

SIGN IN for Full Access

VIEWAS: | Bl & 7 SHARE: =2 & @ &+ (& B Password

» Forgot Password?
» Create an ACM Web Account

There are many practical situations where we need to satisfy
several potentially conflicting constraints. Simple examples of this
abound in daily life, for example, determining a schedule for a
series of games that resolves the availability of players and venues,
or finding a seating assignment at dinner consistent with various

SIGN IN

rules the host would like to impose. This also applies to WLHEEEL HIE
applications in computing, for example, ensuring that a Introduction
hardware/software system functions correctly with its overall Boolean Satisfiability

behavior constrained by the behavior of its components and their Theoretical hardness: SAT and

PR 1IN . . [Y A, EgE N SR, I, L R BT T ey BB S

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

1,000

100

10

Speed-up (log scale)

—t

o o S S M S ® N N
& P ¢ & & ¢ & & & & & &
R & o o 4 - N @ > B N N
2 G \ \) N 2> A & & V V
N o & & & & & & © & 3 '3
o N g 2 & 2 & & & &
S R N P
< & ’\ & o) o)
@ @ ©
N
Solver

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

%) WATERLOO 9

SAT - Milestones

Problems impossible 10 years ago are trivial today

year | Milestone _________

1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause
learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause
management

2010 Blocked clause elimination

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
1200 T T T T T T ea— I
Limmat 02 o] ..‘ Lo .
Zchaff 02 o [~ N o, &
Berkmin 561 02] *
@ Forklift 03 A 5 y O
B Siege 03 - s « o
1000 Zchaff 04] AV ®) n
SatELite 05 o i~ N4 §
Minisat 2.0 06 & -
Picosat 07 o o v o]
v Rsat07 r g ° o
Minisat 2.1 08 & n ol v *
800 - Precosat 09 o o O Wi o n
— Glucose 09 r ut . (;)7
é Clasp 09 A‘A‘ v o &
s * Cryptominisat 10 n] g o
3 © Lingeling 10 ‘:‘“"‘ G‘Pf ¢
= o Minisat 2.2 10 i) o > /
=600 - 2 “ ¥ .
7 4
&) @
400 g i
200 -
[Le Berre'l0]

0

Millions of
variables from
HW designs

20 40 60 80 100 120 140 160 180

Number of problems solved

10

Courtesy Daniel le Berre

NP is the new P!

Solve any computational problem by effective reduction to SAT/SMT

e iterate as necessary

IIIIIIIIIIII

Problem

encode >

< decode

SAT/SMT
Solver

11

Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of

G such that no two adjacent vertices have the

same color.

Formally:

» does there exists a function f : V = [0..k) such that
 for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
e construct CNF C such that C is SAT iff G is k-

colorable

IIIIIIIIIIII

https://en.wikipedia.org/wiki/Graph_coloring

—

2

k-coloring as CNF

Let a Boolean variable f, ; denote that vertex v has color i
e if f,;is true if and only if f(v) =i

Every vertex has at least one color

\/ fo,i (veV)
No vertex is assigned two colors

N foiV=fus) (veV)

0<i<j<k

No two adjacent vertices have the same color

N (AfoiV=fui) ((v,u) € E)

13

Davis Putnam Logemann Loveland

DPLL PROCEDURE

IIIIIIIIIIII

14

References

Chapter 2: Decision Procedures for
Propositional Logic

Daniel Kroening
Ofer Strichman

Decision
Procedures

An Algorithmic Point of View
Second Edition

@ Springer

https://link.springer.com/book/10.1007%2F978-3-540-74105-3

15

Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given
propositional logic (PL) formula F is satisfiable

e NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naive approach
e Enumerate models (i.e., truth tables)
 Enumerate resolution proofs
Modern SAT solvers
e DPLL algorithm
— Davis-Putnam-Logemann-Loveland
 Combines model- and proof-based search
* Operates on Conjunctive Normal Form (CNF)

UNIVERSITY OF

WATERLOO

16

Propositional Resolution [Pivot

Cvp DV p

CvD
M

Res({C, p}. {D. 'p}) = {C, D}

Given two clauses {C, p} and {D, !p} that contain a literal p
of different polarity, create a new clause by taking the union

of literals in C and D

IIIIIIIIIIII

17

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent
of two clauses Xand Y in F. Then, F U {R} s

equivalent to F

IIIIIIIIIIII

18

>

Resolution Theorem

Let F be a set of clauses

Res(F) = FU{R | R is a resolvent of two clauses in F'}
Res’(F) =F

Res" ™ (F) = Res(Res"(F)), forn >0
Res™(F) = U Res" (F)

n>0

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

IIIIIIIIIIII

WATERLOO

19

Example of a resolution proof

A refutation of -pV —-qVr, pVvr, qVr, —-r:

pV-ogVr

_'P\/ﬁq

NS
\/

UNIVERSITY OF

%) WATERLOO

\VARVA

20

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

—“bA(maVbV-c)ANaA (—aV c)

