First Order Logic (FOL) and
Satisfiability Modulo Theories (SMT)

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

% WATERLOO

B Moder Birkhauser Classics

References

e Chpater 2 of Logic for Computer Scientists
http://www.springerlink.com/content/978-0-8176-4762-9/ Uwe Schoning

e Chapters 2 and 3 of Calculus of Computation

https://link.springer.com/book/10.1007/978-3-540-74113-8 The Calculus

of Computation

UNIVERSITY OF

WATERLOO

http://www.springerlink.com/content/978-0-8176-4762-9/

Syntax and Semantics (Again)

Syntax

 MW: the way in which linguistic elements (such as words)
are put together to form constituents (such as phrases or
clauses)

e Determines and restricts how things are written

[SeMAnTiCSZ
of a Structule
I[fll — carpot
Semantics [4] = bowlingpin

« MW: the study of meanings
e Determines how syntax is interpreted to give meaning

IIIIIIIIIIII

The language of First Order Logic

Functions , Variables, Predicates
ef, Q... X,V Z ... P,Q, =<, ...

Atomic formulas, Literals
* P(x,f(y)), =Q(y,z)

Quantifier free formulas
* P(f(a), b) A c = g(d)

Formulas, sentences
« VX . Vy.[P(x, f(x)) v g(y,x) = h(y)]

IIIIIIIIIIII

Language: Signatures

A signature ¥ is a finite set of:
e Function symbols:

>e={fg + ...}
e Predicate symbols:
>p ={ P, Q,=, true, false, ...}

e And an arity function:
> —>N

Function symbols with arity O are constants
e notation: f, means a symbol with arity 2

A countable set V of variables
e disjoint from X

IIIIIIIIIIII

Language: Terms

The set of terms T(2¢ ,V) is the smallest set
formed by the syntax rules:

ofe T = v veV
| f(t1, caay tn) fe ZF,t1, cuny tne T

Ground terms are given by T(Zg ,)
e a term is ground if it contains no variables

IIIIIIIIIIII

Language: Atomic Formulas

aeAtoms =P, ..., t)
P e ZP t1, vy tn el

An atom is ground ift,, ..., t, € T(Zr ,J)
e ground atom contains no variables

Literals are atoms and negation of atoms:
| € Literals :=a|—a a € Atoms

IIIIIIIIIIII

Language: Quantifier free formulas

The set QFF(Z,V) of quantifier free formulas is the
smallest set such that:

@ €QFF ::= a € Atoms atoms
— @ negations
Q@ bi-implications
oA Q conjunction
Qv disjunction
Q> @ implication

Language: Formulas

The set of first-order formulas are obtained by adding
the formation rules:

Q=
| VX.@ universal quant.
| dx. ¢ existential quant.

Free (occurrences) of variables in a formula are theose
not bound by a quantifier.

A sentence is a first-order formula with no free
variables.

IIIIIIIIIIII

Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt
Agatha. Agatha, the Butler and Charles were the only
people who lived in Dreadbury Mansion. A killer always
hates his victim, and is never richer than his victim. Charles
hates no one that aunt Agatha hates. Agatha hates
everyone except the butler. The butler hates everyone not
richer than Aunt Agatha. The butler also hates everyone
Agatha hates. No one hates everyone. Agatha is not the

butler.

Who killed Aunt Agatha?

[| ST
g IR

N ER

IIIIIIIIIIII

%) WATERLOO 10

Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt
Agatha. Agatha, the Butler and Charles were the only
people who lived in Dreadbury Mansion. A killer always
hates his victim, and is never richer than his victim. Charles
hates no one that aunt Agatha hates. Agatha hates
everyone except the Butler. The Butler hates everyone not
richer than Aunt Agatha. The Butler also hates everyone
Agatha hates. No one hates everyone. Agatha is not the
Butler.

Who killed Aunt Agatha?
Constants are blue
Predicates are purple

[| T
; S

N ER

IIIIIIIIIIII

%) WATERLOO 11

Dreadbury Mansion Mystery
killed/s, hates/o,richer/2,a/0,b/0,¢/0

Az - killed(x, a)

Vo - Yy - killed(x,y) = (hates(z,y) A —richer(x,y))
Vx - hates(a,x) = —hates(c,)
hates(a,a) A\ hates(a, c)

Va - —richer(x,a) = hates(b, x)

Vx - hates(a,x) = hates(b, x)

Va - dy - —hates(z,y)
aF#b

L NZNZNZNZNZNZN

IIIIIIIIIIII

~—~~ A~ ~ —~ —~ —~ —~
N O Ot = W N =
—_— — — — — — — —

oo

12

Solving Dreadbury Mansion in SMT

(declare-datatypes () ((Mansion (Agatha) (Butler)
(declare-fun killed (Mansion Mansion) Bool)
(declare-fun hates (Mansion Mansion) Bool)
(declare-fun richer (Mansion Mansion) Bool)
(
(

assert (exists ((x Mansion)) (killed x Agatha)))
assert (forall ((x Mansion) (y Mansion))
(=> (killed x y) (hates x vy))))
(assert (forall ((x Mansion) (y Mansion))
(=> (killed x y) (not (richer x vy)))))
(assert (forall ((x Mansion))

(=> (hates Agatha x) (not (hates Charles x)))))
(assert (hates Agatha Agatha))
(assert (hates Agatha Charles))

(assert (forall ((x Mansion))

(=> (not (richer x Agatha)) (hates Butler x))))
(assert (forall ((x Mansion))

(=> (hates Agatha x) (hates Butler x))))
(assert (forall ((x Mansion)) (

exists ((y Mansion)) (not (hates x y)))))

(check-sat)
(get-model)

%) WATERLOO

(Charles))))

13

Models (Semantics)

A model M is defined as:
 Domain S; non-empty set of elements; often called the universe
e Interpretation, M : S" —S for each f € X with arity(f) = n
e Interpretation PM < S" for each P e X, with arity(P) = n
e Assignment xM ¢ S for every variable x € V

A formula ¢ is true in a model M if it evaluates to true under the
given interpretations over the domain S.

