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Syntax and Semantics (Again)

Syntax 
•MW: the way in which linguistic elements (such as words) 

are put together to form constituents (such as phrases or 
clauses)
•Determines and restricts how things are written

Semantics
•MW: the study of meanings
•Determines how syntax is interpreted to give meaning
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The language of First Order Logic

Functions , Variables, Predicates
• f, g,… x, y, z, … P, Q, =, <, …

Atomic formulas, Literals
• P(x,f(y)), ¬Q(y,z)

Quantifier free formulas
• P(f(a), b) Ù c = g(d)

Formulas, sentences
• "x . "y . [ P(x, f(x)) Ú g(y,x) = h(y) ]
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Language: Signatures

A signature S is a finite set of:
• Function symbols:

SF = { f, g, +, … }
• Predicate symbols: 

SP = { P, Q,=, true, false, … }
• And an arity function: 

S ® N

Function symbols with arity 0 are constants
• notation: f/2 means a symbol with arity 2

A countable set V of variables 
• disjoint from S
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Language: Terms

The set of terms T(SF ,V) is the smallest set 
formed by the syntax rules:

• t Î T ::= v v Î V
|     f(t1, …, tn) f Î SF , t1, …, tn Î T

Ground terms are given by T(SF ,Æ) 
•a term is ground if it contains no variables
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Language: Atomic Formulas

a Î Atoms ::= P(t1, …, tn)
P Î SP t1, …, tn Î T

An atom is ground if t1, …, tn Î T(SF ,Æ) 
• ground atom contains no variables

Literals are atoms and negation of atoms:
l Î Literals ::= a | ¬ a a Î Atoms 
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Language: Quantifier free formulas

The set QFF(S,V) of quantifier free formulas is the 
smallest set such that:

j ÎQFF ::= a Î Atoms atoms
| ¬ j negations
| j « j’ bi-implications
| j Ù j’ conjunction
| j Ú j’ disjunction
| j ® j’ implication
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Language: Formulas
The set of first-order formulas are obtained by adding 
the formation rules:

j ::= …
| " x . j universal quant.
| $ x . j existential quant.

Free (occurrences) of variables in a formula are theose 
not bound by a quantifier.

A sentence is a first-order formula with no free 
variables.
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Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt 
Agatha. Agatha, the Butler and Charles were the only 
people who lived in Dreadbury Mansion. A killer always 
hates his victim, and is never richer than his victim. Charles 
hates no one that aunt Agatha hates. Agatha hates 
everyone except the butler. The butler hates everyone not 
richer than Aunt Agatha. The butler also hates everyone 
Agatha hates. No one hates everyone. Agatha is not the 
butler. 

Who killed Aunt Agatha?
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Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt 
Agatha. Agatha, the Butler and Charles were the only 
people who lived in Dreadbury Mansion. A killer always 
hates his victim, and is never richer than his victim. Charles
hates no one that aunt Agatha hates. Agatha hates
everyone except the Butler. The Butler hates everyone not 
richer than Aunt Agatha. The Butler also hates everyone 
Agatha hates. No one hates everyone. Agatha is not the 
Butler. 

Who killed Aunt Agatha?
Constants are blue
Predicates are purple
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Dreadbury Mansion Mystery
killed/2, hates/2, richer/2, a/0, b/0, c/0

9x · killed(x, a) (1)

8x · 8y · killed(x, y) =) (hates(x, y) ^ ¬richer(x, y)) (2)

8x · hates(a, x) =) ¬hates(c, x) (3)

hates(a, a) ^ hates(a, c) (4)

8x · ¬richer(x, a) =) hates(b, x) (5)

8x · hates(a, x) =) hates(b, x) (6)

8x · 9y · ¬hates(x, y) (7)

a 6= b (8)
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Solving Dreadbury Mansion in SMT
(declare-datatypes () ((Mansion (Agatha) (Butler) (Charles))))
(declare-fun killed (Mansion Mansion) Bool)
(declare-fun hates (Mansion Mansion) Bool)
(declare-fun richer (Mansion Mansion) Bool)
(assert (exists ((x Mansion)) (killed x Agatha)))
(assert (forall ((x Mansion) (y Mansion)) 