—a VbV —c a

b\ —c b a —-a V ¢

IIIIIIIIIIII

21

>

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Res/(F) for any i.
Let n be such that Res"*'(F) contains an empty clause, but Res"(F) does
not. Then Res"(F) must contain to unit clauses L and ~L. Hence, it is
UNSAT.

(Completeness) By induction on the number of different atomic
propositions in F.

Base case is trivial: F contains an empty ,use-

IH: Assume F has atomic propositions A1, ... A,
Let F, be the result of replacing A, by O

Let F, be the result of replacing A, by 1

Apply IH to Fy, and F, . Restore replaced literals. Combine the two
resolutions.

IIIIIIIIIIII

WATERLOO

22

Proof System P,....P,-C

An inference rule is a tuple (P4, ..., P, C)
e where, P4, ..., P,, C are formulas

e P, are called premises and C is called a conclusion
e intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

e nodes are labeled by formulas
e for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

Cvp DV -p

cCvbD

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

IIIIIIIIIIII

24

DP Procedure: SAT solving by resolution

Assume that input formula F is in CNF

1. Pick two clauses C;, and C, in F that can be
resolved

2. If the resolvent C is an empty clause, return
UNSAT

3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses

IIIIIIIIIIII

25

DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions

Proof search is restricted to unit resolution
e can be done very efficiently (polynomial time)
Case split restores completeness

DPLL can be described by the following two rules
e F is the input formula in CNF

split pand —parenotinF

F,p | F,—up
F, Cv{,~? .
nit
,C,f

Davis, Martin; Logemann, George; Loveland, Donald (1962).
"A Machine Program for Theorem Proving".
BT AT e C.ACM. 5 (7): 394—-397. d0i:10.1145/368273.368557

26

https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/368273.368557

The original DPLL procedure

Incrementally builds a satisfying truth assignment
M for the input CNF formula F

M is grown by

e deducing the truth value of a literal from M and F, or
e guessing a truth value

If a wrong guess for a literal leads to an
iInconsistency, the procedure backtracks and tries
the opposite value

IIIIIIIIIIII

%) WATERLOO o7

DPLL: lllustration

IIIIIIIIIIII

28

DPLL: Decide

Guessing (Decide)

plpvag—-qvr

¥

p,—q|pvag —-qvr

IIIIIIIIIIII

29

DPLL: Boolean Constraint Propagation

Deducing (Unit Propagation or BCP)

p|l pvag—pvs

¥

p,slpvag,—pvs

IIIIIIIIIIII

30

DPLL: Backtracking

Backtracking

P, S, g | pPvqg,svq,—pv—(Qq

Y

p,slpva,sva,—pv—q

IIIIIIIIIIII

31

Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p=(=x1 Vxo)A(x3 V-x2)A(xaV—x5)A(X5V —xa)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

P-xixz = (X4 V 7x5) A (x5 V xa)

Preserve satisfiability, not logical equivalency!

32

DPLL Procedure

» Standard backtrack search

» DPLL(F) :

Apply unit propagation

If conflict identified, return UNSAT
Apply the pure literal rule

If F is satisfied (empty), return SAT
Select decision variable x

» |f DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)

vy v v v v

IIIIIIIIIIII

33

The Original DPLL Procedure — Example

assign 1v2,2v-3v4 12,
Deduce 1 —1v=3va4,)

1 1v2,2v-3v4-1v-a2,
Deduce —2 - 1Tv-3v-4,1

1, 2 1v2,2v-3v4 -1v—-2,
Guess 3 —1v=-3v-4,1
1,2,3 1v2|]2v-3v4—-1v—-2
Deduce 4 ~1v-3v—4,1
1, 2, 3, 1v2,2v-3vi4 -1v—-2,

4 —1v—=3v-41

Conflict

IIIIIIIIIIII

The Original DPLL Procedure — Example

assign 1v2,2v-3v4 12,
Deduce 1 —1v=3va4,)