M is a model for a set of sentences T if all sentences of T are
true in M.

IIIIIIIIIIII

%) WATERLOO 14

Models (Semantics)

A term tin a model M is interpreted as:
e Variable X € Vs interpreted as x
*f(t,, ..., t)is interpreted as M(a,, ..., a,),
—where a; is the current interpretation of {;

P(t,, ..., t,) atom is true in a model M if and only if
(a4, ..., a,) € PM where
 a;is the current interpretation of t;

IIIIIIIIIIII

15

Models (Semantics)

A formula ¢ is true in a model M if:

ME—- @
‘MEp e @
‘MEpAQ
‘MEpvVvQ
‘MEp—> @
M EVX.
M E3IX.@

IIIIIIIIIIII

iff
iff
iff
iff
iff
iff
iff

M ¢ ¢ (i.e., M is not a model for @)
M £ ¢ is equivalentto M £ ¢’

MEp and M ¢’

MEp or M ¢’

ifM ¢ then M ¢’

foralls e S, M[x:=s] £¢

exists s € S, M[x:=s] ¢

16

Interpretation Example

)Y = {0,+,<}, and M such that | M| = {a, b, c}

M) = a,

MH+) = {{a,a— a),{a,b—b),{a,c+— c),(ba— b),{bb— c),
(b,c+— a),{c,a— c),{c,b— a),{c,c— b)}

M(<) = {(a,b),{a,c), (b,c)}

if M(x) =a,M(y) = b, M(2) = c, then

M[+(+(z,y),2)] =

M(+)(M(+)(M (z), M(y)), M(z)) = M(+)(M(+)(a,b),c) =
M(+)(b,c) =a

IIIIIIIIIIII

Interpretation Example

)Y = {0,+,<}, and M such that | M| = {a, b, c}
M) = a,
M(+) = {{a,aa),(a,bb),(a,c—c),(ba b),(bb— c),

(b,c+— a),{c,a— c),{c,b— a),{c,c— b)}

M(<) = {(a,b),(a,c),(b,c)}

M = (Vz: (Jy : +(z,y) = 0))
MBENVz:(Qy:z<vy))

M= (Vz: 3y : +(z,y) = 7))

IIIIIIIIIIII

WATERLOO 18

Dreadbury Mansion Mystery
killed/s, hates/o,richer/2,a/0,b/0,¢/0

Az - killed(x, a)

Vo - Yy - killed(x,y) = (hates(z,y) A —richer(x,y))
Vx - hates(a,x) = —hates(c,)
hates(a,a) A\ hates(a, c)

Va - —richer(x,a) = hates(b, x)

Vx - hates(a,x) = hates(b, x)

Va - dy - —hates(z,y)
aF#b

L NZNZNZNZNZNZN

IIIIIIIIIIII

~—~~ A~ ~ —~ —~ —~ —~
N O Ot = W N =
—_— — — — — — — —

oo

19

Dreadbury Mansion Mystery: Model
killed/s, hates/o,richer/2,a/0,b/0,¢/0

S ={a,b,c}
M(a) = a M(b) =10
M(c) = c M (killed) = {(a,a)}

M (richer) = {(b,a)}

M (hates) = {(a,a), (a,c)(b,a), (b,c)}

20

Semantics: Exercise

Drinker’'s paradox:

There is someone in the pub such that, if he is drinking, everyone in the pub is
drinking.

« 7. (D(x) — Vy. D(y))

Is this logical formula valid?
Or unsatisfiable?
Or satisfiable but not valid?

%) WATERLOO

Inference Rules for First Order Logic

We write = A when A can be inferred from basic axioms
We write B = A when A can be inferred from B

Natural deduction style rules
Notation: A[a/x] means A with variable x replaced by term a

A B A B A=B A

AANB AV B AV B B

Ale/x] vV x. A Alalx] .

= A Ao/ Tx A als fresh
AFB -3 x. A Ala/x] - B s fresh
A— B B ais fres

% WATERLOO 22

Theories

A (first-order) theory T (over signature 2) is a set of (deductively
closed) sentences (over X2 and V) - axioms

Let DC(I') be the deductive closure of a set of sentences I'.
e Foreverytheory T, DC(T)=T

A theory T is constistent if false ¢ T

A theory captures the intendent interpretation of the functions and
predicates in the signature

e e.g., ¥ isaplus, ‘0" is number 0, etc.

We can view a (first-order) theory T as the class of all models of T
(due to completeness of first-order logic).

IIIIIIIIIIII

%) WATERLOO 23

Theory of Equality T¢

Signature: 2-.={=,4a,b,c¢c, ..., f,g,h, ..., PQR,}
=, a binary predicate, interpreted by axioms
all constant, function, and predicate symbols.

Axioms:

1. VX. X=X (reflexivity)
2. VX, y.X=y >y=x (symmetry)
3 VX, Y, Z.X=yYAYy=Z>3X=2Z (transitivity)

IIIIIIIIIIII

%) WATERLOO o

Theory of Equality T¢

Signature: 2c={=,a,b,¢c, ..., f, g, h, ..., PQR, ...}
=, a binary predicate, interpreted by axioms

all constant, function, and predicate symbols.

