Announcements

Assignment 1 is due today

Next class is on Fri Oct 12: usual time and place

No class on Fri Nov 2

Projects

- only two people contacted me so far with initial ideas
- mini-IC3 implementation in Z3 is still available ©

k-Induction and Symbolic Model Checking

Automated Program Verification (APV) Fall 2018

Prof. Arie Gurfinkel

Symbolic model checking

Model is represented symbolically using Boolean formulas Model checking is performed on the symbolic representation **directly**

BDD-based

 Use specialized data structure, Binary Decision Diagrams, to represent and manipulate sets of states

SAT-based (most of this class)

- Represent sets of executions using Boolean formulas in Conjunctive Normal Form (CNF)
- Use efficient SAT(isfiability)-solvers for reasoning

SAT-based Model Checking

Bounded Model Checking

Is there a counterexample of k-steps

Unbounded Model Checking

- Induction and K-Induction (k-IND)
- Interpolation Based Model Checking (IMC)
- Property Directed Reachability (IC3/PDR)

Mathematical Induction

To proof that a property P(n) holds for all natural numbers n

- 1. Show that P(0) is true
- 2. Show that P(k+1) is true for some natural number k, using an Inductive Hypothesis that P(k) is true

Example: Mathematical Induction

Show by induction that P(n) is true

$$0 + \dots + n = \frac{n(n+1)}{2}$$

Base Case: P(0) is
$$0 = \frac{0(0+1)}{2}$$

IH: Assume P(k), show P(k+1)

$$0 + \dots + k + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)+2(k+1)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

$$Init(X_0) \wedge \left(\bigwedge_{i=0}^{N-1} Tr(X_i, X_{i+1})\right) \wedge Bad(X_N) \not\Rightarrow \bot$$

$$Init \Rightarrow Inv$$
 $Inv(X) \land Tr(X,X') \Rightarrow Inv(X')$ Inductive $Inv \Rightarrow \neg Bad$ Safe

Inductive Invariants

Initial

System S is safe iff there exists an inductive invariant Inv

- Initiation Initial ⊆ Inv
- Safety Inv \cap Bad = \emptyset
- Consecution $TR(Inv) \subseteq Inv$ i.e., if $s \in Inv$ and $s \sim t$ then $t \in Inv$

Inductive Invariants

System S is safe iff there exists an inductive invariant Inv

- Initiation Initial ⊆ Inv
- Safety Inv \cap Bad = \emptyset
- Consecution $TR(Inv) \subseteq Inv$ i.e., if $s \in Inv$ and $s \sim t$ then $t \in Inv$

Induction: Simple Example

Is pc=3 -> odd(x) an inductive invariant?

Inductive Invariants: Simple Example

Is $pc=3-> odd(x) \land \neg odd(y)$ an inductive invariant?


```
1: x := 1;
                                                 Inv = odd(x) \land \neg odd(y)
                          at pc =3:
2: y := 2;
                                                                x=3, y
while * do {
                                                 x=3, y =0
                                 x=1, y
   3: assert odd(x);
                                   =0
                               x=1, y
   4: x := x + y;
                                                          x=5, y
                                             x=3, y
                                 =2
   5: y := y + 2
}
6:
                               x=1, y
                                                         x=2, y =2
                               x=1, y
                                                         x=2, y=3
                                                         x=0, y=3
                                                         x=4, y=5
```

Checking Invariance is reducible to SAT!

Inputs

- A transition system P = (V, Init, Tr, Bad)
- A formula I(V) over variables V

Decide whether I is a safe inductive invariant

- Use SAT to check that $Init \land \neg I$ is UNSAT
- Use SAT to check that $I(V) \wedge Tr(V, V') \wedge \neg I(V')$ is UNSAT
- Use SAT to check that $I \wedge Bad$ is UNSAT

If all checks are UNSAT, I(V) is a safe inductive invariant

- Check 1: missing initial states
- Check 2: not closed under a step of transition relation
- Check 3: not safe (true invariant, but not good enough for property)

Complete SAT-based Model Checker

(Don't try this at home)
Inputs

A transition system P = (V, Init, Tr, Bad)

For every propositional formula Cand(V) over variables V

• If Cand(V) is a safe inductive invariant, return True

If got here, return False

Is this algorithm sound?

Is this algorithm complete?

Is this algorithm efficient?

