
SAT and Bounded Model Checking

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

2 2

Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2 (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1) (iff)

3 3

Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula

4 4

Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of
disjunctions of literals (i.e., a conjunction of clauses):
• e.g., (v1 || ~v2) && (v3 || v2)

A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of
conjunctions of literals

n̂

i=1

(
mi_

j=1

Li,j)

n_

i=1

(
mî

j=1

Li,j)

5 5

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):
• determine whether a given CNF C is satisfiable

6 6

CNF Examples

CNF 1
• ~b
• ~a || ~b || ~c
• a
• sat: s(a) = True; s(b) = False; s(c) = False

CNF 2
• ~b
• ~a || b || ~c
• a
• ~a || c
• unsat

7 7

Algorithms for SAT

SAT is NP-complete
• solution can be checked in polynomial time
• no polynomial algorithms for finding a solution are known

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf

8 8

Background Reading: SAT

9 9

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

10 10

SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of
variables from

HW designs Courtesy Daniel le Berre

11 11

NP is the new P!

Solve any computational problem by effective reduction to SAT/SMT
• iterate as necessary

Problem

encode

decode

SAT/SMT
Solver

12 12

Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of
G such that no two adjacent vertices have the
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring

13 13

k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V)

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V)

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)

14 14

DPLL PROCEDURE
Davis Putnam Logemann Loveland

15 15

References

Chapter 2: Decision Procedures for
Propositional Logic

https://link.springer.com/book/10.1007%2F978-3-540-74105-3

16 16

Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given
propositional logic (PL) formula F is satisfiable
• NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach
• Enumerate models (i.e., truth tables)
• Enumerate resolution proofs

Modern SAT solvers
• DPLL algorithm
– Davis-Putnam-Logemann-Loveland

• Combines model- and proof-based search
• Operates on Conjunctive Normal Form (CNF)

17 17

Propositional Resolution

Res({C, p}, {D, !p}) = {C, D}

Given two clauses {C, p} and {D, !p} that contain a literal p
of different polarity, create a new clause by taking the union
of literals in C and D

C ∨ p D ∨ ¬p

C ∨ D
Resolvent

Pivot

18 18

Resolution Lemma

Lemma:
Let F be a CNF formula. Let R be a resolvent
of two clauses X and Y in F. Then, F ∪ {R} is
equivalent to F

19 19

Resolution Theorem

Let F be a set of clauses

Theorem: A CNF F is UNAT iff Res*(F) contains an empty clause

Res(F) = F [{R | R is a resolvent of two clauses in F}

Res0(F) = F

Resn+1(F) = Res(Resn(F)), for n � 0

Res⇤(F) =
[

n�0

Resn(F)

20 20

Example of a resolution proof

21 21

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

22 22

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resi(F) for any i.
Let n be such that Resn+1(F) contains an empty clause, but Resn(F) does
not. Then Resn(F) must contain to unit clauses L and ¬L. Hence, it is
UNSAT.

(Completeness) By induction on the number of different atomic
propositions in F.
Base case is trivial: F contains an empty clause.
IH: Assume F has atomic propositions A1, … An+1

Let F0 be the result of replacing An+1 by 0
Let F1 be the result of replacing An+1 by 1
Apply IH to F0 and F1 . Restore replaced literals. Combine the two
resolutions.

23 23

Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P

P1, . . . , Pn ` C

24 24

Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

C ∨ p D ∨ ¬p

C ∨ D

25 25

DP Procedure: SAT solving by resolution

Assume that input formula F is in CNF

1. Pick two clauses C1 and C2 in F that can be
resolved

2. If the resolvent C is an empty clause, return
UNSAT

3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses

26 26

DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions

Proof search is restricted to unit resolution

• can be done very efficiently (polynomial time)

Case split restores completeness

DPLL can be described by the following two rules

• F is the input formula in CNF

Davis, Martin; Logemann, George; Loveland, Donald (1962).

"A Machine Program for Theorem Proving".