Axioms:

for each positive integer n and n-ary function symbol f,

X1,y Xpy Yty ooy Yo 2\i X =Y = f(X4,..., X)) =f(y+,..., ¥,) (congruence)

for each positive integer n and n-ary predicate symbol P

V' Xtyeoey Xy Virewns Y- 2\ Xi =y = (P(X4,..., X)) <> P(y14,..., ¥,)) (Equivalence)

% WATERLOO 25

Theory of Peano Arithmetic (Natural Number)

Signature: 2pp={0,1,+,%, =}
Axioms of Tpp : axioms for theory of equality, Tg, plus:

1. VX. 7 (x+1=0) (zero)

2. VX, y.x+1=y+1-5x=y (successor)

3. F[O] A (VX.F[x] — F[x+ 1]) — VX.F[X] (induction)

4. VX. X+ 0 =X (plus zero)

5 VX, Y. X+ (y+1)=(x+y)+1 (plus successor)
6. VX. x*0=0 (times zero)
7.V, Y. X*(y+1)=x"y+x (times successor)

Note that induction (#3) is an axiom schema
» one such axiom is added for each predicate F in the signature
Peano arithmetic is undecidable!

UNIVERSITY OF

WATERLOO 26

Theory of Presburger Arithmetic

Signature: 2pp={0,1,+, =}
Axioms of Tpp : axioms for theory of equality, Tg, plus:

1. VX. 7 (x+1=0) (zero)

2. VX, y.x+1=y+1-5x=y (successor)

3. F[O] A (VX.F[x] — F[x+ 1]) — VX.F[X] (induction)

4. VX. X+ 0 =X (plus zero)

5 VX, Y. X+ (y+1)=(x+y)+1 (plus successor)

Note that induction (#3) is an axiom schema

» one such axiom is added for each predicate F in the signature
Can extend the signature to allow multiplication by a numeric constant
Presburger arithmetic is decidable

* linear integer programming (ILP)

IIIIIIIII

WATERLOO 57

McCarthy theory of Arrays T,

Signature: 2, = { read, write, =}
read(a, i) is a binary function:
e reads an array a at the index |
e alternative notations:
—(select a i), and ai]
write(a, i, v) is a ternary function:
e writes a value v to the index i of array a
e alternative notations:
—(store aiv), ali:=v]
o side-effect free — results in new array, does not modify a

IIIIIIIIIIII

28

Axioms of T,

Array congruence

eYa,i,j.i1= j— read(a,i) =read (a,j)
Read-Over-Write 1
eYa,Vv,i,j. 1= j—>read (write (a, i, V),j) =V

Read-Over-Write 2

eVa,Vv, I, |. i# —>read (write (a, i, v), j) = read (a, j)
Extensionality

ea=b ¢«» Vi.read(a, i) = read(b, i)

IIIIIIIIIIII

29

T-Satisfiability

A formula ¢(x) is T-satisfiable in a theory T if
there is a model of DC(T U 3x.¢(x)).

That is, there is a model M for T in which ¢(x)
evaluates to true.

Notation:
M &1 ¢(x)

where, DC(V) stands for deductive closure of V

IIIIIIIIIIII

30

T-Validity

A formula ¢(x) is T-valid in a theory T if
VX.p(x) € T

That is, Vx.¢(x) evaluates to true in every
model Mof T

T-validity:
= o(X)

IIIIIIIIIIII

31

Fragment of a Theory

Fragment of a theory T is a syntactically restricted subset of
formulae of the theory
Example:

e Quantifier-free fragment of theory T is the set of formulae
without quantifiers that are valid in T

Often decidable fragments for undecidable theories

Theory T is decidable if T-validity is decidable for every
formula Fof T

e There is an algorithm that always terminates with “yes” if Fis T-
valid, and “no” if Fis T-unsatisfiable

IIIIIIIIIIII

32

Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

o if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
 check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)

UNIVERSITY OF

WATERLOO

33

September 201

>

Background Reading: SMT

Leonardo de Moura
Microsoft Research
One Microsoft Way
Redmond, WA 98052
leonardo@microsoft.com

RACT

hint satisfaction problems arise in many diverse ar-
1ding software and hardware verification, type infer-
atic program analysis, test-case generation, schedul-
inning and graph problems. These areas share a
1 trait, they include a core component using logical
s for describing states and transformations between
"he most well-known constraint satisfaction problem
isitional satisfiability, SAT, where the goal is to de-
ether a formula over Boolean variables, formed using
~onnectives can be made true by choosing true/false
or its variables. Some problems are more naturally
»d using richer languages, such as arithmetic. A sup-
theory (of arithmetic) is then required to capture
ning of these formulas. Solvers for such formulations
hmonly called Satisfiability Modulo Theories (SMT)

e ! A
Wyt 0y

Cmmnmn v

AN Cvaup o
bigmww Tervgy
e e

¥ emam Mg

ARt w Yoy
Ao Maiww

.

SMT solvers have been the focus of increased recent atten-
tion thanks to technological advances and industrial applica-
tions. Yet, they draw on a combination of some of the most
fundamental areas in computer science as well as discover-

1 ies from the past century of symbolic logic. They combine

the problem of Boolean Satisfiability with domains, such as,
those studied in convex optimization and term-manipulating
symbolic systems. They involve the decision problem, com-
pleteness and incompleteness of logical theories, and finally
complexity theory. In this article, we present an overview of
the field of Satisfiability Modulo Theories, and some of its
applications.