Maximal Inductive Subset

Let L be a set of formulas, P=(V, Init, Tr, Bad) a program A subset X of L is a maximal inductive subset iff it is the largest subset of X such that

$$Init(u) \Rightarrow \land_{\ell \in X} \ell(u)$$

$$\wedge_{\ell \in X} \ell(u) \wedge Tr(u, v) \Rightarrow \wedge_{\ell \in X} \ell(v)$$

A Maximal Inductive Subset is unique

inductive invariants are closed under conjunction

Minimal Unsatisfiable Subset

Let φ be a formula and $A = \{a_1, ..., a_n\}$ be atomic propositions occurring negatively in φ

Assume $\varphi \wedge a_1 \wedge \cdots \wedge a_n$ is UNSAT

A minimal unsatisfiable subset (MUS) of φ is the smallest subset $X \subseteq A$ such that $\varphi \land X$ is UNSAT

There are efficient algorithms for computing MUS (a.k.a. UNSAT core) for propositional formulas

Solving MIS via MUS

fresh propositional variables

Reduce MIS

MUS

Allo

```
Input : \mathcal{L}, — a set of lemmas and the transition relation (in BV)
     Output: \mathcal{L}' \subseteq \mathcal{L} the MIS of \mathcal{L} relative to T
 \mathbf{1} \ \varphi \leftarrow \left( \bigwedge_{L_i \in \mathcal{L}} (pre_i \Rightarrow L_i(u)) \right) \land Tr(u, v) \land \left( \bigvee_{L_i \in \mathcal{L}} (post_i \land \neg L_i(v)) \right)
 2 Sat_Add(B2P(\varphi))
                                                                                              called once
 3 \mathcal{L}' \leftarrow \mathcal{L}
                                                                                                incremental SAT
 4 forever do
           Sat_Checkpoint()
 5
                                                                                                          SAT MUS
           \mathtt{Sat\_Add}(pre_i) \text{ for all } L_i \in \mathcal{L}'
        C = \mathtt{MUS}(\{\neg post_i \mid L_i \in \mathcal{L}'\})
      | \quad 	ext{if } | C | = |\mathcal{L}'| 	ext{ then return } \mathcal{L}'
        \mathcal{L}' \leftarrow \{L_i \mid (\neg post_i) \in C\}
                                                                                                  incremental SAT
           Sat_Rollback()
10
11 end
```


A Synchronous Mealy Machine

Terminology for Sequential Synthesis

The **set of reachable states** is the set of all possible valuations of the registers after arbitrary long execution from the initial state

Combinational synthesis – changing the combinational logic of the circuit without knowledge of reachable states

Sequential synthesis – modifies the circuit so that its behavior is preserved in the reachable states, but arbitrary changes are allowed on the unreachable states

Sequentially equivalent nodes – nodes having the same or opposite polarity in all reachable states

AIG: And-Inverter-Graph

A data structure for representing and manipulating arbitrary propositional formulas

A graph with 3 kinds of nodes

- input: one output, correspond to variables
- output: one input, correspond to functions, outputs
- AND: two (or more) inputs, one outputs, correspond to AND

An input/output of any node can be negated

Hash-Cons

- AND nodes are kept in a hash table keyed on their children
- only one node is created for any syntactic function

Latch Correspondence Problem

DEFINITION 10.1 (LATCH PERMUTATION PROBLEM) Given two sequential circuits $F^{(1)}, F^{(2)} \in \mathcal{F}_{n,m,k}$, the latch permutation equivalence problem which is also referred as latch correspondence problem is the decision problem as to whether a correspondence π between the latches of $F^{(1)}$ and $F^{(2)}$ exists, such that the two synchronous sequential circuits $F^{(1)}$ and $F^{(2)}$ have their combinational parts functionally equivalent using this correspondence. More formally, the problem is to find a permutation $\pi \in \mathcal{P}er(\mathbb{N}_k)$ such that for all $j \in \mathbb{N}_m$

$$\lambda_j^{(1)}(x_1, \dots, x_n, u_{\pi(1)}^{(1)}, \dots, u_{\pi(k)}^{(1)}) = \lambda_j^{(2)}(x_1, \dots, x_n, u_1^{(2)}, \dots, u_k^{(2)})$$

and for all $j \in \mathbb{N}_k$

$$\delta_{\pi(j)}^{(1)}(x_1,\ldots,x_n,u_{\pi(1)}^{(1)},\ldots,u_{\pi(k)}^{(1)}) = \delta_j^{(2)}(x_1,\ldots,x_n,u_1^{(2)},\ldots,u_k^{(2)})$$

hold. (For the notations, we refer to Chapter 8 Section 1.)