(=> (killed x y) (hates x y))))
(assert (forall ((x Mansion) (y Mansion)) 

(=> (killed x y) (not (richer x y)))))
(assert (forall ((x Mansion)) 

(=> (hates Agatha x) (not (hates Charles x)))))
(assert (hates Agatha Agatha))
(assert (hates Agatha Charles))
(assert (forall ((x Mansion)) 

(=> (not (richer x Agatha)) (hates Butler x))))
(assert (forall ((x Mansion)) 

(=> (hates Agatha x) (hates Butler x))))
(assert (forall ((x Mansion)) (

exists ((y Mansion)) (not (hates x y)))))

(check-sat)
(get-model)
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Models (Semantics)

A model M is defined as:
• Domain S; non-empty set of elements; often called the universe
• Interpretation, fM : Sn ®S for each f Î SF with arity(f) = n
• Interpretation PM Í Sn for each P Î SP with arity(P) = n
• Assignment xM Î S for every variable x Î V

A formula j is true in a model M if it evaluates to true under the 
given interpretations over the domain S.

M is a model for a set of sentences T if all sentences of T are 
true in M.
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Models (Semantics)

A term t in a model M is interpreted as:
• Variable x Î V is interpreted as xM

• f(t1, …, tn) is interpreted as fM(a1, …, an), 
–where ai is the current interpretation of ti

P(t1, …, tn) atom is true in a model M if and only if
• (a1, …, an) Î PM, where
•ai is the current interpretation of ti
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Models (Semantics)
A formula j is true in a model M if:

• M ⊨¬ j iff M ⊭ j (i.e., M is not a model for j)
• M ⊨ j « j’ iff M ⊨ j is equivalent to M ⊨ j’
• M ⊨ j Ù j’ iff M ⊨ j and M ⊨ j’
• M ⊨ j Ú j’ iff M ⊨ j or M ⊨ j’
• M ⊨ j ® j’ iff if M ⊨ j then M ⊨ j’
• M ⊨"x.j iff for all s Î S,  M[x:=s] ⊨ j
• M ⊨ $x.j iff exists s Î S,  M[x:=s] ⊨ j
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Dreadbury Mansion Mystery
killed/2, hates/2, richer/2, a/0, b/0, c/0

9x · killed(x, a) (1)

8x · 8y · killed(x, y) =) (hates(x, y) ^ ¬richer(x, y)) (2)

8x · hates(a, x) =) ¬hates(c, x) (3)

hates(a, a) ^ hates(a, c) (4)

8x · ¬richer(x, a) =) hates(b, x) (5)

8x · hates(a, x) =) hates(b, x) (6)

8x · 9y · ¬hates(x, y) (7)

a 6= b (8)
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Dreadbury Mansion Mystery: Model
killed/2, hates/2, richer/2, a/0, b/0, c/0

M(hates) = {(a, a), (a, c)(b, a), (b, c)}

S = {a, b, c}
M(a) = a M(b) = b

M(c) = c M(killed) = {(a, a)}
M(richer) = {(b, a)}
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Semantics: Exercise

Drinker’s paradox:
There is someone in the pub such that, if he is drinking, everyone in the pub is 
drinking.
• $x. (D(x) ® "y. D(y)) 

Is this logical formula valid?
Or unsatisfiable? 
Or satisfiable but not valid?
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Inference Rules for First Order Logic

We write ` A when A can be inferred from basic axioms
We write  B ` A when A can be inferred from B
Natural deduction style rules
Notation: A[a/x] means A with variable x replaced by term a

A ^ B
A        B

A _ B
A

A _ B
B

8 x. A
A[a/x] a is fresh8 x. A

A[e/x] 
A[e/x] 
9 x. A

B
A ) B     A

` B
` 9 x. A           A[a/x] ` B

a is freshA ) B
A ` B
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Theories
A (first-order) theory T (over signature S) is a set of (deductively 
closed) sentences (over S and V) - axioms

Let DC(G) be the deductive closure of a set of sentences G.
• For every theory T, DC(T) = T

A theory T is constistent if false Ï T

A theory captures the intendent interpretation of the functions and 
predicates in the signature
• e.g., ‘+’ is a plus, ‘0’ is number 0, etc. 