C. ACM. 5 (7): 394–397. doi:10.1145/368273.368557

!
!,# | !,¬# split & '() ¬& '*+ (,- .(/

!, 0∨ℓ,¬ℓ
!, 0, ¬ℓ unit

https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/368273.368557

27 27

The original DPLL procedure

Incrementally builds a satisfying truth assignment
M for the input CNF formula F

M is grown by
• deducing the truth value of a literal from M and F, or
• guessing a truth value

If a wrong guess for a literal leads to an
inconsistency, the procedure backtracks and tries
the opposite value

28 28

DPLL: Illustration

M | F

Partial model Set of clauses

29 29

DPLL: Decide

Guessing (Decide)

p, ¬q | p Ú q, ¬q Ú r

p | p Ú q, ¬q Ú r

30 30

DPLL: Boolean Constraint Propagation

Deducing (Unit Propagation or BCP)

p, s| p Ú q, ¬p Ú s

p | p Ú q, ¬p Ú s

31 31

DPLL: Backtracking

Backtracking

p, s | p Ú q, s Ú q, ¬pÚ ¬q

p, ¬s, q | p Ú q, s Ú q, ¬pÚ ¬q

32 32

Pure Literals

A literal is pure if only occurs positively or negatively.

33 33

DPLL Procedure

34 34

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3,

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Conflict

35 35

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Deduce 4
1, 2, 3,

4
1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Guess 3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Undo 3

36 36

The Original DPLL Procedure – Example

1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

assign
Deduce 1

1 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1Deduce ¬2

1, 2 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,
¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Model
Found

Guess ¬3
1, 2, 3 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2,

¬ 1 Ú ¬ 3 Ú ¬ 4, 1

37 37

An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-
style calculi

Such calculi, however, cannot model meta-logical features such as
backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of
conditional transition rules

38 38

An Abstract Framework for DPLL

State
• fail or M ‖ F
• where
– F is a CNF formula, a set of clauses, and
– M is a sequence of annotated literals denoting a partial truth assignment

Initial State
• ∅ ‖ F, where F is to be checked for satisfiability

Expected final states:
• fail if F is unsatisfiable
• M ‖ G

where
– M is a model of G
– G is logically equivalent to F

39 39

Transition Rules for DPLL

Extending the assignment:

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

Notation: ld is a decision literal

40 40

Transition Rules for DPLL

Repairing the assignment:

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain
decision literals

M ld N ‖ F, C ® M ¬l ‖ F, C Backtrack
M ld N ⊨ ¬C

l is the last decision
literal

41 41

Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
41, 2, 3d, 4 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬

2, ¬ 1 Ú ¬ 3 Ú ¬ 4, 1

Decide 3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrac
k 3

42 42

Transition Rules DPLL – Example

Æ ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1
Ú ¬ 3 Ú ¬ 4, 1 UnitProp

11 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú ¬ 3 Ú
¬ 4, 1 UnitProp

¬21, 2 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

UnitProp
4

Decide 3
1, 2, 3d ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú

¬ 3 Ú ¬ 4, 1

Backtrac
k 3

1, 2, 3 ‖ 1 Ú 2, 2 Ú ¬3 Ú 4, ¬ 1 Ú ¬ 2, ¬ 1 Ú
¬ 3 Ú ¬ 4, 1

43 43

Transition Rules for DPLL (on one slide)

M ‖ F, CÚ l ® M l ‖ F, C Ú lUnitProp
M ⊨ ¬C

l is undefined in M

M ‖ F, C ® M ld ‖ F, C Decide
l or ¬l occur in C

l is undefined in M

M ‖ F, C ® fail Fail
M ⊨ ¬C

M does not contain
decision literals

M ld N ‖ F, C ® M ¬l ‖
F, C

Backtrack
M ld N ⊨ ¬C

l is the last decision literal

44 44

The DPLL System – Correctness

Some terminology

• Irreducible state: state to which no transition rule applies.

• Execution: sequence of transitions allowed by the rules and starting with

states of the form ∅ ǁ F.

• Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with

∅ ǁ F and ending in M ǁ F, M ⊨ F

Proposition (Completeness) If F is unsatisfiable, every exhausted

execution starting with ∅ ǁ F ends with fail

Maintained in more general rules + theories

45 45

Modern DPLL: CDCL

Conflict Driven Clause Learning
• two watched literals – efficient index to find clauses that can be

used in unit resolution
• periodically restart backtrack search
• activity-based decision heuristic to choose decision variable
• conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in
• Chapter 2 of Decision Procedures book
• ECE750 with Vijay Ganesh

46 46

Conflict Directed Clause Learning

Lemma learning

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ ¬q

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s |¬pÚ t

47 47

Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses
deduced from the last decision

t _ ¬p _ q ¬q _ s

t _ ¬p _ s ¬p _ ¬s
¬p _ t

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

48 48

Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses
deduced from the last decision

Trivial Resolution: at every resolution step, at least one clause is an
input clause

¬t, p, q, s | t Ú ¬p Ú q, ¬q Ú s, ¬pÚ ¬s

¬p ∨ ¬s ¬q ∨ s

¬p ∨ ¬q t ∨ ¬p ∨ q

t ∨ ¬p

49 49

Modern CDCL: Abstract Rules
Initialize !| # # $% & %'()* +,&-%'%
Decide . # ⟹ ., ℓ # ℓ $% -2&%%$32'4
Propagate . #, 5 ∨ ℓ ⟹ ., ℓ7∨ℓ #, 5 ∨ ℓ 5 $% *&,%' -24'8 .

Sat . |# ⟹ . # (8-' -24'8 .

Conflict . #, 5 ⟹ . #, 5 | 5 5 $% *&,%' -24'8 .
Learn . # | 5 ⟹ . #, 5 | 5
Unsat . # ∅ ⟹ :2%&(

Backjump ..′ # | 5 ∨ ℓ ⟹ .ℓ7∨ℓ # ̅5 ⊆ .,¬ℓ ∈ .′

Resolve . # | 5′ ∨ ¬ℓ ⟹ . # | 5′ ∨ 5 ℓ7∨ℓ ∈ .

Forget . #, 5 ⟹ . # 5 is a learned clause

Restart . # ⟹ ! # [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Model

Proof
Conflict

Resolution

50 50

Conjuctive Normal Form

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

'$)CNF '! ^ ! '
'!)CNF ¬' _
¬(' _))CNF ¬' ^ ¬
¬(' ^))CNF ¬' _ ¬
¬¬')CNF '
(' ^) _ ⇠)CNF (' _ ⇠) ^ (_ ⇠)

51 51

Tseitin Transformation – Main Idea

Introduce a fresh variable ei for every subformula Gi
of F
• intuitively, ei represents the truth value of Gi

Assert that every ei and Gi pair are equivalent
• ei ↔ Gi

• and express the assertion as CNF

Conjoin all such assertions in the end

52 52

Formula to CNF Conversion
def cnf (ɸ):
p, F = cnf_rec (ɸ)
return p ∧ F

def cnf_rec (ɸ):
if is_atomic (ɸ): return (ɸ, True)
elif ɸ == ψ ∧ ξ:
q, F1 = cnf_rec (ψ)
r, F2 = cnf_rec (ξ)

p = mk_fresh_var ()
C is CNF for p«(q∧r)
C = (¬p∨q)∧(¬p∨r)∧(p∨¬q∨¬r)
return (p, F1∧F2∧C)

elif ɸ == ψ∨ξ:
…

Exercise: Complete cases for

ɸ == ψ∨ξ, ɸ==¬ψ, ɸ == ψ«ξ

mk_fresh_var() returns a fresh
variable not used anywhere before

53 53

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0 ^ (e0$ (p$ e1)) ^ (e1 $ (q®r))

e1 $ (q ! r)
= (e1 ! (q ! r)) ^ ((q ! r) ! e1)
= (¬e1 _ ¬q _ r) ^ ((¬q _ r) ! e1)
= (¬e1 _ ¬q _ r) ^ (¬q ! e1) ^ (r ! e1)
= (¬e1 _ ¬q _ r) ^ (q _ e1) ^ (¬r _ e1)