UNIVERSITY OF

WATERLOO

el VAN R -y p e =Risfiability Modulo Theories: Introduction & Applications

Nikolaj Bjerner
Microsoft Research
One Microsoft Way

Redmond, WA 98052
nbjorner@microsoft.com

key driving factor [4]. An important ingredient is a common
interchange format for benchmarks, called SMT-LIB [33],
and the classification of benchmarks into various categories
depending on which theories are required. Conversely, a
growing number of applications are able to generate bench-
marks in the SMT-LIB format to further inspire improving
SMT solvers.

There is a relatively long tradition of using SMT solvers in
select and specialized contexts. One prolific case is theorem
proving systems such as ACL2 [26] and PVS [32]. These use
decision procedures to discharge lemmas encountered during
interactive proofs. SMT solvers have also been used for a
long time in the context of program verification and ertended
static checking [21], where verification is focused on assertion
checking. Recent progress in SMT solvers, however, has
enabled their use in a set of diverse applications, including
interactive theorem provers and extended static checkers,
but also in the context of scheduling, planning, test-case
generation, model-based testing and program development,
static program analysis, program synthesis, and run-time
analysis, among several others.

We begin by introducing a motivating application and a
simple instance of it that we will use as a running example.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision prob-
lem. In this problem, there are n jobs, each composed of
m tasks of varying duration that have to be performed con-
secutively on m machines. The start of a new task can be
delayed as long as needed in order to wait for a machine
ahlo hant

tn harnmo aw tacke rannnt ho intorrintod anco

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

SAT/SMT —p.3/50

35

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

Arithmetic

SAT/SMT - p.3/50

36

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Array theory

SAT/SMT - p.3/50

37

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Uninterpreted function

SAT/SMT —p.3/50

38

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

SAT/SMT —p.3/50

39

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to

b+ 2 =cA f(read(write(a,b,3),b)) # f(3)

SAT/SMT —p.3/50

40

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

SAT/SMT —p.3/50

% WATERLOO 41

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

then, the formula is unsatisfiable

SAT/SMT —p.3/50

% WATERLOO 42

Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y

IIIIIIIIIIII

WATERLOO

SAT/SMT —p. 4550

43

Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y

This formula is satisfiable

SAT/SMT —p. 4550

%Y WATERLOO

Example 2

z>0Af(z) >0Ay>0Af(y) >0Az#y

This formula is satisfiable:

Example model:

SAT/SMT —p. 4550

45

SMT - Milestones
year |Milestone |

1977 Efficient Equality Reasoning
1979 Theory Combination Foundations
1979 Arithmetic + Functions

1982 Combining Canonizing Solvers

1992-8 Systems: PVS, Simplify, STeP,
SvC

2002 Theory Clause Learning
2005 SMT competition

2006 Efficient SAT + Simplex
2007 Efficient Equality Matching
2009 Combinatory Array Logic, ...

Includes progress from SAT:

© -

15KLOC + 285KLOC =73

%) WATERLOO

timeout+abort

100

Z3
(of ’07)
Time
On ‘
Boogie
Regression

<0.01

s

D 1sec

>
B S
"~

’ %
m‘ﬁ‘ £

Slmpllfy (of 01) time

1000

. 100
Time

On ,
VCC

Reg reSS|1o;

0.1

Nov 08 March 09

46

SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT

e iterate as necessary

IIIIIIIIIIII

Problem

encode >

< decode

SAT/SMT
Solver

47

SMT : Basic Architecture

/)

Case

Analysis

IIIIIIIIIIII

= Equality + UF
o Arithmetic
o Bit-vectors

48

SAT + Theory solvers

Basic Idea

x>0,y=x+

P1, P2, (P3V P4)

IIIIIIIIIIII

1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

p1=(x20), po=(y=x+1),
Ps=(y>2),ps=(y<1)

49

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

P1, P2, (P3V P4)

"4

SAT
Solver

IIIIIIIIIIII

Abstract (aka “naming” atoms)

p1=(x=0), po=(y=x+1),
Ps=(y>2), pa=(y<1)

50

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[SAT } Assignment

Solver P1, P2, —P3; P4

IIIIIIIIIIII

%) WATERLOO 51

SAT + Theory solvers

Basic ldea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

Xx>0,y=x+1,
A) P1 P2 —Pa LY ,

{ SAT J Assignment

IIIIIIIIIIII

%) WATERLOO 52

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Psa) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[SAT } Assignment Xx>0,y=x+1,

. 1y Py s,) ooy e

V

Unsatisfiable <i Theory
............ x>0,y=x+1y<1 Solver

53

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

SAT ST, X2 0.y =x+ 1,
Solver N > —(y>2),y<1
New Lemma @

—P41V—PoV—Py Unsatisfiable Theory
x20y=x+1y=<1 Solver
% WATERLOO 54

SAT + Theory solvers

New

Unsatisfiable

Lemma <j
—|p1\/—|p2\/—|p4 XZO,y=X+1,y<1

N
AKA

Theory

conflict

IIIIIIIIIIII

@

|

Theory
Solver

|

95

Examples of Craig Interpolation for Theories

Boolean logic

A=(-bAN(-aVbVc)Aa) B = (—a V —c)
ITP(A,B) = aAc

Equality with Uniterpreted Functions (EUF)

A= (f(a) =bAp(f(a))) B = (b=cA-p(c))
ITP(A, B) = p(b)

Linear Real Arithmetic (LRA)