1 1v2,2v-3v4-1v-a2,
Deduce —2 - 1Tv-3v-4,1

1, 2 1v2,2v-3v4 -1v—-2,
Guess 3 —1v=-3v-4,1
1,2,3 1v2|]2v-3v4—-1v—-2
Deduce 4 ~1v-3v—4,1
1, 2, 3, 1v2,2v-3vi4 -1v—-2,

4 —1v—=3v-41

Undo 3

IIIIIIIIIIII

The Original DPLL Procedure — Example

assign
Deduce 1

1
Deduce —2
1, 2
Guess —3
1,2,3

Model
Found

IIIIIIIIIIII

1v2,2v-3v4 -1v-2,

1v2,2v-3v4 -1v-2,

1v2,2v-3v4 -1v—-2,

1v2,2v-3v4 -1v—-2,

An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-
style calculi

Such calculi, however, cannot model meta-logical features such as
backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of
conditional transition rules

% WATERLOO 37

An Abstract Framework for DPLL

State

o failorM | F
e where
— F is a CNF formula, a set of clauses, and
— M is a sequence of annotated literals denoting a partial truth assignment

Initial State

* @ | F, where F is to be checked for satisfiability
Expected final states:

e fail if F is unsatisfiable
M| G
where

— M is a model of G
— G is logically equivalent to F

IIIIIIIIIIII

38

Transition Rules for DPLL

Extending the assignment:

ME-C
UnitProp M| FECvI->MI|F Cvl

|l is undefined in M

|l or -l occurin C
Decide M|F,C >MI‘|FC . . .
|l is undefined in M

Notation: 19 is a decision literal

IIIIIIIIIIII

%) WATERLOO 39

Transition Rules for DPLL

Repairing the assignment:

_ ME-C
Fail M || F, C — fail
does not contain

decision literals

MIdN E -C
Backtrack MIYN|FFCo>M-I | F,C . .
|l is the last decision
literal

IIIIIIIIIIII

%) WATERLOO 40

Transition Rules DPLL — Example

IIIIIIIIIIII

@" 1V2,2V—|3V4,—|1V—|2,—|1
V—|3V—|4,1

111v2,2v-3v4,-1v-2,-1v-3v

- 4,1
1,2|1v2,2v-3v4,-1v-2,-1v
—|3V—|4,1
1,2,39|1v2,2v-3v4,-1v-2,=-1v
—|3V—|4,1

1,2,39,4|1v2,2v-3vid —-1v-—
2,—|1V—|3V—|4,1

UnitProp
1

UnitProp
—2

Decide 3

UnitProp
4

Backtrac
k3

41

Transition Rules DPLL — Example

IIIIIIIIIIII

@" 1V2,2V—|3V4,—|1V—|2,—|1
V—|3V—|4,1

111v2,2v-3v4,-1v-2,-1v-3v

- 4,1
1,2|1v2,2v-3v4,-1v-2,-1v
—|3V—|4,1
1,2,39|1v2,2v-3v4,-1v-2,=-1v
—|3V—|4,1

1,2,3|1v2,2v-3vé4-1v-2,-1v
—-3v-=4,1

UnitProp
1

UnitProp
—2

Decide 3

UnitProp
4

Backtrac
k3

42

Transition Rules for DPLL (on one slide)

ME-C

UnitP M||F,Cv|—>MI||F,CvI{
nEerop |l is undefined in M

M F,Cos M| FC {Ior—.loccurinc
D .) —> y
ecide | is undefined in M

_ ME-C
Fail M | F, C — fail
M does not contain
decision literals
MI9N E-C
Backtrack MIN|F,C—o> M-l |
F,C | is the last decision literal

IIIIIIIIIIII

The DPLL System — Correctness

Some terminology
e Irreducible state: state to which no transition rule applies.

e Execution: sequence of transitions allowed by the rules and starting with
states of the form @ I F.

e Exhausted execution: execution ending in an irreducible state
Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with
@I Fand endinginMIIF, MEF

Proposition (Completeness) If F is unsatisfiable, every exhausted
execution starting with @ I| F ends with fail

Maintained in more general rules + theories

IIIIIIIIIIII

WATERLOO

Modern DPLL: CDCL

Conflict Driven Clause Learning

e two watched literals — efficient index to find clauses that can be
used in unit resolution

e periodically restart backtrack search
e activity-based decision heuristic to choose decision variable
e conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in
e Chapter 2 of Decision Procedures book
« ECE750 with Vijay Ganesh