54 54

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0 ^ (e0 $ (p$ e1)) ^ (e1$ (q®r))

e0 $ (p $ e1)
= (e0 ! (p $ e1)) ^ ((p $ e1)) ! e0)
= (e0 ! (p ! e1)) ^ (e0 ! (e1 ! p)) ^

(((p ^ e1) _ (¬p ^ ¬e1)) ! e0)
= (¬e0 _ ¬p _ e1) ^ (¬e0 _ ¬e1 _ p) ^

(¬p _ ¬e1 _ e0) ^ (p _ e1 _ e0)

55 55

Tseitin Transformation: Example

G : p $ (q ® r)

$

®

rq

p

e0

e1

G : e0^ (e0 $ (p$ e1)) ^ (e1$ (q®r))

G : e0^ (¬e0_¬p_e1) ^ (¬e0_p_¬e1) ^ (e0
_p_e1) ^ (e0_ ¬ p_¬e1) ̂

(¬e1_¬q_r) ̂ (e1_q) ̂ (e1_¬r)

56 56

Tseitin Transformation [1968]

Used in practice

• No exponential blow-up

• CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:

• F’ is equisatisfiable to F

• Every model of F’ can be translated (i.e., projected) to a model of F

• Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion

57 57

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
Format details
• comments start with c
• header line: p cnf nbvar nbclauses
– nbvar is # of variables, nbclauses is # of clauses

• each clause is a sequence of distinct numbers terminating with 0
– positive numbers are variables, negative numbers are negations

58 58

BOUNDED MODEL CHECKING

59 59

SAT-based Model Checking

Main idea
Translate the model and the specification to
propositional formulas

Reduce the model checking problem to satisfiability
of propositional formulas

Use efficient tools (SAT solvers) for solving the
satisfiability problem

(p, ¬p, p∨q, p∧q, p→q…)

SAT
∈ NPC…

60 60

Modeling with Propositional Formulas

a
b c

Finite-State System is modeled as (V, INIT, T):
• V – finite set of Boolean variables

• Boolean variables: a b c è 8 states: 000,001,…
• INIT(V) – describes the set of initial states

• INIT = ¬a ∧ ¬b

• T(V,V’) – describes the set of transitions
• T(a,b,c,a’,b’,c’) = (c’ ↔ (a ∧ b) ∨ c)

Property:
• p(V) - describes the set of states satisfying p

• p = a∨ ¬c (Bad = ¬p = ¬a∧ c)

00
0

01
0

11
1

10
1

10
0

00
1

01
1

11
0

00
1

01
1

state =
valuation to

variables

note: c = ct and c' = ct+1

61 61

Modeling in CNF (Tseitin encoding)

g

p

Each circuit element is a constraint

g = a ∧ b
c' = p

p = g ∨ c
T(a,b,c,g,p,a’,b’,c’) =

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p

a
b c

62 62

Given
• A finite transition system M= (V, INIT(V), T(V,V’))
• A safety property AG p, where p = p(V)
• A bound k

Determine
• Does M contain a counterexample to p of

k transitions (or fewer) ?

Bounded model checking (BMC)
for checking AGp

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
* BMC can handle all of LTL formulas

63 63

Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying ¬p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

64 64

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k

a
b cp

g
g = a ∧ b

p = g ∨ c

c' = p T(a,b,c,a’,b’,c’) =

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p

65 65

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k

fM,k = INIT0 Ù T0 Ù T1 Ù ... Ù Tk-1
a
b

cp

g a
b

cp

g a
b

cp

g
...INIT0

a0,b0,c0,

g0,p0

a1,b1,c1,

g1,p1

ak-1,bk-1,ck-1,

gk-1,pk-1

INIT0 = INIT(V0)

Ti = T(Vi,Vi+1)

ak,bk,ck,

gk,pk

66 66

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k
Construct a formula fj,k expressing that j=EF¬p holds
within k computation steps

fj,k = Vi=0,..k (¬pi) [Sometimes fj,k = ¬pk]

pi = p(Vi)