A=(z4+2xz4+y>10A2z<5H) B=(rx<-5Ny< -3

ITP(A,B)=z+y>5

%) WATERLOO 56

CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

Y

Constrained Horn Clauses (CHCs)

A Constrained Horn Clause (CHC) is a FOL formula

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays, Bit-
Vectors, or combinations of the above)

e \/ are variables, and X; are terms over V
* ¢ is a constraint in the background theory T
° P4, ..., Pn, h are n-ary predicates

e p.[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

%) WATERLOO 58

CHC Satisfiability

A T-model of a set of a CHCs I] is an extension of the model M of " with a
first-order interpretation of each predicate p, that makes all clauses in II true
in M

A set of clauses is satisfiable if and only if it has a model
e This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p;to T -
formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable

e solutions are inductive invariants
e refutation proofs are counterexample traces

UNIVERSITY OF

WATERLOO 59

CHC Notation and Tergy &Tstraint

Rule

Query

Fact
Linear CHC

Non-Linear CHC

IIIIIIIIIIII

A
h[X] %fp1[x1 yre ey pn[xn],

false <+ p4[X4l,..., Pn[X,], .
h[X] + o.
h[X] < p[X4], ¢.

h[X] . p'l[x'l]s"'s pn[xn]’ ¢
forn>1

60

Program Verification with HORN(LIA)

Z = X; 1 = 0;
assume (y > 0);

while (i < vy) {

‘ IS SAT?

Z =2 + 1;
i=1+ 1;

¥

assert(z == x + y); -\ /-

z=xXx&1 =08&y >0 = Inv(x, y, z, 1)
Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 61

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)
(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>=D B) (not (= C (+ A B))))
false
)
)
)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat
(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

(and (<= (+ x!2 (* (- 1) x'0) (* (- 1) x!3)) @)

(<= (+ x12 (* (- 1) x'@) (* (- 1) x!1)) @)
(<= (+ x'@ x!3 (* (- 1) x!2)) ©)))

Inv(x, y, z, 1)
Z =X + 1
Z <= X + Y

UNITVERSITY OF

WATERLOO

62

Programs, CFG, Horn Clauses

P (1) po.
o (2) p1(z,y) <
Y = pOaleay:O'
nt y = 0; l; : by = nondet() F (4) p3(z,y) < pa(z,y) .
while (%) { (5) pi(a’,y) +
T
r=T+Y; l T 1 p2(z,Y),
y=y+1 |k 5 : r'=2+y,
) ol B LA RSt
assert(xz > y); s % }\ (6) pa < (z > y),p3(z,y).
- S (7) perr < (z <), p3(z,y).
- (8) P4 < p4
(9) L < Perr

IIIIIIIIIIII

%@ WATERLOO 63

Horn Clauses for Program Verification

“out'\"'(.’lv woy ba}1 WY ALLLAL 1D Caa Ulltl_y PUAALL LW DULACDODUL Lus:.;a.

with the edges are formulated as follows:

Pinit(To,w, L) &z =10 where z occurs in w
pr.rif(I(h ret, I) €
plz,ret, L, L) «
p(z,ret, L, T) ¢ pezit(z,ret, T)

boilza.w' . e.) e blza. w.e) A —e: A —win(S.—(e: =

€(xo,w,T) for each label £, and re
prrit(z' V'Cf, -L)

5. incorrect :- Z=W+1, W>0, W+1<

read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)
decl€ program
havoc z,; assume z, = r;

ToHorn(def p(z) {S}) := wip (assume Poro(z); S
pre ? Ly

p(zo, net))

wlp(z :=E,Q):=let z=FE in Q
wip((if E then S; else S,), Q) := wip(((assume E: S;)0(assume —E; S;)), Q)

wip((5,08,),Q) := u(p(S Q) A wip(S;,Q)
wip(S1; 82, Q) := wip(S:, wip(S2,Q))

wip(havoc z,Q) :=Vz . Q

wilp(assert ¢, Q) :=pAQ

wlp(assume ¢, Q) :=p = Q
wip((while E do S).Q) := inv(w) A

Vo (((inv(w)AE) = wip(S.inv(w])))
"AA((inv(w) A-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A

7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming Verification
Conditions. VMCAI'14

To translate a procedure call £ : y := g(£); £ within a procedure p, create
he clauses:

) ¢ plwg, w,), call(w;, w3), g(wa, ws), return(w;, w3, ws)
) 4 p(wu.uu).call(w;.wg)

calllw,w)+r=£4z' =Ex" =§,_,
)

—n' =4, . w' =wret'fy ¥ [x]

Bj@rner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

% WATERLOO

64

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions R1,..., Ry over Vand Ey,...,Exyover V,V’,
CM1: init(V) — Riy(V)
CM2: R;(V)Ap:i(V, V') — R; (V')

CM3: (Viel..N\{j} Ri(V)Api(V, V")) — E;(V, V')
CM4: R;(V)ANE;(V,VYApr (V,V') — Ri(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software Verifiers
from Proof Rules. PLDI'12

{R(-sPo(k)lok)) < dist(p1,---,Pk) AR(g,P1, 115+ -, Pks i) }o'esk (6)
R(g,p1,l1,-- 7pk,lk) <« dist(p1,...,px) Anit(g,l}) A --- Alnit(g, i) @)
R(&,p1,11,..,px, k) « dist(pi,.. ,pk)/\((g,ll) I{’4(g',l'l))/\R(g,pl,ll,...,pk,lk) 8)
R ,p1, 1y, Prslk) < dist(po,pis---,pe) A ((g,10) 2 (&/,10)) ARConj(0, ..., k))
false dist(p1,...,pr)/\(A (pj:pj/\(g,lj)eEj))/\RConj(l,...,r) (10)