IIIIIIIIIIII

45

Conflict Directed Clause Learning
Lemma learning

—t,p,q,s |tvapvVvag,—qVvs,—pVv-—s

—t,p,qs|ltvapvag,-qvVvs,—pv-—-s|—pv-—s

—t,p,q,s|tvapvag —-qvVvs,—pv-—s|—pv-q

—t,p,q,s|tvapvag,—-qvVvs,—pv—-s|—pvt

IIIIIIIIIIII

46

Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses
deduced from the last decision

—t,p,q,s |tv—=pvag,—qVvs,apVv s

tV —pVq —q V S

tV-pVs —pV T8

=V

IIIIIIIIIIII

47

Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses
deduced from the last decision

—t,p,q,s |tv—=pvag,—qVvs,apVv s

“pV-q tvVv-pVq

tV-p

Trivial Resolution: at every resolution step, at least one clause is an
input clause

B WATERLSS 18

Modern CDCL: Abstract Rules

Initialize €| F F is a set of clauses
/~ Decide M| F =>M,?¢ | F ? is unassigned
Propagate M |F,Cv¢ = M, ¢Vt | F,cv¢ Cis false under M
S Sat M|F > M F true under M
4 Conflict M|F,C =M | F,C|C C is false under M
Learn M|F|C=M]| F,C|C
_ Unsat M| F|® = Unsat
Backiump ~ MM'|F|Cv¢= M{V*|F CSM—-teM
Resolve M|F|CVv-¢=M|F|CVC Ve M
Forget M|F,C = M| F C is a learned clause
Restart M|F= ¢ | F [Nieuwenhuis, Oliveras, Tinelli JLACM 06] customized

IIIIIIIII

49

Conjuctive Normal Form

p Y =CNF @ > YNANY =
p — Y = CONF VY
=(p V) = CNF - A\ =)
—(p A) = CNF i V =)
2 — CNF ©

(e AY)VE =conr (PVE) AW VE)

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

IIIIIIIIIIII

50

Tseitin Transformation — Main Ildea

Introduce a fresh variable e; for every subformula G;
of F

e intuitively, e; represents the truth value of G;
Assert that every e; and G, pair are equivalent
c g G

e and express the assertion as CNF

Conjoin all such assertions in the end

IIIIIIIIIIII

51

Formula to CNF Conversion

def cnf (¢): mk_fresh_var() returns a fresh

p, F = cnf_rec (4) variable not used anywhere before
return p A F

def cnf_rec (¢):
if is_atomic (¢): return (¢, True)
elif ¢ == ¢ A E:
d, F1 = cnf_rec (V)
r, F, = cnf_rec (§)

p = mk_fresh_var ()
C 1s CNF for p<>*(qgAr)
C = (=pvq)A(=pVr)A(pV-qV-r)
return (p, F1AF,AC)
elif ¢ == Yv&: Exercise: Complete cases for

¢ == WV, ¢==—, ¢ == Y>3¢

% WATERLOO 52

Tseitin Transformation: Example

G:po(g-o1)

G: ey /(e (p>ey)) N (e (g—1))

OBE® 1 ¢ (g 7)

| I
/\/J\/\

2

<

J

K

<

=

IIIIIIIIIIII

Tseitin Transformation: Example

IIIIIIIIIIII

G:po(g-o1)

G: ey /(e (prey)) N (e (q—1))

eo <> (p <> €1)

(€0 = (p > €1)) A ((p <> e1)) = eo)
(eg = (p —e1)) A(eg — (e1 = p)) A
((pAer) V(mpA—er)) = eo)

(meg VpVer)A(—egV—er Vp) A
(—pV —e1 Veg) AlpVerVeg)

54

Tseitin Transformation: Example

G:p+—(@—>r)

€9

OO}

G : ey /(6o (preq)) N (er < (q—1))

G:ep /N (—eV—pVves) N (—eVpV—eq) /(e
vpve,) N (egV—pV—e,) N

Q 0 (—e; Voqvr) A (e, Vg (e, V)

IIIIIIIIIIII

95

Tseitin Transformation [1968]

Used in practice
* No exponential blow-up
e CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:
e F’ is equisatisfiable to F

e Every model of F’ can be translated (i.e., projected) to a model of F
e Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion

UNIVERSITY OF

WATERLOO

56

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

start with comments

cnf 5 3

-5 4 0

-1 534090

-3 -4 0
Format details

e comments start with ¢

e header line: p cnf nbvar nbclauses

— nbvar is # of variables, nbclauses is # of clauses

e each clause is a sequence of distinct numbers terminating with 0

— positive numbers are variables, negative numbers are negations

C
C
C
P
1

UNIVERSITY OF

WATERLOO

Y

BOUNDED MODEL CHECKING

IIIIIIIIIIII

58

SAT-based Model Checking

Main idea

Translate the model and the specification to
propositional formulas (p, =P, PVa, PAG, P—4...)

