Constrained Horn Clauses (CHC)

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

% WATERLOO

PREDICATE ABSTRACTION

IIIIIIIIIIII

Predicate Abstraction

Extends Boolean reasoning methods to non-Boolean domains

Given a set of predicates P, abstract transition relation by restricting its
effects to the set P

e Each step of Tr sets some predicates in P to true and some to false

o Computing abstraction requires theory reasoning
e Abstract transition relation is Boolean, so Boolean methods can be applied

Predicate abstraction is an over-approximation

e May introduce spurious counterexamples that cannot be replayed in the real
system

Abstraction-Refinement: replay counterexamples using theory reasoner

e Use BMC to replay
e Use Interpolation to learn new predicates

UNIVERSITY OF

WATERLOO

Implicit Predicate Abstraction with IC3

ldea: do not compute abstract transition relation upfront!

|IC3 only requires computing one predecessor at a time
e Use theory reasoning to compute a predecessor
e Each POB/CTl/state is a Boolean valuations to all predicates

The rest is exactly like Boolean IC3
o Except that predecessor generalization does not work

To refine, replay the counterexamples using theory solver
e use interpolation to learn new predicates

Interesting idea to implement in Z3 using Spacer/CHC for refinement

UNIVERSITY OF

WATERLOO

Implicit Predicate Abstraction Construction

Boolean state

variables state variables

~

Predicates over

J

1

Tr(V, V") A

Original
transition

relation

V Post-state

(A < (V')

There is a counter-example over b, variables iff there are no lemmas
over p, predicates that can block the counter-example

IIIIIIIIIIII

Precise Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)

» decide whether a low level program/circuit has an execution of a given length
that violates a safety property

o effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking

» decide whether a program has an execution of a given length that violates a
safety property

o efficient decision procedure via encoding to SMT

~

What is an SMT-like equivalent for Safety Verification?
* Logic: SMT-Constrained Horn Clauses
e Decision Procedure: Spacer / GPDR
— extend IC3/PDR algorithms from Hardware Model Checking

- 4

UNIVERSITY OF

WATERLOO

CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

Constrained Horn Clauses (CHCs)

A Constrained Horn Clause (CHC) is a FOL formula

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays, Bit-
Vectors, or combinations of the above)

e \/ are variables, and X; are terms over V
* ¢ is a constraint in the background theory T
° P4, ..., Pn, h are n-ary predicates

e p.[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

CHC Satisfiability

A T-model of a set of a CHCs I] is an extension of the model M of " with a
first-order interpretation of each predicate p, that makes all clauses in II true
in M

A set of clauses is satisfiable if and only if it has a model
e This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p;to T -
formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable

e solutions are inductive invariants
e refutation proofs are counterexample traces

UNIVERSITY OF

WATERLOO

CHC Notation and Tergy &Tstraint

Rule

Query

Fact
Linear CHC

Non-Linear CHC

IIIIIIIIIIII

A
h[X] %fp1[x1 yre ey pn[xn],

false <+ p4[X4l,..., Pn[X,], .
h[X] + o.
h[X] < p[X4], ¢.

h[X] . p'l[x'l]s"'s pn[xn]’ ¢
forn>1

10

Program Verification with HORN(LIA)

Z = X; 1 = 0;
assume (y > 0);

while (i < vy) {

‘ IS SAT?

Z =2 + 1;
i=1+ 1;

¥

assert(z == x + y); -\ /-

z=xXx&1 =08&y >0 = Inv(x, y, z, 1)
Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 11

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)
(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>=D B) (not (= C (+ A B))))
false
)
)
)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat
(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

(and (<= (+ x!2 (* (- 1) x'0) (* (- 1) x!3)) @)

(<= (+ x12 (* (- 1) x'@) (* (- 1) x!1)) @)
(<= (+ x'@ x!3 (* (- 1) x!2)) ©)))

Inv(x, y, z, 1)
Z =X + 1
Z <= X + Y

UNITVERSITY OF

WATERLOO

12

Programs, CFG, Horn Clauses

P (1) po.
o (2) p1(z,y) <
Y = pOaleay:O'
nt y = 0; l; : by = nondet() F (4) p3(z,y) < pa(z,y) .
while (%) { (5) pi(a’,y) +
T
r=T+Y; l T 1 p2(z,Y),
y=y+1 |k 5 : r'=2+y,
) ol B LA RSt
assert(xz > y); s % }\ (6) pa < (z > y),p3(z,y).
- S (7) perr < (z <), p3(z,y).
- (8) P4 < p4
(9) L < Perr