J=1yeem

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed Systems.
HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)
I»(i,4,0) A Tr(i,v,0') = I»(i,5,7) (3)

dl

(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) Iz(’i] 5) A TT(j 5 5/) . 12(?: j 5’) (4)
1J)) b 1J)
(inductive) Inv(g, 41,1, ..., i, Tiy .., L, Tk) A 8(9, @iy g5 25) — Inv(g', b1, @1, 5, X5,y Ly I (i’j’ 5) A Iz(’i, k’ﬁ) A Iz(j, k, ﬁ) A (5)
(non-interference) Inv(g, 41,21, -, 2k, Tk) A — =0 : : 2 9 =0
P N AN Tr(k,v,v) Nk #1 /\'k f_j = Iz(z,],’f;) .
I2(Z,j,’l)) = ﬁBad(’L,_],’l))
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 1, .., Lk, Tk) A err(g, €1, 21, . .., fm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause er_lcoding for thread modularity at .leve?l k (where (¢;,s,£;) and (ZT, s, -) refer to statement s on af Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) p terized Svst ESE 2016
arameterize ystems.
G MveRsiTy or Hoenicke et al. Thread Modularity at Many Levels.
%@ WATERLOO | pOPL'17 65

Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable

e satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates

* inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample

e the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed
e SAT means there exists a counterexample —a BMC at some depth is SAT
e UNSAT means the program is safe — BMC at all depths are UNSAT

UNIVERSITY OF

WATERLOO

66

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a predicate
transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]
wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

{ {Pre} P {Post} is valid IFF Pre = wlp (P, Post) }

IIIIIIIII

WATERLOO 67

A Simple Programming Language

Prog ::= def Main(x) { body, }, .., def P (x) { body, }
body ::= stmt (; stmt)*
stmt ::= x = E | assert (E) | assume (E) |
while E do S | y = P(E) |
L:stmt | goto L (optional)
E := expression over program variables

%) WATERLOO

Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyy }, .., def P (x) { body, }

wlp (x=E, Q) =let x=Ein Q
wlp (assert(E),Q)=EAQ
wlp (assume(E), Q)=E=Q
wlp (while E do S,Q)=1I(w)A
Yw . ((I(w) A E) = wilp (S, I(w))) A ((I(w) A —=E) = Q))
wip (y = P(E), Q) =ppre(E) A (Y r. p(E, r) = Q[r/y])

ToHorn (def P(x) {S})=wlp (x0=x;assume(p,..(x));S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) A V{P € Prog} . ToHorn (P)

|

IIIIIIIIIIII

69

Example of a WLP Horn Encoding

{Pre: y> 0}

Xo = X;
Vo = V3 ToHorn

while y > 0 do
X = X+1;
y = y-1;
{Post: x=X,+Y,}

>

Cl: I(X,y,X,y) + y>=0.

C3: false + I(X,Y,%X,,VYo), Y<=0, X#X,+Y,

C2: I(X+1Jy'1JX0Jyo) — I(XJy)XOJyO)J y>@°

{y > 0} P {x = x,4+Yo1q} is valid IFF the C; AC, AC; is satisfiable

IIIIIIIIIIII

WATERLOO

70

Control Flow Graph basic block

A CFG is a graph of basic blocks

e edges represent different control flow

A CFG corresponds to a program syntax

e where statements are restricted to the form
L;:S ; goto L,

and S is control-free (i.e., assignments and
procedure calls)

UNIVERSITY OF

WATERLOO

|02
r=1
y=0

!

l1 : by = nondet()

1]

|2:

x
Y

=y+1
/
¥

71

Dual WLP

Dual weakest liberal pre-condition
dual-wlp (P, Post) = -wlp (P, —-Post)

s € dual-wlp (P, Post) IFF there exists an execution of P that starts
in s and ends in Post

dual-wlp (P, Post) is the weakest condition ensuring that an
execution of P can reach a state in Post

IIIIIIIIIIII

72

Examples of dual-wlp

dual-wlp(assume(E), Q) = “wlp(assume(E), " Q)="(E=>"Q)=E AQ

dual-wlp(x := x+y; y := y+1, x=x A y=y’') = y+1=y’ A X+y=X’

Wip(x := x +y, (y+1=y A x=X')) wip(y:=y+1, 7(x=x" A y=y'))
=let x = x+y in 7 (y+1=y' A x=X') =lety =y+1in 7(y=y' A x=x')
=7 (yH1=y' A xty=X) =7 (yH1=y A X=X)

Horn Clauses by Dual WLP

Assumptions

e each procedure is represent by a control flow graph
—i.e., statements of the form 1,:S ; goto 1;, whereSisloop-free
e program is unsafe iff the last statement of Main() is reachable

—i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates
e 1(w) for each label (i.e., basic block)

— Pen (Xg, X) for entry location of procedure p()
— pex(X@J r) for exit location of procedure p()

* p(x,r) for each procedure P(x):r

UNIVERSITY OF

WATERLOO

74

Horn Clauses by Dual WLP

The verification condition is a conjunction of clauses:
pen(XOIX) é Xo=X

(X0, W) & li(xg,W) A =wlp (S, =(w=w’))
*for each statement 1;: S; goto 1

p (XOIr) é pex(X01r)

false < Main,(x, ret)