Reduce the model checking problem to satisfiabil,
of propositional formulas

O
o O
Use efficient tools (SAT solvers) for solving the
satisfiability problem

IIIIIIIIIIII

%) WATERLOO 59

Modeling with Propositional Formulas

= =

Finite-State System is modeled as (V, INIT, T):

e V —finite set of Boolean variables stat.e =
e Boolean variables: a b ¢ = 8 states: 000,001,... valua.tlon to
e INIT(V) — describes the set of initial states variables

e INIT=-aA-b
e T(V,V’) - describes the set of transitions
e T(a,b,c,a’,b’,c’)=(c’ & (aAb)Vc) note: c=¢, andc' =c¢,,
Property:
* p(V) - describes the set of states satisfying p
ey R=aV-c (Bad=-p=-aAc)

WATERLOO 60

Modeling in CNF (Tseitin encoding)

g=aAb

T(a,b,c,g,p,a’,b’,c’) =

g—aAb,
pegVeg,

c'— P
Each circuit element is a constraint

IIIIIIIIIIII

Bounded model checking (BMC)
for checking AGp

Given
A finite transition system M= (V, INIT(V), T(V,V’))
e A safety property AG p, where p = p(V)
e Abound k

Determine

e Does M contain a counterexample to p of
k transitions (or fewer) ?

* BMC can handle all of LTL formulas

A. Biere, A. Cimatti, E. M. Clarke, M. Fuijita, Y. Zhu, DAC'99
%) WATERLOO 62

Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying —p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

IIIIIIIII

63

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

g=aAb

T(a,b,c,a’,b’,c’) =

C g<—aAb,

p<—gVe,

c—p

64

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

fM’k =INITOAToATIA e ATy

ai ai ai
g g g
INITOb I : I h b I
P T P (o P T

ao: bOrCOI alrb1;C1r ak—1rbk-1rck-1t aktbkrckr
gOlpo gllpl gk—lrpk-l gklpk
INIT, = INIT(V,)
UUUUUUUUUUU T =T(Vi,\Vi.1)

%) WATERLOO 65

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

fox =Vico, « (—P;) [Sometimes f,\ = —py]

IIIIIIIIIIII

66

Bounded model checking with SAT

Construct a formula fy, , describing all possible
computations of M of length k

Construct a formula f, . expressing that ¢=EF—p holds
within k computation steps

Check whether f =1, Af issatisfiable

If f is satisfiable then M |# AGp
The satisfying assignment is a counterexample

IIIIIIIIIIII

%) WATERLOO 67

BMC for checking AG p with SAT

Unfold the model k times: Biere, et al. TACAS99

e U=TO AT A LLATR
10> = 1(V,)

T =T(V;,Vis1)
P = p(V,)

d d d k
<0> b b b —p<k>
. Py . TR

e Use SAT solver to check satisfiability of

1<0> A U A _|p<k>

e |f satisfiable: the satisfying assignment describes a
counterexample of length k

e |f unsatisfiable: property has no counterexample of length k

IIIIIIIIIIII

%) WATERLOO 68

Example — shift register

Shift register of 3 bits: <x, vy, z>
Transition relation:
T(xy,zx,y,2’) = Xoy Ayez A =1

error

Initial condition:
INIT(x,y,z) = x=0 v y=0 v z=0

Specification: AG (x=0 v y=0 v z=0)

IIIIIIIIIIII

69

Propositional formula for k=2

fM’2 = (Xo=0 Vv y5=0 v z,=0) A

(X0 Yo A Y1029 A Zp=1) A

INIT = x=0 v y=0 v z=0

T=xXeyAyez A=

1

(X300 Y1 A Yoo 27 A 2,=1)
f(p,Z = Vi=0,..2 (Xi=1 ANY=1 A Zi=1)

Satisfying assignment: 101 011 111

This is a counterexample!