67 67

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k
Construct a formula fj,k expressing that j=EF¬p holds
within k computation steps
Check whether f = fM,k Ù fj,k is satisfiable

If f is satisfiable then M |¹ AGp
The satisfying assignment is a counterexample

68 68

BMC for checking AG p with SAT

Unfold the model k times:
• U = T<0> ∧ T<1> ∧ ... ∧ T<k-1>

a
b

c

a
b

c

a
b

c...I<0> ¬p<k>

• Use SAT solver to check satisfiability of
I<0> ∧ U ∧ ¬p<k>

• If satisfiable: the satisfying assignment describes a
counterexample of length k

• If unsatisfiable: property has no counterexample of length k

Biere, et al. TACAS99

I<0> = I(V0)
T<i> = T(Vi,Vi+1)

p<k> = p(Vk)

69 69

Example – shift register

Shift register of 3 bits: <x, y, z>
Transition relation:
T(x,y,z,x’,y’,z’) = x’↔y Ù y’↔ z Ù z’=1

|____|
error

Initial condition:
INIT(x,y,z) = x=0 Ú y=0 Ú z=0

Specification: AG (x=0 Ú y=0 Ú z=0)

70 70

Propositional formula for k=2

fM,2 = (x0=0 Ú y0=0 Ú z0=0) Ù
(x1↔ y0 Ù y1↔ z0 Ù z1=1) Ù
(x2↔ y1 Ù y2↔ z1 Ù z2=1)

fj,2 = Vi=0,..2 (xi=1 Ù yi=1 Ù zi=1)

Satisfying assignment: 101 011 111
This is a counterexample!

INIT = x=0 Ú y=0 Ú z=0

T = x’↔ y Ù y’↔ z Ù z’=1

P = x=0 Ú y=0 Ú z=0

71 71

A remark

In order to describe a computation of length k by a propositional formula we
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

72 72

BMC for checking j=AGp

1. k=1
2. Build a propositional formula fM

k describing all prefixes
of length k of paths of M from an initial state

3. Build a propositional formula fjk describing all prefixes
of length k of paths satisfying F¬p

4. If (fM
k Ù fjk) is satisfiable,

return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.

73 73

Bounded Model Checking

INIT

R1

¬p

INIT(V0) �T(V0,V1)�¬p(V1)

74 74

Bounded Model Checking

INIT

R1 R2

¬p

INIT(V0) �T(V0,V1) �T(V1,V2)�¬p(V2)

75 75

Bounded Model Checking

INIT

R1 R2

¬p

……

INIT(V0)

Rk

�T(V0,V1) �…�T(Vk-1,Vk)�¬p(Vk)

76 76

BMC for checking AFp (j=EG¬p)

Is there an infinite path in M
• From an initial state
• all of its states satisfying ¬p
• Over k+1 states ?

If exists, there must also exist a lasso

77 77

BMC for checking AFp (j=EG¬p)

An infinite path in M, from an initial state, over k+1 states, all
satisfying ¬p:

fM
k (V0,…,Vk) =

INIT(V0) Ù ⋀i=0,…k-1 T(Vi,Vi+1) Ù ⋁i=0,…k-1 (Vk=Vi)

• Vk=Vi means bitwise equality: ⋀j=0,…n (vkj « vij)

fjk (V0,…,Vk) = ⋀i=0,…k ¬p(Vi)

Remark: BMC can handle all of LTL formulas

78 78

Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
–diameter bound. The diameter is the maximum length of the

shortest path between any two states.

Using such k is often not practical due to the size of the model
– Worst case diameter is exponential. Obtaining better bounds is

sometimes possible, but generally intractable.

79 79

Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
– diameter bound. The diameter is the maximum length of the shortest path

between any two states.

Using such k is often not practical
– Worst case diameter is exponential. Obtaining better bounds is sometimes

possible, but generally intractable.