Solving Latch Correspondence by MIS

Simulate the circuit with random inputs

Identify candidate equivalence classes

latches H and K are candidates if in every simulation either

$$- H = K \text{ or } H = \neg K$$

Refine candidate equivalences using BMC

for every candidate H=K, use BMC to find a (short) counterexample

For all remaining candidates, compute Maximal Inductive Subset

- each call to SAT removes at least one candidate
- converges in linear time in the number of candidates

K-induction

Sheeran, Singh, Stålmarck Checking Safety Properties Using Induction and a SAT-Solver. FMCAD 2000

Induction

$$P(s_0)$$

$$\forall i . P(s_i) \Rightarrow P(s_{i+1})$$

$$\forall i . P(s_i)$$

k-step Induction

$$P(s_{0..k-1})$$

$$\forall i . P(s_{i..i+k-1}) \Rightarrow P(s_{i+k})$$

$$\forall i . P(s_i)$$

2-Induction: Simple Example

Is $pc=3 \rightarrow odd(x)$ 2-inductive invariant?

Program

```
1: x := 1;

2: y := 2;

while * do {

    3: assert odd(x);

    4: x:= x + y;

    5: y := y + 2

}

6:
```

2-Base

```
x := 1;
y := 2;
assert odd(x)
x := x + y;
y := y + 2;
assert odd(x)
```

2-IND

```
assume odd(x)
x := x + y;
y := y + 2;
assume odd(x)
x := x + y;
y := y + 2;
assert odd(x)
```

K-induction with a SAT solver (IND)

Recall:

$$U_k = T^{<0} \land T^{<1} \land ... \land T^{$$

Two formulas to check

Base case:

$$I^{<0>} \wedge U_{k-1} \Rightarrow P^{<0>}...P^{}$$

Induction step:

$$U_k \land P^{<0} \rightarrow P^{$$

If both are valid, then P always holds.

If not, increase k and try again.

Simple path assumption

Unfortunately, k-induction is not complete.

Some properties are not k-inductive for any k.

Simple path restriction:

• There is a path to ¬P iff there is a *simple* path to ¬P (path with no repeated states).

Induction over simple paths

Let $simple(s_{0..k})$ be defined as:

•
$$\forall i,j \text{ in } 0..k \neg (i \neq j) \Rightarrow s_i \neq s_j$$

k-induction over simple paths:

$$P(s_{0..k-1})$$

$$\forall i\neg simple(s_{0..k}) \land P(s_{i..i+k-1}) \Rightarrow P(s_{i+k})$$

$$\forall i\neg P(s_i)$$

Must hold for k large enough, since a simple path cannot be unboundedly long. Length of longest simple path is called recurrence diameter.

...with a SAT solver

For simple path restriction, let

$$S_k = \forall t=0..k$$
, $u=t+1..k$: $\neg \forall v \text{ in } V \neg v_t = v_u$ (where V is the set of state variables).

Two formulas to check

Base case

$$I^{<0>} \wedge U_{k-1} \Rightarrow P^{<0>}...P^{}$$

Induction step

$$S_k \wedge U_k \wedge P^{<0} \longrightarrow P^{$$

If both are valid, then P always holds. If not, increase k and try again.

Termination

Termination condition

k is the length of the longest simple path of the form P*¬P

This can be exponentially longer than the diameter.

- example
 - loadable mod 2^N counter where P is (count $\neq 2^N-1$)
 - diameter = 1
 - longest simple path = 2^{N}

Useful special cases

- P is a tautology (k=0)
- P is inductive invariant (k=1)

BDD-BASED SYMBOLIC REACHABILITY

Forward Reachability Analysis with BDDs

Representing Sets as Prop. Formulas

[F] states satisfying F , i.e. $\{\sigma \mid \sigma \vDash F\}$	F propositional formula over V
$[F_1] \cap [F_2]$	$F_1 \wedge F_2$
$[F_1] \cup [F_2]$	$F_1 \vee F_2$
[<i>F</i>]	¬ F
$[F_1] \subseteq [F_2]$	$F_1 \Rightarrow F_2$
	i.e. $F_1 \land \neg F_2$ unsatisfiable

BDDs in a nutshell

Typically mean Reduced Ordered Binary Decision Diagrams (ROBDDs)

Canonical representation of Boolean formulas

Often substantially more compact than a traditional normal form

Can be manipulated very efficiently

• Conjunction, Disjunction, Negation, Existential Quantification

R. E. Bryant. Graph-based algorithms for boolean function manipulation. *IEEE Transactions on Computers, C-35(8), 1986.*

Running Example Comparator

Conjunctive Normal Form

Not Canonical

Truth Table (1)

a ₁	b ₁	a ₂	b ₂	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Still Not Canonical

Truth Table (2)

a ₁	a ₂	b ₁	b ₂	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Canonical if you fix variable order.