IIIIIIIIIIII

P=x=0vy=0vz=0

70

A remark

In order to describe a computation of length k by a propositional formula we
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

UNIVERSITY OF

WATERLOO

71

BMC for checking o=AGp

1. k=1

2. Build a propositional formula f,* describing all prefixes
of length k of paths of M from an initial state

3. Build a propositional formula f(Pk describing all prefixes
of length k of paths satisfying F—p

4. If (fy* Af,¥) is satisfiable,
return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.

IIIIIIIIIIII

72

Bounded Model Checking

-

IIIIIIIIIIII

73

Bounded Model Checking

IIIIIIIIIIII

74

>

Bounded Model Checking

IIIIIIIIIIII

WATERLOO

75

BMC for checking AFp (p=EG—p)

Is there an infinite path in M
e From an initial state

e all of its states satisfying —p
e Over k+1 states ?

If exists, there must also exist a lasso

UNIVERSITY OF

WATERLOO

76

BMC for checking AFp (p=EG—p)

An infinite path in M, from an initial state, over k+1 states, all
satisfying —p:

ka (VOI""Vk) -
INIT(Vo) A Aicg ot T(ViVisa) A Vicg eeier (ViEVI)

* V\=V; means bitwise equality: Ai_g , (v; <> V;)

f(Pk (Vo,...,Vk) - /\i=0,"'k _'p(vl)

Remark: BMC can handle all of LTL formulas

IIIIIIIIIIII

77

Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
 Need bound on length of the shortest counterexample.

—diameter bound. The diameter is the maximum length of the
shortest path between any two states.

Using such k is often not practical due to the size of the model

— Worst case diameter is exponential. Obtaining better bounds is
sometimes possible, but generally intractable.

UNIVERSITY OF

WATERLOO 78

Bounded Model Checking

Terminates
e with a counterexample or

e with time- or memory-out
=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough

* Need bound on length of the shortest counterexample.

— diameter bound. The diameter is the maximum length of the shortest path
between any two states.

Using such k is often not practical

— Worst case diameter is exponential. Obtaining better bounds is sometimes
possible, but generally intractable.

UNIVERSITY OF

WATERLOO 79

Bounded Model Checker for C

CBMC

IIIIIIIIIIII

80

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

SAT UNSAT

(counterexample exists) (no counterexample found)

% WATERLOO 81

Programs and Claims

- Arbitrary ANSI-C programs

o With bitvector arithmetic, dynamic memory, pointers, ...

- Simple Safety Claims
e Array bound checks (i.e., buffer overflow)
e Division by zero
» Pointer checks (i.e., NULL pointer dereference)
 Arithmetic overflow
o User supplied assertions (i.e., assert (i > j))
e etc

UNIVERSITY OF

WATERLOO

82

Why use a SAT Solver?

- SAT Solvers are very efficient
- Analysis is completely automated
- Analysis as good as the underlying SAT solver

- Allows support for many features of a programming language
 bitwise operations, pointer arithmetic, dynamic memory, type casts

IIIIIIIIIIII

83

A (very) simple example (1)

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x?7y-1:0,
if (x) w=x7?70:y+1,

z =y - 1; z1=7,
else wl!=9

W=y + 1; 4
assert (z == 7 ||

w == 9)
%Y WATERLOO

D

UNSAT
no counterexample

assertion always holds!

84

A (very) simple example (2)

SAT

counterexample found!

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x?7y-1:0,
if (x) w=x7?70:y+1,

z =y - 1; z1=5,
else wl!=9

W=y + 1; 4
assert (z == 5 ||

w == 9)
%Y WATERLOO

D

y=8,x=1,w=0,z=7

85

What about loops?!

- SAT Solver can only explore finite length executions!
- Loops must be bounded (i.e., the analysis is incomplete)

Program
Claim
Bound (n)
SAT UNSAT
(counterexample exists) (no counterexample of

bound n is found)

CBMC: C Bounded Model Checker

- Developed at CMU by Daniel Kroening and Ed Clarke

- Available at: http://www.cprover.org/cbmc
* On Ubuntu: apt-get install cbmc
e with source code

- Supported platforms: Windows, Linux, OSX
- Has a command line, Eclipse CDT, and Visual Studio interfaces

- Scales to programs with over 30K LOC
- Found previously unknown bugs in MS Windows device drivers

87

http://www.cprover.org/cbmc

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as

« Bit vector operators (shifting, and, or,...)
« Pointers, pointer arithmetic

« Dynamic memory allocation: malloc/free

 Dynamic data types: char s[n]