IIIIIIIIIIII

75

Example Horn Encoding

o (1) po.
o (2) p1(z,y) <
Y = pOaleay:O'
nt y = 0; l; : by = nondet() F (4) p3(z,y) < pa(z,y) .
while (x) { (5) pr(2’,y)
T
r=T+Y; l T 1 p2(z,Y),
y=y+1 |k 5 : r'=2+y,
) ol B LA RSt
assert(xz > y); s % }\ (6) pa < (x> y),p3(x,y).
- S (7) perr < (z <), p3(z,y).
- (8) P4 < p4
(9) L < Pen

IIIIIIIIIIII

%) WATERLOO 76

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow
graph by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points ¢ and d summarizes all finite (loop-
free) executions from c to d that do not pass through any other
cut-points

IIIIIIIIIIII

%) WATERLOO 77

Cut Point Graph Example

CFG

IIIIIIIIIIII

CPG

78

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph by
(summary) edges

Cut Point Graph preserves reachability of (not-summarized) control location.
Summarizing loops is undecidable! (Halting program)

A cutset summary summarizes all location except for a cycle cutset of a CFG.
Computing minimal cutset summary is NP-hard (minimal feedback vertex set).

A reasonable compromise is to summarize everything but heads of loops.
(Polynomial-time computable).

UNIVERSITY OF

WATERLOO 79

Single Static Assighment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers

e explicit def-use chains

e simplifies optimizations and improves analyses

PHI-function are necessary to maintain unique definitions in branching control
flow

x = PHI (vo:bby, ..., v:bb,)) (phi-assignment)

“x gets v; if previously executed block was bb,”

UNIVERSITY OF

WATERLOO

80

Single Static Assighment: An Example

/7 0. goto 1
1: x @ = PHI(©:0, x 3:5);
y © = PHI(y:0, y 1:5);

if (x_ ©@ < N) goto 2 else goto 6

2: if (y_© > 0) goto 3 else goto 4

; |

; |

D |

|

: B .
|X=@; | | !

while (x < N) {1 I

. — ° l

: Ty >) , | 3: x 1 X 0 +y 0; goto 5 |

; X =x +vy; | | 4: x 2 =x 0 -y 0; goto 5 |

I else : : I

I X =X =Yy | | 5: X 3 = PHI(x 1:3, x 2:4); I

'y =-1%*y; | y1l=-1%y @; '

| }) | goto 1 '

I > \ 6: }
\- ________________ ~

%) WATERLOO 81

Large Step Encoding

Problem: Generate a
compact verification
condition for a loop-free
block of code

IIIIIIIII

: if (y @ > 9) goto 3 else goto 4

X_ PHI(©0:0, x 3:5);
y PHI(y:9, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

9 =
9 =

X1=x0+y 0; goto 5
X 2 =X0 -y 0; goto 5
: X 3 = PHI(x 1:3, x 2:4);
y1=-1*y.0;
—gote 1
: /
7’

82

Large Step Encoding: Extract all Actions

X1 = Xo + Yo
X, = Xg = Yo
yi = -1 * y,

w

: X 0 = PHI(9:0, x 3:5);

: if (y @ > 9) goto 3 else goto 4

x_1 X 0 +y 0f goto 5

X_2 X 0 -y 0] goto 5

y © = PHI(y:0, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

83

Example: Encode Control Flow

X1 = Xo + Yo
X, = Xg = Yo
y1 = -1 * y,
B, > Xg < N
B, > B, Ay, < 0

(Bs A X3=X;)

)) _
Bs A X7 g=X3 A Y o=Y3

‘ Y

p'l(X’OIy’O) ~— p1 (XOI yO)I ¢'

IIIIIIIII

1l: x @ = PHI(©0:0, x 3:5);
y © = PHI(y:0, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

:Jif (y @ > 9) goto 3 else goto 4
:Ix 1 =x0 +vy 0; goto 5
X 2 = x 0 -y 0; goto 5
:Ix 3 = PHI(x 1:3, x 2:4);

y1=-1%*y 0;
goto 1

84

Summary

Convert body of each procedure into SSA
For each procedure, compute a Cut Point Graph (CPG)

For each edge (s, t) in CPG use dual-wlp to construct the constraint for an
execution to flow fromstot

Procedure summary is determined by constraints at the exit point of a
procedure

UNIVERSITY OF

WATERLOO

85

Mixed Semantics

PROGRAM TRANSFORMATION

IIIIIIIIIIII

86

Deeply nested assertions

o UNIVERSITY F
WATERLOOO

Deeply nested assertions

Counter-examples are long

Hard to determine (from main) what is relevant

UNIVERSITY OF

WATERLOO

88

: : GWC'08,LQ 14
Mixed Semantics [Q14]

Stack-free program semantics combining:
e operational (or small-step) semantics
— i.e., usual execution semantics

e natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
— (o, o) € | |f| | iff the execution of f on input state ¢ terminates and results in state ¢’

e some execution steps are big, some are small
Non-deterministic executions of function calls
e update top activation record using function summary, or
e enter function body, forgetting history records (i.e., no return!)
Preserves reachability and non-termination
Theorem: Let K be the operational semantics, K™ the stack-free semantics, and L a
program location. Then,
K EEF(pc=L) < K™ E EF (pc=L) and KEEG (pc#L) < K™ E EG (pc#l)

7] UNIVERSITY OF

WATERLOO

rdef main()™ ~ ~ ~ ~ ~ 1
I'1: int x =
:2: X = X+1;
| 3: while(x>=0)
14: x=f(x);

Error;

|

|

|

|

|

I5: if(x<0) :
|

|

: END; |
|

|

I 'def f(int y): ret y

W le— N |e—

:9: if(y>=10){
 10: y=y+1;