But always exponential in # of variables. Let's try to fix this.

Shannon's / Boole's Expansion

Every Boolean formula $f(a_0, a_1, ..., a_n)$ can be written as

$$(a_0 \land f(true, a_1, ..., a_n)) \lor (\neg a_0 \land f(false, a_1, ..., a_n))$$

or, simply,

ITE
$$(a_0, f(true, a_1, ..., a_n), f(false, a_1, ..., a_n))$$

where ITE stands for If-Then-Else

The formula $f(true, a_1, ..., a_n)$ is called the *cofactor* of f w.r.t. a_0

The formula $f(false, a_1, ..., a_n)$ is called the *cofactor* of f w.r.t. $\neg a_0$

Representing a Truth Table using a Graph

Binary Decision Tree (in this case ordered)

Binary Decision Tree: Formal Definition

Balanced binary tree. Length of each path = # of variables

Leaf nodes labeled with either 0 or 1

Internal node v labeled with a Boolean variable var(v)

Every node on a path labeled with a different variable

Internal node v has two children¬ low(v) and high(v)

Each path corresponds to a (partial) truth assignment to variables

Assign 0 to var(v) if low(v) is in the path, and 1 if high(v) is in the path

Value of a leaf is determined by:

- Constructing the truth assignment for the path leading to it from the root
- Looking up the truth table with this truth assignment

The truth assignment corresponding to the path to this leaf is

$$a_1 = ? b_1 = ? a_2 = ? b_2 = ?$$

a ₁	b ₁	a ₂	b ₂	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

The truth assignment corresponding to the path to this leaf is

$$a_1 = 0 b_1 = 0 a_2 = 1 b_2 = 0$$

a ₁	b ₁	a ₂	b ₂	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

The truth assignment corresponding to the path to this leaf is -

$$a_1 = 0 b_1 = 0 a_2 = 1 b_2 = 0$$

The truth assignment corresponding to the path to this leaf is

 $a_1 = 0 b_1 = 0 a_2 = 1 b_2 = 0$

Binary Decision Tree (BDT)

But still exponential in # of variables. Let's try to fix this.

Reduced Ordered BDD

Conceptually, a ROBDD is obtained from an ordered BDT (OBDT) by eliminating redundant sub-diagrams and nodes

Start with OBDT and repeatedly apply the following two operations as long as possible¬

- 1. Eliminate duplicate sub-diagrams. Keep a single copy. Redirect edges into the eliminated duplicates into this single copy.
- 2. Eliminate redundant nodes. Whenever low(v) = high(v), remove v and redirect edges into v to low(v).
- Why does this terminate?

ROBDD is often exponentially smaller than the corresponding OBDT

Bryant gave a linear-time algorithm (called Reduce) to convert OBDT to ROBDD.

In practice, BDD packages don't use Reduce directly. They apply the two reductions on-the-fly as new BDDs are constructed from existing ones. Why?

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

•
$$f_1 = f_2 \Leftrightarrow ?$$

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

- $f_1 = f_2 \Leftrightarrow BDD(f_1)$ and $BDD(f_2)$ are isomorphic
- f is unsatisfiable ⇔?

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

- $f_1 = f_2 \Leftrightarrow BDD(f_1)$ and $BDD(f_2)$ are isomorphic
- f is unsatisfiable

 BDD(f) is the leaf node "0"
- f is valid ⇔?

ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

- $f_1 = f_2 \Leftrightarrow BDD(f_1)$ and $BDD(f_2)$ are isomorphic
- f is unsatisfiable

 BDD(f) is the leaf node "0"
- f is valid

 ⇒ BDD(f) is the leaf node "1"
- BDD packages do these operations in constant time

Logical operations can be performed efficiently on BDDs

Polynomial in argument size

BDD size depends critically on the variable ordering

- Some formulas have exponentially large sizes for all ordering
- Others are polynomial for some ordering and exponential for others

BDD Operations

True ¬ BDD(TRUE)

False¬ BDD(FALSE)

 $Var \neg v \mapsto BDD(v)$

Not \neg BDD(f) \mapsto BDD(\neg f)