« Side effects
e float/double

e Non-determinism

IIIIIIIIIIII

88

DEMO

%) WATERLOO

PN

Using CBMC from Command Line

- To see the list of claims

cbmc —--show-claims -I include file.c

- To check a single claim

cbmc —--unwind n —--claim x —I include file.c

- For help
e cbmc --help

90

>

How does it work

Transform a programs into a set of equations

1. Simplify control flow

Unwind all of the loops

Convert into Single Static Assignment (SSA)
Convert into equations

Bit-blast

Solve with a SAT Solver

Convert SAT assignment into a counterexample

T L R

IIIIIIIIIIII

WATERLOO

91

CBMC: Bounded Model Checker for C

A tool by D. Kroening/Oxford and Ed Clarke/CMU

C Program

SAFE

UNSAFE + CEX

IIIIIIIIIIII

92

Control Flow Simplifications

e All side effect are removed

e e.g., Jj=1i++becomes j=i;i=i+1

Control Flow is made explicit

e continue, break replaced by goto

All loops are simplified into one form

e for,do while replaced by while

93

Loop Unwinding

All loops are unwound

« can use different unwinding bounds for different loops

e to check whether unwinding is sufficient special “unwinding
assertion” claims are added

If a program satisfies all of its claims and all unwinding
assertions then it is correct!

Same for backward goto jumps and recursive functions

%) WATERLOO 94

Loop Unwinding

void f(...) {
Qéile(cond) {
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

95

Loop Unwinding

void f(...) {
)
while(cond) {

}
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

96

Loop Unwinding

void f(...) { while() loops are unwound

. o iteratively
if(cond) { Break / continue replaced by
goto

if(cond) {
while(cond) {

}
}
}

Remainder;

}

WATERLOO

Unwinding assertion

void f(...) {
if(cond) {
if(cond) {
if(cond) {
while(cond) {

}
}

}
}

Remainder;

}

WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

98

Unwinding assertion

void f(...) {

if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

}
! Unwinding
} } assertion
Remainder;
}
Y WATERLOO

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if

program runs longer than
bound permits

Positive correctness result!

99

Example: Sufficient Loop Unwinding

void f(...) {
Jj=1
while (7 <= 2)

Remainder;

}

unwind = 3

IIIIIIIIIIII

void f(...) {
j =1
if(j <= 2) {

if(j <= 2) {
if(j <= 2) {

assert(!(j <= 2));
}
}
}
}

Remainder;

}

100

Example: Insufficient Loop Unwinding

void f(...) {
Jj=1
while (7 <= 10)

Remainder;

}

unwind = 3

IIIIIIIIIIII

void f(...) {
j =1
if(j <= 10) {

if(j <= 10) {
if(j <= 10) {

assert(!(j <= 10));
}
}
}
}

Remainder;

}

101

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program Constraints

X = a; X =a &&
y = x + 1; y=x+1&&
z =y — 1; > z=y—-1&&
4 4

% WATERLOO 102

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,
use a new variable for the RHS of each assignment

Program SSA Program
X=X4y; X1=x0%Y05
X=K*2; P X2=X1*2;
ali]=100; ai1ligl=100;

4 4

% WATERLOO 103

What about conditionals?

Program SSA Program
1t (v) if (vp)
X = Y Xo = Yoo
else else
X = Z, p } Xl = Zo,
W = X; W, = X?7;
4 4

IIIIIIIIIIII

%) WATERLOO 104

What about conditionals?

Program SSA Program
1t (v) if (vy)
X = Yy Xo T Yo
else else
X = Z; p X1 = Zg
X, = Vg ? Xg Xq7
W = X; W, = X,
7 4

% WATERLOO 105

Adding Unbounded Arrays

N { p(e) : i=p(a)

vala] =e P Voo = va—1[i] : otherwise

Arrays are updated “whole array” at a time

A[1] = 5: A=Ai:i==125:Afi
A[2] = 10: A,=Ai:i==2710:A[]

A[K] = 20 As=Ai:i==k? 20 :Ali]

XAMPISS Af2l==10 A5 AMf3]== Al

Ag[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

106

Example

int main() {
int x, y;
y=38;
if(x)
Y=
else

yt++;

b

assert

(y==7 1|1

y==9);

=

4

UNIVERSITY OF

WATERLOO

int main() {

int x, y;

y1=38;

if (xp)
yo=y1-1;

else

y3=y1tl;
y4= X0 7y2:¥3;
assert
(y4==7 ||
y4==9) ;

4

y1 = 3
yo =y1 — 1
y3 =y1 +1

Yya =2x0°Yy2 . Y3)