We can view a (first-order) theory T as the class of all models of T 
(due to completeness of first-order logic). 
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Theory of Equality TE

Signature: ΣE = { =, a, b, c, …,  f, g, h, …,  P, Q, R, …. }
=, a binary predicate, interpreted by axioms
all constant, function, and predicate symbols.
Axioms:
1. "x . x = x (reflexivity)
2. "x, y . x = y ® y = x (symmetry)
3. "x, y, z . x = y Ù y = z ® x = z (transitivity)
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Theory of Equality TE

Signature: ΣE = { =, a, b, c, …,  f, g, h, …,  P, Q, R, …. }
=, a binary predicate, interpreted by axioms
all constant, function, and predicate symbols.

Axioms:

4. for each positive integer n and n-ary function symbol f,
"x1,…, xn, y1,…, yn . Ùi xi = yi ® f(x1,…, xn) = f(y1,…, yn ) (congruence)

5. for each positive integer n and n-ary predicate symbol P
" x1,…, xn, y1,…, yn . Ùi xi = yi ® (P(x1,…, xn) « P(y1,…, yn )) (equivalence)
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Theory of Peano Arithmetic (Natural Number)

Signature: ΣPA = { 0, 1, + , *, =  }
Axioms of TPA :  axioms for theory of equality, TE , plus:
1. ∀x. ¬ (x+ 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F[0]  ∧ (∀x.F[x] → F[x+ 1]) → ∀x.F[x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
6. ∀x. x * 0 = 0 (times zero)
7. ∀x, y. x * (y + 1) = x * y + x (times successor)

Note that induction (#3) is an axiom schema
• one such axiom is added for each predicate F in the signature

Peano arithmetic is undecidable!
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Theory of Presburger Arithmetic

Signature: ΣPA = { 0, 1, + , =  }
Axioms of TPA :  axioms for theory of equality, TE , plus:
1. ∀x. ¬ (x+ 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F[0]  ∧ (∀x.F[x] → F[x+ 1]) → ∀x.F[x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

Note that induction (#3) is an axiom schema
• one such axiom is added for each predicate F in the signature

Can extend the signature to allow multiplication by a numeric constant
Presburger arithmetic is decidable
• linear integer programming (ILP)
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McCarthy theory of Arrays TA

Signature: ΣA =  { read, write, = }
read(a, i) is a binary function:
• reads an array a at the index i
• alternative notations:
–(select a i), and a[i]

write(a, i, v) is a ternary function:
•writes a value v to the index  i of array a
• alternative notations:
–(store a i v) , a[i:=v]

• side-effect free – results in new array, does not modify a
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Axioms of TA

Array congruence
•"a , i, j . i =  j ® read (a, i)  = read (a, j) 

Read-Over-Write 1
•"a , v, i, j. i =  j ® read (write (a, i, v), j) = v 

Read-Over-Write 2
•"a,v, i, j. i≠j ®read (write (a, i, v), j) = read (a, j)

Extensionality
•a=b « "i . read(a, i) = read(b, i)
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T-Satisfiability

A formula j(x) is T-satisfiable in a theory T if 
there is a model of DC(T È $x.j(x)). 
That is, there is a model M for T in which j(x) 
evaluates to true.

