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SAT-based Model Checking

Bounded Model Checking
e |s there a counterexample of k-steps

Unbounded Model Checking
e Induction and K-Induction (k-IND)

e Interpolation Based Model Checking (IMC)
e Property Directed Reachability (IC3/PDR)
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SAT-Based Unbounded Model Checking

Uses BMC for falsification

Simulates forward reachability analysis for
verification

|dentifies a termination condition
e all reachable states have been found: “fixed-point”
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Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

N—1
Init(Xg) A (/\ Tr( Xz,Xz+1)> A Bad(Xy) #& L
1=0
Init = Inv
Inductive

Inv(X)N\ Tr(X, X") = Inv(X")

Safe

g e Inv = —Bad




Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

e |nitiation: Initial € Inv
» Safety: InvnNBad =0
 Consecution: TR(an) C Inv i.e., if s € Inv and st

thent € Inv



Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

e |nitiation: Initial € Inv
» Safety: InvnNBad =0
 Consecution: TR(an) C Inv i.e., if s € Inv and st

thent € Inv
System S is safe if Reach N Bad = 0
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Forward Reachability Analysis
Does AG P hold?

.R.=R._,VImg(R,,,T

R,=R,;VImg(R,,T)

R,=INIT VImg(INITT)

Image operator: Img(Q,T)=3V. (QAT)



Termination when

e either a bad state satisfying —p is found

* ora fixpointis reached: R, c U1 R
> R; is the set of reachable states



Image computation methods

e Symbolic model checking without BDD's

— Use SAT solver just for fixed-point detection

e Abdulla, Bjesse and Een 2000
e Williams, Biere, Clarke and Gupta 2000

— Adapt SAT solver to compute image directly
e McMillan, 2002



Image over-approximation

e BMC and Craig interpolation allow us to compute
image over-approximation relative to property.
— Avoid computing exact image.

— Maintain SAT solver's advantage of filtering out
irrelevant facts.



Approximate Reachability Analysis

* Fi=F.V Appximg(F,,)
* F, over-approximates the states reachable in at most i steps



Over-approximation

* An over-approximate image op. is Img' s.t.
forall Q, Img(Q,T) implies Img'(Q,T)
* QOver-approximate reachability:
Fo=1
Fiop = F U Img'(F,T)
F=UF
Fixpoint:

* If F;,; = F;no new reachable states will be discovered

o Fj is an inductive invariant



Inductive Invariants for verifying AG p

A set of states Inv is an inductive invariant if

* Initiation:
» Safety:

e Consecution: TR(Inv) € Inv

Initial

Initial € Inv
InvN Bad=0

System State Space

i.e., if s € Invand st
thent € Inv

. Bad



Inductive Invariants for verifying AG p

A set of states Inv is an inductive invariant if
e |nitiation: Initial € Inv
« Safety: Inv N Bad =0

 Consecution: TR(Inv) € Inv  i-e,ifs€lnvand swt

thent € Inv

System State Space

. Bad

Initial

System S is safe iff there exists an inductive invariant Inv



Why is F an inductive invariant?

Recall: forward reachability sequence
Fo=|
Fi.i = F U Img'(F,T)
F=UF,

How to compute an approximate image for
reachability analysis?



Adequacy of Approximate Img

Img' is adequate w.r.t. Bad, when

e if Q cannot reach Bad in any number of steps, then
Img’(Q, T) cannot reach Bad in any number of steps

If Img' is adequate, then
 Bad is reachable iff F A Bad is SAT
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Adequate image

@

Reached from Q Can reach Bad
But how do you get an adequate Img'?



k-adequate image operator

* Img'is k-adequate w.r.t. Bad, when
— if Q cannot reach Bad,
Img’(Q,T) cannot reach Bad within k steps

* Note, if k > diameter, then k-adequate is equivalent
to adequate.



Interpolating Model Checking (IMC)

Key ldea

e turn SAT/SMT proofs of bounded safety to inductive traces

e repeat forever until a counterexample or inductive invariant are found
Introduced by McMillan in 2003

e Kenneth L. McMillan: Interpolation and SAT-Based Model Checking.
CAV2003: 1-13

» based on pairwise Craig interpolation
Extended to sequences

 Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking.
FMCAD 2009: 1-8

— uses interpolation sequence
« Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136
— IMPACT: interpolation sequence on each program path

UNIVERSITY OF

WATERLOO 19



Inductive Trace

An inductive trace of a transition system P = (V, Init, Tr, Bad) is a
sequence of formulas [F,, ..., Fy] such that

e |nit =F,
eVO<i<N,F(V)ATr(v,u)=F., (u)

Atraceis safeiff vO<i<N, F,=-Bad
A trace is monotone iff v0<i<N, F,= F4
Atraceis closediff31<i<N,F,=(F,v...VF.,)