And $\neg BDD(f_1) \times BDD(f_2) \mapsto BDD(f_1 \wedge f_2)$

Or \neg BDD(f_1) \times BDD(f_2) \mapsto BDD($f_1 \lor f_2$)

Exists \neg BDD(f) \times v \mapsto BDD(\exists v. f)

Basic BDD Operations

True False

Var(v)

BDD Operations: Not

BDD Operations: Not

 $f_{v=0}$ and $f_{v=1}$ are known as the co-factors of f w.r.t. v

$$f = (X \wedge f_{v=0}) \vee (Y \wedge f_{v=1})$$

 $f_{v=0}$ and $f_{v=1}$ are known as the co-factors of f w.r.t. v

$$f = (\neg \lor \land f_{v=0}) \lor (v \land f_{v=1})$$

BDD Operations: And (Simple Cases)

And
$$(f, 0) = 0$$

And
$$(f, 1) = f$$

And
$$(1)$$
, f = f

And
$$(0)$$
, f) = 0

$$v_1 = v_2$$

$$v_1 = v_2$$


```
BDD bddAnd (BDD f, BDD g)
  if (f == g | f == True) return g
  if (g == True) return f
  if (f == False | | g == False) return False
  v = (var(f) < var(g)) ? var(f) ¬ var(g)
  f0 = (v == var(f)) ? low(f) ¬ f
  f1 = (v == var(f))? high(f) \neg f
  g0 = (v == var(g)) ? low (g) ¬ g
  g1 = (v == var(g))? high (g) \neg g
  T = bddAnd (f1, g1); E = bddAnd (f0, g0)
  if (T == E) return T
                                             returns unique BDD
                                              for ite(v,T,E)
  return mkUnique (v, T, E)
```


BDD Operations: Or

$$\mathcal{O}(n_1 \times n_2)$$

Exists(
$$(\neg v \land f) \lor (v \land g), v$$
) = ?

Exists("0",v) = "0"
Exists("1",v) = "1"
Exists(
$$(\neg v \land f) \lor (v \land g), v$$
) = Or(f,g)

Exists(
$$(\neg v \land f) \lor (v \land g), v$$
) = Or(f,g)

Exists(
$$(\neg v' \land f) \lor (v' \land g), v) =$$

 $(\neg v' \land Exists(f,v)) \lor (v' \land Exists(g,v))$

But f is SAT iff \exists V. f is not "0". So why doesn't this imply P = NP?

BDD Applications

SAT is great if you are interested to know if a solution exists

BDDs are great if you are interested in the set of all solutions

- How many solutions are there?
- How do you do this on a BDD?

BDDs are great for computing a fixed points

Set of nodes reachable from a given node in a graph

Graph Reachability

Which nodes are reachable from "7"?

{2,3,5,6,7}

But what if the graph has trillions of nodes?

Graph Reachability

Use three Boolean variables (a,b,c) to encode each node?

Use three Boolean variables (a,b,c) to encode each node?

Graph Reachability ал-влс - a \wedge - b \wedge - c альлс a \wedge ¬ b \wedge ¬ c

Use three Boolean variables (a,b,c) to encode each node?

 $a \wedge b \wedge \neg c = ?$

Key Idea 1: Every Boolean formula represents a set of nodes!

The nodes whose encodings satisfy the formula.

$$a \wedge b \wedge \neg c = \{6\}$$

 $a \wedge b = ?$

$$a \land b = \{6,7\}$$

a xor b = ?

a xor b =
$$\{2,3,4,5\}$$

- Key Idea 2: Edges can also be represented by Boolean formulas
- An edge is just a pair of nodes
- Introduce three new variables a', b', c'
- Formula Φ represents all pairs of nodes (n,n') that satisfy Φ when n is encoded using (a,b,c) and n' is encoded using (a',b',c')

Key Idea 2: Edges can also be represented by Boolean formulas

Key Idea 2: Edges can also be represented by Boolean formulas

Key Idea 2: Edges can also be represented by Boolean formulas

Key Idea 3: Given the BDD for a set of nodes S, and the BDD for the set of all edges R, the BDD for all the nodes that are adjacent to S can be computed using the BDD operations

Graph Reachability Algorithm

```
S = BDD for initial set of nodes;
R = BDD for all the edges of the graph;
while (true) {
   I = Image(S,R); // compute adjacent nodes to S
   if (And(Not(S),I) == False) // no new nodes found
      break;
   S = Or(S,I); // add newly discovered nodes to result
return S;
```

Symbolic Model Checking. Has been done for graphs with 10²⁰ nodes.

Forward Reachability Analysis with BDDs