Notation: 
M ⊨T j(x) 

where, DC(V) stands for deductive closure of V
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T-Validity

A formula j(x) is T-valid in a theory T if       
"x.j(x) Î T 

That is, "x.j(x) evaluates to true in every 
model M of T

T-validity:
⊨T j(x) 
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Fragment of a Theory

Fragment of a theory T is a syntactically restricted subset of 
formulae of the theory
Example:
•Quantifier-free fragment of theory T is the set of formulae 

without quantifiers that are valid in T

Often decidable fragments for undecidable theories

Theory T is  decidable if T-validity is decidable for every 
formula F of T
• There is an algorithm that always terminates with  “yes” if  F is  T-

valid, and “no” if  F is  T-unsatisfiable
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Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a 
model
• if F is propositional, a model is a truth assignment to Boolean variables
• if F is first-order formula, a model assigns values to variables and 

interpretation to all the function and predicate symbols

SAT Solvers
• check satisfiability of propositional formulas

SMT Solvers
• check satisfiability of formulas in a decidable first-order theory (e.g., linear 

arithmetic, uninterpreted functions, array theory, bit-vectors)
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Background Reading: SMT

September 2011
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SMT - Milestones
year Milestone
1977 Efficient Equality Reasoning

1979 Theory Combination Foundations

1979 Arithmetic + Functions 

1982 Combining Canonizing Solvers

1992-8 Systems: PVS, Simplify, STeP, 
SVC

2002 Theory Clause Learning

2005 SMT competition

2006 Efficient SAT + Simplex

2007 Efficient Equality Matching

2009 Combinatory Array Logic, …

SAT
Theory
Solvers

SMT

15KLOC + 285KLOC  = Z3 

Includes progress from SAT:

Simplify (of ’01) time

1sec

0.1

1

10

100

1000

Z3
Time
On 
VCC

Regression

Nov 08 March 09

Z3
(of ’07)
Time
On 

Boogie
Regression
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SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT
• iterate as necessary

Problem

encode

decode

SAT/SMT 
Solver
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SAT
Theory
Solvers

SMT

SMT : Basic Architecture

Equality + UF
Arithmetic
Bit-vectors

…

Case 
Analysis
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SAT + Theory solvers

Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)
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SAT + Theory solvers

Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)

SAT 
Solver
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SAT + Theory solvers

Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)

SAT 
Solver

Assignment
p1,  p2, ¬p3, p4
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SAT + Theory solvers
Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)

SAT 
Solver

Assignment
p1,  p2, ¬p3, p4

x ³ 0, y = x + 1, 
¬(y > 2), y < 1
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SAT + Theory solvers
Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)

SAT 
Solver

Assignment
p1,  p2, ¬p3, p4

x ³ 0, y = x + 1, 
¬(y > 2), y < 1

Theory
Solver

Unsatisfiable
x ³ 0, y = x + 1, y < 1
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SAT + Theory solvers

Basic Idea

x ³ 0, y = x + 1, (y > 2 Ú y < 1) 

p1,  p2, (p3 Ú p4)

Abstract (aka “naming” atoms)

p1 º (x ³ 0), p2 º (y = x + 1), 
p3 º (y > 2), p4 º (y < 1)

SAT 
Solver

Assignment
p1,  p2, ¬p3, p4

x ³ 0, y = x + 1, 
¬(y > 2), y < 1

Theory
Solver

Unsatisfiable
x ³ 0, y = x + 1, y < 1

New Lemma
¬p1Ú¬p2Ú¬p4



55 55

SAT + Theory solvers

Theory
Solver

Unsatisfiable
x ³ 0, y = x + 1, y < 1

New Lemma
¬p1Ú¬p2Ú¬p4

AKA
Theory 
conflict
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Examples of Craig Interpolation for Theories

Boolean logic

Equality with Uniterpreted Functions (EUF)

Linear Real Arithmetic (LRA)

A = (¬b ^ (¬a _ b _ c) ^ a) B = (¬a _ ¬c)

ITP (A,B) = a ^ c

A = (f(a) = b ^ p(f(a))) B = (b = c ^ ¬p(c))

ITP (A,B) = p(b)

A = (z + x+ y > 10 ^ z < 5) B = (x < �5 ^ y < �3)

ITP (A,B) = x+ y > 5
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CONSTRAINED HORN 
CLAUSES
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Constrained Horn Clauses (CHCs)

A Constrained Horn Clause (CHC) is a FOL formula

where
• ! is a background theory (e.g., Linear Arithmetic, Arrays, Bit-

Vectors, or combinations of the above)