A transition system P is SAFE iff it admits a safe closed trace
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Safe Monotone Inductive Trace

* F,over-approximates the states that are reachable in at most i steps
If F;,, -> F; then F, is an inductive invariant

% WATERLOO 21



Craig Interpolants [Craig 57]

Given a pair (A,B) of propositional formulas s.t.
o A(X,Y) A B(Y,Z) is unsatisfiable

e i.e., A=>B
There exists a formula | such that:

A =-B

e Al

e | A B is unsatisfiable

e | is over Y, the common variables of A and B
A=
= -B

@ >
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Interpolants from Resolution Proofs

When A A B is unsatisfiable, SAT solvers return a a resolution graph
deriving false

An interpolant | can be derived from the resolution graph

 In linear time
 In the worst case, | is linear in the resolution graph (i.e., exponential in the
size of A and B)

ITP = procedure for computing an interpolant

ITP(A,B) = resulting interpolant

Pudlak,Krajicek 97, McMillan 03
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IMC - Interpolation-based MC
McMillan, CAV 2003

Craig Interpolation Theorem is used to safely over-approximate sets of
reachable states:

A B

A A

1
1
1
1
( " )
1
1

INIT(V) A T(VVY) AT(VLVAA ... AT(VELVE) A (p(V2) V... V=p(V¥))

e Interpolant | is computed
— over-approximates the states reachable from INIT in 1 transition
— cannot reach a bad state in < k-1 transitions

k-1-adequate overapprox. image!

*only partial — why?



IMC - Interpolation-based MC
A . B

1
A
A I v \

r \ |

INIT(V) A T(V,V2) A T(VLVIA . AT(VELV) A (=p(V2) V... V-p(V¥))

A B

1,(V) A T(V,VY) A T(VLVI)A ... AT(VELVE) A (=p(V?Y) V... V=p(VK))

e |, isfed back to the BMC solver

e Anew interpolant I, is computed
— |, over-approximates the states reachable from INIT in 2 transitions
— cannot reach a bad state in < k-1 transitions

e |terative process



IMC - Interpolation-based MC

e |nIMC, short BMC formulas can prove the nonexistence
of long CEXs

— INIT is replaced by |, which over-approximates R;

e |f a satisfying assignment to
L(V) AT(VVE) A TVEV2)ALA TVELVE) A (~p(V2) V... V-p(VK))

is found, the counterexample might be spurious
— Since |;(V) is over-approximated

e |ncrease precision:
Increase k and start over with the original INIT



Using Interpolation (k=1)

INIT(V,) ATV, V) A—p(V;)

LU AT(, V) A—p(F)

<2
\/\\\



Using Interpolation (k=2)

INIT(V)) AT(Vo, ) ATV, V) A(=q(V) v —q(V3))
I'

L' V) ATV, V) AT (V) A (=q(H) v —q (1))

L V) ATV, V) AT (V) A (=g (V) v —q(F))



* Afixpoint is checked whenever a new interpolant is
computed

* For iteration i, every new interpolant is checked for
inclusion in all previously computed interpolants for
the same i

— 1, = INITV Vi o, |



IMC as Approximate Forward Reachability (1)

Inductive trace:

lp = Init

i ATR = (I,,)

, ATRI= p; for j=0...k-1

|. over-approximates the states that are reachable in (exactly) i steps

Fixpoint: If I; => INITV I; v... v I, s then INITV I; v... v |, ; is an inductive invariant



Inductive Invariants in IMC
Claim: If I; => INITv I; v... v 1, ; then INITV I; v... v 1,y is anind. invariant

Proof:

Consecution: (INITV I3 V... vV i) ATR=> (I3 v, v v ) =>(INITV | v v )

-—>----

La(V) A TR(V,VY)

Initiation: INIT =>INITv I v.. v 14
Safety: INITV I, v.. v I =>p



IMC Pseudocode (1)

k=1

while (true) {
j =0
I, = INIT

while(true) {

if (SAT(I; A TR A (=pyV.. Vape)) {
if (j==0) then return CEX
k++; break;

} else // UNSAT
I,,; = ITP(I;A TR, TRED A (=pgV.. Vap));
if (Iy,; => INIT v I; v.. v I ) then return SAFE
J++;5

IIIIIIIIIIII
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IMC Pseudocode (2)

k=1
while (true) {
I = INIT

while(true) {

if (SAT(I A TR A (=pyV.. Vap)) {
if (I = INIT) then return CEX
k++; break;

} else // UNSAT
I’ = ITP(IA TR, TR A (=p V.. V-p.));
if (I’ => I ) then return SAFE
I =IvVI’;

McMillan 2003
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Approximate Reachability Sequence in IMC (2)
Fo = Init
I:i+1 = Fi Vv Ii+1

Fi A TR_: (|i+1)’ = (Fi+1)'
Fi ATRI= p; forj=0..k-1

* F,over-approximates the states that are reachable in at most i steps
If F;,; = F; then F; is an inductive invariant



Termination

* Since kincreases at every iteration, eventually k > d,
the diameter, in which case Img' is adequate, and
hence we terminate.