80 80

CBMC
Bounded Model Checker for C

81 81

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

82 82

Programs and Claims

• Arbitrary ANSI-C programs
• With bitvector arithmetic, dynamic memory, pointers, …

• Simple Safety Claims
• Array bound checks (i.e., buffer overflow)

• Division by zero

• Pointer checks (i.e., NULL pointer dereference)

• Arithmetic overflow
• User supplied assertions (i.e., assert (i > j))

• etc

83 83

Why use a SAT Solver?

• SAT Solvers are very efficient

• Analysis is completely automated

• Analysis as good as the underlying SAT solver

• Allows support for many features of a programming language
• bitwise operations, pointer arithmetic, dynamic memory, type casts

84 84

A (very) simple example (1)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!

85 85

A (very) simple example (2)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7

86 86

What about loops?!

• SAT Solver can only explore finite length executions!
• Loops must be bounded (i.e., the analysis is incomplete)

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample of

bound n is found)

SAT

(counterexample exists)

CNF

Bound (n)

87 87

CBMC: C Bounded Model Checker

• Developed at CMU by Daniel Kroening and Ed Clarke

• Available at: http://www.cprover.org/cbmc

• On Ubuntu: apt-get install cbmc
• with source code

• Supported platforms: Windows, Linux, OSX

• Has a command line, Eclipse CDT, and Visual Studio interfaces

• Scales to programs with over 30K LOC

• Found previously unknown bugs in MS Windows device drivers

http://www.cprover.org/cbmc

88 88

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as
• Bit vector operators (shifting, and, or,…)

• Pointers, pointer arithmetic

• Dynamic memory allocation: malloc/free
• Dynamic data types: char s[n]

• Side effects
• float / double

• Non-determinism

89 89

DEMO

90 90

Using CBMC from Command Line

• To see the list of claims
cbmc --show-claims -I include file.c

• To check a single claim
cbmc --unwind n --claim x –I include file.c

• For help
• cbmc --help

91 91

How does it work

Transform a programs into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample

92 92

CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

Parser Static Analysis

CNF-genSAT solver

CEX-gen CBMC

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

goto-
program

equations

93 93

Control Flow Simplifications

l All side effect are removed
• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit
• continue, break replaced by goto

• All loops are simplified into one form
• for, do while replaced by while

94 94

Loop Unwinding

• All loops are unwound
• can use different unwinding bounds for different loops

• to check whether unwinding is sufficient special “unwinding
assertion” claims are added

• If a program satisfies all of its claims and all unwinding
assertions then it is correct!

• Same for backward goto jumps and recursive functions

95 95

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
while(cond) {
Body;

}
Remainder;

}

96 96

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
while(cond) {
Body;

}
}
Remainder;

}

97 97

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
Remainder;

}

98 98

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
}
Remainder;

}

99 99

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Positive correctness result!

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

}
}

}
}
Remainder;

}

Unwinding
assertion

100100

Example: Sufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
assert(!(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)
j = j + 1;

Remainder;
}

unwind = 3

101101

Example: Insufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
assert(!(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)
j = j + 1;

Remainder;
}

unwind = 3

102102

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&

103103

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,
use a new variable for the RHS of each assignment

Program SSA Program

104104

What about conditionals?

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

w1 = x??;

What should ‘x’
be?

105105

What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2

106106

Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == 10 A2[1]==5 A2[3] == A0[3]

A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

107107

Example

108108

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information
• Separate for each pointer
• Separate for each instance of each program location

Dereferencing operations are expanded into case-split on pointer object
(not: offset)
• Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
• Consists of pair <object, offset>

109109

Dynamic Objects

Dynamic Objects:
• malloc / free
• Local variables of functions

Auxiliary variables for each dynamically allocated object:
• Size (number of elements)
• Active bit
• Type
malloc sets size (from parameter) and sets active bit
free asserts that active bit is set and clears bit
Same for local variables: active bit is cleared upon leaving the function

Modeling with CBMC

111111

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

112112

Example

int x, y;
void main (void)
{
x = nondet_int ();

assume (x > 10);
y = x + 1;

assert (y > x);
}

possible overflow

assertion fails

113113

Using nondet for modeling

Library spec:
“foo is given non-deterministically, but is taken until returned”