• V are variables, and Xi are terms over V

• " is a constraint in the background theory !
• p1, …, pn, h are n-ary predicates

• pi[X] is an application of a predicate to first-order terms

8V · (' ^ p1[X1] ^ · · · ^ pn[Xn]) ! h[X]
<latexit sha1_base64="cXM3qQu8DKQ90hT+ytxG+qsemHE="></latexit><latexit sha1_base64="cXM3qQu8DKQ90hT+ytxG+qsemHE="></latexit><latexit sha1_base64="cXM3qQu8DKQ90hT+ytxG+qsemHE="></latexit><latexit sha1_base64="cXM3qQu8DKQ90hT+ytxG+qsemHE="></latexit>
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CHC Satisfiability

A !-model of a set of a CHCs " is an extension of the model M of ! with a
first-order interpretation of each predicate pi that makes all clauses in " true 
in M 

A set of clauses is satisfiable if and only if it has a model
• This is the usual FOL satisfiability

A !-solution of a set of CHCs " is a substitution # from predicates pi to !-
formulas such that "# is !-valid

In the context of program verification
• a program satisfies a property iff corresponding CHCs are satisfiable
• solutions are inductive invariants
• refutation proofs are counterexample traces
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CHC Notation and Terminology

Rule h[X] Ã p1[X1],…, pn[Xn], Á.

Query false Ã p1[X1],…, pn[Xn], Á.

Fact h[X] Ã Á.

Linear CHC h[X] Ã p[X1], Á.

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á.
for n > 1

head body constraint
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Program Verification with HORN(LIA)

z = x; i = 0;

assume (y > 0);

while (i < y) {

z = z + 1; 

i = i + 1; 

}

assert(z == x + y);

z = x & i = 0 & y > 0 è Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 è Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y è false

IS SAT?
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In SMT-LIB
(set-logic HORN)

;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)

(assert
(forall ( (A Int) (B Int) (C Int) (D Int))

(=> (and (> B 0) (= C A) (= D 0))
(Inv A B C D)))

)
(assert
(forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )

(=>
(and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D 

1)))
(Inv A B C1 D1)
)
)

)
(assert
(forall ( (A Int) (B Int) (C Int) (D Int))

(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false
)

)
)

(check-sat)
(get-model)

$ z3 add-by-one.smt2
sat
(model

(define-fun Inv ((x!0 Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!3)) 0)

(<= (+ x!2 (* (- 1) x!0) (* (- 1) x!1)) 0)
(<= (+ x!0 x!3 (* (- 1) x!2)) 0)))

)

Inv(x, y, z, i)
z  = x + i
z <= x + y
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Programs, CFG, Horn Clauses

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y
y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0, y0) 

p2(x, y),
x0 = x+ y,
y0 = y + 1.

h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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Horn Clauses for Program Verification

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

De Angelis et al. Verifying Array 
Programs by Transforming Verification 

Conditions. VMCAI'14
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Hojjat et al. Horn Clauses for Communicating Timed Systems. 
HCVS'14

Horn Clauses for Concurrent / Distributed / 
Parameterized Systems

Rybalchenko et al. Synthesizing Software Verifiers 
from Proof Rules. PLDI'12

Hoenicke et al. Thread Modularity at Many Levels. 
POPL'17

Gurfinkel et al.  SMT-Based Verification of 
Parameterized Systems. FSE 2016
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Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable
• satisfiability-preserving transformations == safety preserving 

Models for CHC correspond to verification certificates
• inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample
• the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed
• SAT means there exists a counterexample – a BMC at some depth is SAT
• UNSAT means the program is safe – BMC at all depths are UNSAT
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Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a predicate 
transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post 

{Pre} P {Post} is valid           IFF                Pre ⇒ wlp (P, Post)
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A Simple Programming Language

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

body  ::= stmt (; stmt)*

stmt ::= x = E | assert (E) | assume (E) | 
while E do S | y = P(E) |
L:stmt | goto L             (optional)

E     := expression over program variables
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Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

wlp (x=E, Q) = let x=E in Q
wlp (assert(E) , Q) = E ∧ Q
wlp (assume(E), Q) = E ⇒ Q
wlp (while E do S, Q) = I(w) ∧