Notes:

— don't need to know when k > d in order to terminate
— often termination occurs with k << d



Interpolation-based MC

Fully SAT-based

Inherits SAT solvers ability to concentrate on facts
relevant to a property

Most effective when
— Very large set of facts is available
— Only a small subset are relevant to property

For true properties, appears to converge for
smaller k values

Disadvantage: start from scratch for each k



IMC WITH INTERPOLATION
SEQUENCE

IIIIIIIIIIII
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Interpolation Sequence

 IfA; A ... AA, IS unsatisfiable, then there exists an
interpolation-sequence ly,l4,..., I, .1 fOr (Aq,... ,Aq) S.L:

,=T and |I=F In particular:
A]_ = |1 Ik: _IAk+1
LA AL =

;- over common variables of A,,... ,Ajand A;,4,... ,Ay

* Each |;can be computed as the interpolant of
A=A A o AA and B=A A A A

— All'I/’s should be computed on the same resolution graph



Interpolation Sequence

 IfA; A ... AA, IS unsatisfiable, then there exists an
interpolation-sequence ly,l4,..., I, .1 fOr (Aq,... ,Aq) S.L:

l,=T and |I,=F In particular:

Al = |1 Ik: _IAk+1

;- over common variables of A,,... ,Ajand A;,4,... ,A

PR O O P

Computed by pairwise interpolation applied to different cuts of a fixed resolution proof

= All Ii’s should be computed on the same resolution graph




Reachability with
Interpolation-Sequence

Vizel , Grumberg, FMCAD 2009

* Unsatisfiable BMC formula partitioned in the
following manner:

Al Az A3 Ak 'ik+1
, A | —A— A— —r— | \
INIT(VO)AT(VO,VY) /L T(VLV2) /{ T(V2V3) AA T(VRLVK) A -P(V¥)

1 2 3 k

;- over common variables of A,... ,A;and A;,y,... ,Aqiq



Using Interpolation Sequence

INITV)AT(V,,V, ) A —p(V})




Analogy to Forward Reachability




Reachability with Interpolation-Sequence

e BMCis used for bug finding

* Interpolation-sequence computes an inductive trace:
<Fq,F4,...,F > from BMC formulas
— Safe over-approximations of reachable states
— F(V) AT(VV) = Fia (V)
- F=P

* Integrated into the BMC loop to detect termination



Checking if a “fixpoint” has been reached

Does there exist 2<n<ksuchthat F,=V,_; ,F 7

e Similar to checking fixpoint in forward reachability analysis:

Re & Uiz k1 R

e But here we check inclusion for every 2<k<n

— No monotonicity because of the approximation

* “Fixpoint” is checked with a SAT solver



Termination

Always terminates
* either when BMC finds a bug: M |# AGp

e or when all reachable states have been found:
M |=AGp



Problems:

* As the BMC formula grows — Interpolants grow

— keep conjoining interpolants from subsequent runs:
conjunctions grow

1. “Big” formulas cause the BMC problems to be hard
to solve

2. Non-CNF interpolants need to be translated to CNF
Unrolling of TR multiplies number of variables

47



IMC: Interpolating Model Checking

N=1
SAT
BMC, > CEX
UNSAT
N:=N+1 Seqitp
A trace F = [F,, ..., F\]
No
Is F closed Yes > SAFE

IIIIIIIIIIII
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IMC: Strength and Weaknesses

Strength
e elegant
 global bounded safety proof
* many different interpolation algorithms available
» easy to extend to SMT theories

Weaknesses
 the naive version does not converge easily
— interpolants are weaker towards the end of the sequence
e not incremental
— no information is reused between BMC queries
e size of interpolants
* hard to guide

UNIVERSITY OF

WATERLOO
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INTERPOLATION

IIIIIIIIIIII
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Algorithms for Computing Interpolants

Variable Elimination by Substitution
Variable Elimination by Resolution
Optimizing using an MUS

Interpolating a resolution proof

%) WATERLOO
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Interpolation via Variable Elimination (1)

A(X, Y) and B(Y, Z) be two sets of clauses such that A A B are UNSAT

Let I(Y) be a formula defined as follows:

I(Y) = \/ A(Z), where n = | X|
xeBn

Then, I(Y) is an interpolant between A and B
Pf. 1(Y) =3 X.A(X,Y)

Question: Is that a good ITP procedure for IMC?