CMBC stub:

int nondet_int ();

int is_foo_taken = 0;

int grab_foo () {

if (!is_foo_taken)

is_foo_taken = nondet_int ();

return is_foo_taken; }

void return_foo ()

{ is_foo_taken = 0; }

114114

Assume-Guarantee Reasoning (1)

Is foo correct? int foo (int* p) { … }

void main(void) {

…

foo(x);

…

foo(y);

…

}

Check by splitting
on the argument of
foo

115115

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

int foo (int* p) { __CPROVER_assume(p!=NULL); … }

(G)Is foo guaranteed to be called with a non-NULL argument?
void main(void) {

…

assert (x!=NULL);// foo(x);

…

assert (y!=NULL); //foo(y);

…}

116116

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if (x > 0) {

__CPROVER_assume (x < 0);

assert (0); }This program is passed by CMBMC!

Assume must either be checked with assert or used as an idiom:

x = nondet_int ();

y = nondet_int ();

__CPROVER_assume (x < y);

117117

Example: Prophecy variables

int x, y, v;
void main (void)
{
v = nondet_int ();
x = v;

x = x + 1;
y = nondet_int ();
assume (v == y);

assert (x == y + 1);

}

v is a prophecy variable

it guesses the future value of y

assume blocks executions with a

wrong guess

syntactically: x is changed before y

semantically: x is changed after y

Context-Bounded Analysis with CBMC

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”

119119

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

T1

T2

Context-Swtich
(T1 preempted by T2)

Context-Swtich
(T2 preempted by T1) Context-Swtich

(T1 preempted by T2)

120120

CBA via Sequentialization

1. Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2. Check P’ with CBMC

Sequentialization CBMC

Two-Thread Concurrent
Program in C Sequential Program

OKUNSAFE +
CEX

121121

R

Key Idea

1. Divide execution into rounds based on context switches
2. Execute executions of each context separately, starting from a

symbolic state
3. Run all parts of Thread 1 first, then all parts of Thread 2
4. Connect executions from Step 2 using assume-statements

T1

T2

Round 0 Round 1 Round 2

122122

Sequentialization in Pictures

Guess initial value of each global in each round
Execute task bodies
• T1

• T2

Check that initial value of round i+1 is the final value of round i

g[0] g[1] g[2]

T1T1T1

T2 T2

123123

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1. for each global variable g, let g[r] be the value of g in round r
2. execute thread bodies sequentially
– first thread 1, then thread 2
– for global variables, use g[r] instead of g when running in round r
– non-deterministically decide where to context switch
– at a context switch jump to a new round (i.e., inc r)

3. check that initial value of round r+1 is the final value of round r
4. check user assertions

124124

CBA Sequentialization 1/2

void main()
initShared();
initGlobals();

for t in [0,N) : // for each thread
round = 0;
T’t();

checkAssumptions();
checkAssertions();

initShared()
for each global var g, g[0] = init_value(g);

initGlobals()
for r in [1,R): //for each round

for each global g: g[r] = i_g[r] = nondet();

checkAssumtpions()
for r in [0,R-1):

for each global g:
assume (g[r] == i_g[r+1]);

var
int round; // current round
int g[R], i_g[R]; // global and initial global
Bool saved_assert = 1; // local assertions

checkAssertions()
assert (saved_assert);

125125

CBA Sequentialization: Task Body 2/2
void T’t ()
Same as Tt, but each statement ‘st’ is replaced with:

contextSwitch(); st[g ¬ g[round]];
and ‘assert(e)’ is replaced with:

saved_assert = e;

void contextSwitch()
int oldRound;

if (nondet()) return; // non-det do not context switch

oldRound = round;
round = nondet_int();
assume (oldRound < round <= R-1);

For more details, see

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

126126

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to
specify many interesting claims

Use CBMC to check that this
loop has a non-terminating
execution

int dir=1;

while (x>0) {

x = x + dir;

if (x>10) {dir = -1*dir;}

if (x<5) {dir = -1*dir;}

}