8w . ((I(w) ∧ E) ⇒ wlp (S, I(w))) ∧ ((I(w) ∧ ¬E) ⇒ Q))
wlp (y = P(E), Q) = ppre(E) ∧ (8 r. p(E, r) ⇒ Q[r/y])

ToHorn (def P(x) {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) ∧ 8{P 2 Prog} . ToHorn (P) 
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Example of a WLP Horn Encoding

{y ¸ 0} P {x = xold+yold} is valid IFF the C1 ∧C2 ∧C3 is satisfiable

{Pre: y¸ 0}
xo = x;
yo = y; 
while y > 0 do
x = x+1;
y = y−1;

{Post: x=xo+yo}

C1: I(x,y,x,y) Ã y>=0.
C2: I(x+1,y-1,xo,yo) Ã I(x,y,xo,yo), y>0.
C3: false Ã I(x,y,xo,yo), y<=0, x¹xo+yo

ToHorn
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Control Flow Graph

A CFG is a graph of basic blocks
• edges represent different control flow

A CFG corresponds to a program syntax
• where statements are restricted to the form

Li:S ; goto Lj

and S is control-free (i.e., assignments and 
procedure calls)

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y
y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0, y0) 

p2(x, y),
x0 = x+ y,
y0 = y + 1.

h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.

basic block
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Dual WLP

Dual weakest liberal pre-condition

dual-wlp (P, Post)  =  ¬wlp (P, ¬Post)

s ∈ dual-wlp (P, Post) IFF there exists an execution of P that starts 
in s and ends in Post

dual-wlp (P, Post) is the weakest condition ensuring that an 
execution of P can reach a state in Post
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Examples of dual-wlp

dual-wlp(assume(E), Q) = ¬wlp(assume(E), ¬ Q) = ¬(E ⇒ ¬ Q) = E ∧ Q

dual-wlp(x := x+y; y := y+1, x=x’ ∧ y=y’) = y+1=y’ ∧ x+y=x’

wlp(x := x + y, ¬(y+1=y ∧ x=x'))

= let x = x+y in ¬ (y+1=y' ∧ x=x')

= ¬ (y+1=y' ∧ x+y=x')

wlp(y:=y+1, ¬(x=x' ∧ y=y'))

= let y = y+1 in ¬(y=y' ∧ x=x')

= ¬ (y+1=y ∧ x=x')



74 74

Horn Clauses by Dual WLP

Assumptions
• each procedure is represent by a control flow graph
– i.e., statements of the form li:S ; goto lj , where S is loop-free

• program is unsafe iff the last statement of Main() is reachable
– i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates
• l(w) for each label (i.e., basic block)
– pen(x0,x) for entry location of procedure p()
– pex(x0,r) for exit location of procedure p()

• p(x,r) for each procedure P(x):r
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Horn Clauses by Dual WLP

The verification condition is a conjunction of clauses:

pen(x0,x) ← x0=x   

lj(x0,w’) ← li(x0,w) ∧ ¬wlp (S, ¬(w=w’))
• for each statement li: S; goto lj

p (x0,r) ← pex(x0,r) 

false ← Mainex(x, ret)
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Example Horn Encoding

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y
y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0, y0) 

p2(x, y),
x0 = x+ y,
y0 = y + 1.

h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow 
graph by (summary) edges 

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points c and d summarizes all finite (loop-
free) executions from c to d that do not pass through any other 
cut-points
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Cut Point Graph Example

1

2

3 4

5

6

1

6

CFG CPG
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From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph by 
(summary) edges 

Cut Point Graph preserves reachability of (not-summarized) control location. 

Summarizing loops is undecidable! (Halting program)

A cutset summary summarizes all location except for a cycle cutset of a CFG. 
Computing minimal cutset summary is NP-hard (minimal feedback vertex set).