IIIIIIIIIIII
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Interpolation via Variable Elimination (2)

A(X, Y) and B(Y, Z) be two sets of clauses such that A A B are UNSAT

Recall that Res*(A, X) stands for all clauses obtained from A by
exhaustively resolving on variables in X

Let I(Y) be defined as follows
I(Y)={ce€ Res*(A) | Vars(c) N X =0}

Then, I(Y) is an interpolant between A and B.
Pf. I(Y)=3 X.A(X,Y)

Question: Is that a good ITP procedure for IMC?
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Interpolation with MUS

A(X, Y) and B(Y, Z) be two sets of clauses such that A A B are UNSAT

Let U(X, Y) be a minimal subset of A(X, Y) such that U A B are UNSAT
e U can be computed by iteratively querying a SAT solver
e or by examining the refutation proof of A A B

Let I(Y) be an interpolant of U and B computed using either of previous
methods

Then, | is an interpolant for A and B
Pf. ?77?

Question: Is I(Y) a good interpolant for IMC?

IIIIIIIIIIII
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Alternative Definition of an Interpolant

Let F = A(x, z) A B(z, y) be UNSAT, where x and y are distinct

* Note that for any assignment v to z either
— A(x, v) is UNSAT, or
— B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
o |(v) = Aonlyif A(x, v) is UNSAT
e |(v) =B onlyif B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation = of F
in S, F has an interpolant polynomial in the size of =

 propositional resolution has feasible interpolation
o extended resolution does not have feasible interpolation
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Interpolants from Proof

SAT Solver

Resolution Proof

IIIIIIIIIIII
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Interpolation
System

Annotated Proof

=)

Interpolant
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McMillan Interpolation Procedure

Let A and B be two sets of clauses
Let IT be a resolution proof of A A B = false

Annotated clauses in I1 with partial interpolants (Boolean formulae)
e Notation: c [p] mean formula p is a partial interpolant of clause ¢

Augmented resolution calculus, where g(c) is a sub-clause of only global

variables
ce A ce B
c [g(c)] c [T]

vVe |[[4] —oVd [ls]
cVd [11\/12]

v local to A

vVe |[I] —oVd [Is]

cvd LA v not local to A
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Interpolation Example
A={b,avbVec,a} B={aVvec}

b | L] avbVve |[avVe a |la] ave [T

N
la A ]

%@ WATERLOO P. Ruemmer. Craig Interpolation in SAT and SMT
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Correctness of McMillan Interpolation

Lemma: In any annotated proof of A and B, for every clause node ¢ [p.]
the following are true

A — Dc V (C\g(c))
Bapc — g(C)
p. only contains global symbols

Corollary: The root of resolution proof is the empty clause, and its partial
interpolant is the interpolant!

IIIIIIIIIIII
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Other Interpolation Systems

A single resolution proof can be annotated in different ways giving
different interpolants

McMillan interpolation is the strongest interpolant obtained by annotated
proof rules from a given proof

There are other annotation strategies and systems for interpolation
o Symmetric interpolants: ITP(A,B) == 7 ITP(B, A)
e Labelled interpolation: framework in which McMillan ITP is an instance

So far, no correlation between strength / technique and usefulness for
verification ©

IIIIIIIIIIII
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Computing Sequence Interpolant

Let Sy, Sq, Sy, ..., S,,be n formulas whose conjunction is UNSAT
Let ITP(A,B) be any interpolation algorithm

Then, the sequence |, |4, ... is a sequence interpolant

Iy=1ITP(So, [\ S:)

1=1..n

Iy =ITP(Ig A Sy, [\ S:)

1=2..n

Iy = ITP(Ij—1 A S, J\ Si),for k€ [1..(n— 1)]

i=k..n

IIIIIIIIIIII
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DRUPIng for Interpolants

( trivial }

resolution

! Iearned}
clause

A CDCL proof is build out of trivial

resolutions

e terminated by a learned clause

A sub-proof for each learned clause can be
re-constructed in polynomial time

* negation of clause + BCP leads to a conflict

A clausal proof is a sequence of learned
clauses in the order they are learned

Interpolate while replaying the proof

UNIVERSITY OF

WATERLOO

A. Gurfinkel & Y. Vizel: DRUPing for interpolats. FMCAD 2014: 99-106
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MiniDRUP
[ CNF ]

SAT

SAT with DRUP proofs

Interpolation-oriented BCP

Clausal in Trim
Proof
Learn near CNF
m Trim interpolants in Replay
[ BCP
+Learning

UUUUUUUUUUUU Interpolant
[ P 63