(1<=x<=9 A x'=x) V
(x<=0 A x"=x-1)

111: y=f(y);
112: else if(y>0)

|

| x<0
F13: y=y+1; |

|

|

[

Summary of f(y)

|
(1<=y<=9 Ay’ =y) V :
(y<=0 Ay =y-1) :

UNIVERSITY OF

%) WATERLOO

8 :END

y' = y+1

6:Error

l y =y-1

90

>

Mixed Semantics Transformation via Inlining

void main() {

p1(); p2();

assert(cl);

}

void pl() {
p2();
assert(c2);

}
void p2() {

assert(c3);

IIIIIIIIIIII

WATERLOO

void main() {
if(nd()) p1(); else goto pi;
if(nd()) p2(); else goto p2;
assert(cl);
assume(false);
pl: if (nd) p2(); else goto p2;
assume(!c2);
assert(false);
p2: assume(!c3);

assert(false);

} |void p1() {p2(); assume(c2);}

void p2() {assume(c3);}

91

Mixed Semantics: Summary

Every procedure is inlined at most once
* in the worst case, doubles the size of the program

e can be restricted to only inline functions that directly or indirectly call errror()
function

Easy to implement at compiler level
e create “failing” and “passing” versions of each function
e reduce “passing” functions to returning paths

* in main(), introduce new basic block bb.F for every failing function F(), and call
failing.F in bb.F

e inline all failing calls

e replace every call to F to non-deterministic jump to bb.F or call to passing F
Increases context-sensitivity of context-insensitive analyses

e context of failing paths is explicit in main (because of inlining)

* enables / improves many traditional analyses

%) WATERLOO

92

PREDICATE ABSTRACTION

IIIIIIIIIIII

93

Predicate Abstraction

Extends Boolean reasoning methods to non-Boolean domains

Given a set of predicates P, abstract transition relation by restricting its
effects to the set P

e Each step of Tr sets some predicates in P to true and some to false

o Computing abstraction requires theory reasoning
e Abstract transition relation is Boolean, so Boolean methods can be applied

Predicate abstraction is an over-approximation

e May introduce spurious counterexamples that cannot be replayed in the real
system

Abstraction-Refinement: replay counterexamples using theory reasoner

e Use BMC to replay
e Use Interpolation to learn new predicates

UNIVERSITY OF

WATERLOO

94

>

Example Program

example() {

1: do {
lock();
old = new;

q = q->next;

2 if (q != NULL){
3 g->data = new;

unlock();

new, ++;

}
4: ¥ while(new, != old);
5: unlock();
return;
}

WATERLOO

95

The Safety Verification Problem

. I /T . Error
ST T
@ o | —) r Safe

\

Initial

Is there a path from an initial to an error state?
Problem: Infinite state graph
\;,;Av,sgs,;ggg,Solution: Set of states is a logical formula

96

Idea: Predicate Abstraction

» ,4-/—»[/4,__,\,//, * Predicates on program state:
/11 { LN
/ I T N O A B) lock
ool ety et | o 4 old = new
S } } (| .__.| ° States satisfying same predicates
/[éi f / f \ f are equivalent
D’/f — — Merged into one abstract
-’l/ /——ﬂ’) \1’/ // /1 State
— 1 V/ AV T1T—1A4°/ 1 - #abstract states is finite
Y AT A . / . /17
iaraNl

IIIIIIIIIIII

%) WATERLOO 97

Abstract States and Transitions

IIIIIIIIIIII

State
J > J
3: unlock();
new++;
4} ...
a
>
Theorem Prover

lock - lock
old=new - old=new

98

Abstraction

N I e
B ERERNEE
)) 4]
AR |y
NN
?__}_ ? _,l{_(}

IIIIIIIIIIII

State
y g
3: unlock();
new++;
4} ...
a
>
Theorem Prover
lock - lock
old=new - old=new

99

Abstraction

TN

vi | _»l__»l |
A A) |
HNER |y

}

ERENTUN

?—»l —>? __>I {j

IIIIIIIIIIII

State
>
J J
3: unlock();
new++;
4} ...
a
>
lock - lock
old=new - old=new
100

Analyze Abstraction

Analyzing finite graph
Over-approximate:

Safe means that system
IS safe

No false negatives

Problem:

Spurious counterexamples

IIIIIIIIIIII

%) WATERLOO 101

Ildea: Counterex.-Guided Refinement

Solution:

Use spurious
counterexamples to refine
abstraction

IIIIIIIIIIII

%) WATERLOO 102

Ildea: Counterex.-Guided Refinement

IIIIIIIIIIII

Solution:
Use spurious

counterexamples to refine
abstraction

. Add predicates to distinguish

states across cut

103

lterative Abstraction Refinement

IIIIIIIIIIII

Solution:

Use spurious
counterexamples to refine
abstraction

1. Add predicates to distinguish
states across cut

2. Build refined abstraction
- eliminates counterexample

3. Repeat search

- till real counterexample or system
proved safe

104

Implicit Predicate Abstraction with IC3

ldea: do not compute abstract transition relation upfront!

|C3 only requires computing one predecessor at a time
e Use theory reasoning to compute a predecessor
e Each POB/CTl/state is a Boolean valuations to all predicates

The rest is exactly like Boolean IC3
e Except that predecessor generalization does not work

To refine, replay the counterexamples using theory solver
e use interpolation to learn new predicates

Interesting idea to implement in Z3 using Spacer/CHC for refinement

UNIVERSITY OF

WATERLOO 105