(ya =7Vys=9)

4

107

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information
e Separate for each pointer
e Separate for each instance of each program location

Dereferencing operations are expanded into case-split on pointer object
(not: offset)

» Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
e Consists of pair <object, offset>

UNIVERSITY OF

WATERLOO 108

Dynamic Objects

Dynamic Objects:
e malloc/ free
 Local variables of functions
Auxiliary variables for each dynamically allocated object:
e Size (number of elements)
e Active bit
e Type
malloc sets size (from parameter) and sets active bit
free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

UNIVERSITY OF

WATERLOO 109

Modeling with CBMC

% WATERLOO

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
e assert(e) — aborts an execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

Non-determinism
e nondet_int() — returns a non-deterministic integer value

int nondet_int () { int x; return x; }

Assumptions
e assume(e) — “ignores” execution when e is false, no-op otherwise

void assume (_Bool e) { while (l!e) ; }

UNIVERSITY OF

%) WATERLOO 111

Example

[Er=) UN

% WATERLOO 112

Using nondet for modeling

Library spec:
“foo is given non-deterministically, but is taken until returned”
CMBC stub:

int nondet_int (); void return_foo ()
int is foo_taken = 0; { is_foo_taken = 0; }
int grab foo () {

if (!is_foo_taken)

is foo taken = nondet _int ();

4

return is_foo taken; }

% WATERLOO 13

Assume-Guarantee Reasoning (1)

|s foo correct? int foo (int* p) { .. }

void main(void) {

Check by splitting
on the argument of foo(x);
foo

foo(y);

IIIIIIIIIIII

%) WATERLOO 114

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

int foo (int* p) { _ CPROVER assume(p!=NULL); .. } J

(G)Is foo guaranteed to be called with a non-NULL argument?

void main(void) {

assert (x!=NULL);// foo(x);

assert (y!=NULL); //foo(y);
i

IIIIIIIIIIII

%) WATERLOO 115

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if (x > 0) {
__CPROVER_assume (x < 0);

This program is passed by CMBMC! | assert (@); } E

Assume must either be checked with assert or used as an idiom:

X = nondet_int ();

y = nondet_int ();

CPROVER _assume (x < Vy);

_ 4

% WATERLOO 16

Example: Prophecy variables

int x, y, v;
void main (void)

{

IIIIIIIIIIII

WATERLOO 117

Context-Bounded Analysis with CBMC

% WATERLOO

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

Context-Swtich
(T, preempted by T,)

Context-Swtich

Context-Swtich
(T4 preempted by T,) XESWH

(T, preempted by T,)

IIIIIIIIIIII

%) WATERLOO 119

CBA via Sequentialization

1. Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2. Check P’ with CBMC

Two-Thread Concurrent

Program in C - Sequential Program
UNSAFE +
CEX OK

%Y WATERLOO 120

>

Key Idea

1. Divide execution into rounds based on context switches
2. Execute executions of each context separately, starting from a

symbolic state

3. Run all parts of Thread 1 first, then all parts of Thread 2
4. Connect executions from Step 2 using assume-statements

T []

T, I

[

Round 0

Round 1

Round 2

IIIIIIIIIIII

WATERLOO

121

Sequentialization in Pictures

v v
glo]] | |al1]] | 9lZ]
T T T

T, T,

Guess initial value of each global in each round
Execute task bodies
° T1
° T2
Check that initial value of round i+1 is the final value of round i

IIIIIIIIIIII

%) WATERLOO 192

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1. for each global variable g, let g[r] be the value of g in round r
2. execute thread bodies sequentially
— first thread 1, then thread 2
— for global variables, use g[r] instead of g when running in round r
— non-deterministically decide where to context switch
— at a context switch jump to a new round (i.e., incr)
3. check that initial value of round r+1 is the final value of round r
4. check user assertions

UNIVERSITY OF

WATERLOO 123

CBA Sequentialization 1/2

var

void main()
initShared();

initGlobals

checkAssumtpions ()

%) WATERLOO 124

CBA Sequentialization: Task Body 2/2

void T’ ()

void contextSwitch()
int oldRound;

For more details, see
Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

%Y WATERLOO 125

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to
specify many interesting claims

Use CBMC to check that this
loop has a non-terminating
execution

int dir=1;

while (x>0) {
X = X + dir;
if (x>10) {dir = -1*dir;}
if (x<5) {dir = -1*dir;}

% WATERLOO 126