A reasonable compromise is to summarize everything but heads of loops. 
(Polynomial-time computable).
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Single Static Assignment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers
• explicit def-use chains
• simplifies optimizations and improves analyses 

PHI-function are necessary to maintain unique definitions in branching control 
flow

x = PHI ( v0:bb0, …, vn:bbn) )                      (phi-assignment)

“x gets vi if previously executed block was bbi”
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Single Static Assignment: An Example

0: goto 1
1: x_0 = PHI(0:0, x_3:5);

y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

6:

int x, y, n;

x = 0;
while (x < N) {
if (y > 0) 

x = x + y;
else

x = x – y;
y = -1 * y;

}

val:bb
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Large Step Encoding

Problem: Generate a 
compact verification 
condition for a loop-free 
block of code

0: goto 1
1: x_0 = PHI(0:0, x_3:5);

y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

6:
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1: x_0 = PHI(0:0, x_3:5);
y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

Large Step Encoding: Extract all Actions
x1 = x0 + y0
x2 = x0 – y0
y1 = -1 * y0
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1: x_0 = PHI(0:0, x_3:5);
y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

Example: Encode Control Flow
x1 = x0 + y0
x2 = x0 – y0
y1 = -1 * y0

B2 ® x0 < N 

B3 ® B2 Ù y0 > 0 

B4 ® B2 Ù y0 £ 0 
B5 ® (B3 Ù x3=x1)Ú

(B4 Ù x3=x2)

B5 Ù x’0=x3 Ù y’0=y1

p1(x’0,y’0) Ã p1 (x0, y0), Á.
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Summary

Convert body of each procedure into SSA

For each procedure, compute a Cut Point Graph (CPG)

For each edge (s, t) in CPG use dual-wlp to construct the constraint for an 
execution to flow from s to t

Procedure summary is determined by constraints at the exit point of a 
procedure
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PROGRAM TRANSFORMATION
Mixed Semantics
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Deeply nested assertions

Assertion

Main
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Deeply nested assertions

Counter-examples are long
Hard to determine (from main) what is relevant

Assertion

Main
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Mixed Semantics

Stack-free program semantics combining:

• operational (or small-step) semantics

– i.e., usual execution semantics

• natural (or big-step) semantics: function summary [Sharir-Pnueli 81]

– (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’

• some execution steps are big, some are small

Non-deterministic executions of function calls

• update top activation record using function summary, or

• enter function body, forgetting history records (i.e., no return!)

Preserves reachability and non-termination

Theorem: Let K be the operational semantics, Km the stack-free semantics, and L a 

program location.  Then,           

K ⊧ EF (pc=L) , Km ⊧ EF (pc=L)     and    K ⊧ EG (pc¹L) , Km ⊧ EG (pc¹L)

[GWC’08,LQ’14] 
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def main()
1: int x = nd();
2: x = x+1; 
3: while(x>=0)
4:   x=f(x);
5:   if(x<0)
6:      Error;
7: 
8: END;

def f(int y): ret y  
9:  if(y>=10){
10:    y=y+1;
11:    y=f(y);
12: else if(y>0)
13:   y=y+1; 
14: y=y-1
15:

Summary of f(y) 
(1<=y<=9 ∧ y�=y)   ∨

(y<=0 ∧ y�=y-1)

1

2

3

4

6:Error

9

10

11

12

y ¸ 10

y · 9
y� = y+1

y� = f(y)

5

78:END

13

14

15

y · 0

y�= y+1

y�= y-1

x ¸ 0

x�=nd()

x� = f(x)

x < 0
x ¸ 0

x < 0

x�=x+1 y�=x

y�=y

(1<=x<=9 ∧ x�=x) ∨
(x<=0 ∧ x�=x-1)

x=3

x=4

x=4

x=4

y=4

y > 0

y=4

y=4

y=5

y=4
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Mixed Semantics Transformation via Inlining

void main() {

p1(); p2();

assert(c1);

}

void p1() {

p2();

assert(c2);

}

void p2() {

assert(c3);

}

void main() {

if(nd()) p1(); else goto p1;

if(nd()) p2(); else goto p2;

assert(c1);

assume(false);

p1: if (nd) p2(); else goto p2;

assume(!c2);

assert(false);

p2: assume(!c3);

assert(false);

} void p1() {p2(); assume(c2);}

void p2() {assume(c3);}
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Mixed Semantics: Summary

Every procedure is inlined at most once
• in the worst case, doubles the size of the program
• can be restricted to only inline functions that directly or indirectly call errror() 

function
Easy to implement at compiler level
• create “failing” and “passing” versions of each function
• reduce “passing” functions to returning paths
• in main(), introduce new basic block bb.F for every failing function F(), and call 

failing.F in bb.F
• inline all failing calls
• replace every call to F to non-deterministic jump to bb.F or call to passing F

Increases context-sensitivity of context-insensitive analyses
• context of failing paths is explicit in main (because of inlining)
• enables / improves many traditional analyses
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PREDICATE ABSTRACTION



94 94

Predicate Abstraction

Extends Boolean reasoning methods to non-Boolean domains

Given a set of predicates P, abstract transition relation by restricting its 
effects to the set P
• Each step of Tr sets some predicates in P to true and some to false

• Computing abstraction requires theory reasoning
• Abstract transition relation is Boolean, so Boolean methods can be applied

Predicate abstraction is an over-approximation
• May introduce spurious counterexamples that cannot be replayed in the real 

system

Abstraction-Refinement: replay counterexamples using theory reasoner
• Use BMC to replay

• Use Interpolation to learn new predicates
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Example Program

example() {
1:  do {

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3:      q->data = new;

unlock();
new ++;

}
4:  } while(new != old);
5:  unlock();

return;
}

lock

lock

unlock

unlock
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The Safety Verification Problem

Initial

Error

Is there a path from an initial to an error state?
Problem: Infinite state graph
Solution: Set of states is a logical formula

Safe
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Idea: Predicate Abstraction

• Predicates on program state:
lock
old = new

• States satisfying same predicates
are equivalent
– Merged into one abstract 

state
• #abstract states is finite
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Abstract States and Transitions

State

3: unlock();
new++;
4:} …

pc

lock

old

new

q

! 3

!
! 5

! 5

! 0x133a

pc

lock

old

new

q

! 4

!
! 5

! 6

! 0x133a

lock 

old=new

¬ lock 

¬ old=new

Theorem Prover 
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Abstraction

State

3: unlock();
new++;
4:} …

pc

lock

old

new

q

! 3

!
! 5

! 5

! 0x133a

pc

lock

old

new

q

! 4

!
! 5

! 6

! 0x133a

lock 

old=new

¬ lock 

¬ old=new

Theorem Prover 

Existential Lifting 
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Abstraction

State

3: unlock();
new++;
4:} …

pc

lock

old

new

q

! 3

!
! 5

! 5

! 0x133a

pc

lock

old

new

q

! 4

!
! 5

! 6

! 0x133a

lock 

old=new

¬ lock 

¬ old=new
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Analyze Abstraction

Analyzing finite graph 
Over-approximate:

Safe means that system 
is safe
No false negatives

Problem:
Spurious counterexamples
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Idea: Counterex.-Guided Refinement

Solution:
Use spurious 
counterexamples to refine 
abstraction
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Idea: Counterex.-Guided Refinement

1. Add predicates to distinguish
states across cut

Solution:
Use spurious 
counterexamples to refine 
abstraction



104104

Iterative Abstraction Refinement

Solution:
Use spurious 
counterexamples to refine 
abstraction

1. Add predicates to distinguish
states across cut

2. Build refined abstraction
- eliminates counterexample
3. Repeat search
- till real counterexample or system 
proved safe
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Implicit Predicate Abstraction with IC3

Idea: do not compute abstract transition relation upfront!

IC3 only requires computing one predecessor at a time
• Use theory reasoning to compute a predecessor

• Each POB/CTI/state is a Boolean valuations to all predicates

The rest is exactly like Boolean IC3
• Except that predecessor generalization does not work

To refine, replay the counterexamples using theory solver
• use interpolation to learn new predicates

Interesting idea to implement in Z3 using Spacer/CHC for refinement