IIIIIIIIIIII

%@ WATERLOO 13

Horn Clauses for Program Verification

“out'\"'(.’lv woy ba}1 WY ALLLAL 1D Caa Ulltl_y PUAALL LW DULACDODUL Lus:.;a.

with the edges are formulated as follows:

Pinit(To,w, L) &z =10 where z occurs in w
pr.rif(I(h ret, I) €
plz,ret, L, L) «
p(z,ret, L, T) ¢ pezit(z,ret, T)

boilza.w' . e.) e blza. w.e) A —e: A —win(S.—(e: =

€(xo,w,T) for each label £, and re
prrit(z' V'Cf, -L)

5. incorrect :- Z=W+1, W>0, W+1<

read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)
decl€ program
havoc z,; assume z, = r;

ToHorn(def p(z) {S}) := wip (assume Poro(z); S
pre ? Ly

p(zo, net))

wlp(z :=E,Q):=let z=FE in Q
wip((if E then S; else S,), Q) := wip(((assume E: S;)0(assume —E; S;)), Q)

wip((5,08,),Q) := u(p(S Q) A wip(S;,Q)
wip(S1; 82, Q) := wip(S:, wip(S2,Q))

wip(havoc z,Q) :=Vz . Q

wilp(assert ¢, Q) :=pAQ

wlp(assume ¢, Q) :=p = Q
wip((while E do S).Q) := inv(w) A

Vo (((inv(w)AE) = wip(S.inv(w])))
"AA((inv(w) A-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A

7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming Verification
Conditions. VMCAI'14

To translate a procedure call £ : y := g(£); £ within a procedure p, create
he clauses:

) ¢ plwg, w,), call(w;, w3), g(wa, ws), return(w;, w3, ws)
) 4 p(wu.uu).call(w;.wg)

calllw,w)+r=£4z' =Ex" =§,_,
)

—n' =4, . w' =wret'fy ¥ [x]

Bj@rner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

% WATERLOO

14

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions R1,..., Ry over Vand Ey,...,Exyover V,V’,
CM1: init(V) — Riy(V)
CM2: R;(V)Ap:i(V, V') — R; (V')

CM3: (Viel..N\{j} Ri(V)Api(V, V")) — E;(V, V')
CM4: R;(V)ANE;(V,VYApr (V,V') — Ri(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software Verifiers
from Proof Rules. PLDI'12

{R(-sPo(k)lok)) < dist(p1,---,Pk) AR(g,P1, 115+ -, Pks i) }o'esk (6)
R(g,p1,l1,-- 7pk,lk) <« dist(p1,...,px) Anit(g,l}) A --- Alnit(g, i) @)
R(&,p1,11,..,px, k) « dist(pi,.. ,pk)/\((g,ll) I{’4(g',l'l))/\R(g,pl,ll,...,pk,lk) 8)
R ,p1, 1y, Prslk) < dist(po,pis---,pe) A ((g,10) 2 (&/,10)) ARConj(0, ..., k))
false dist(p1,...,pr)/\(A (pj:pj/\(g,lj)eEj))/\RConj(l,...,r) (10)

J=1yeem

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed Systems.
HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)
I»(i,4,0) A Tr(i,v,0') = I»(i,5,7) (3)

dl

(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) Iz(’i] 5) A TT(j 5 5/) . 12(?: j 5’) (4)
1J)) b 1J)
(inductive) Inv(g, 41,1, ..., i, Tiy .., L, Tk) A 8(9, @iy g5 25) — Inv(g', b1, @1, 5, X5,y Ly I (i’j’ 5) A Iz(’i, k’ﬁ) A Iz(j, k, ﬁ) A (5)
(non-interference) Inv(g, 41,21, -, 2k, Tk) A — =0 : : 2 9 =0
P N AN Tr(k,v,v) Nk #1 /\'k f_j = Iz(z,],’f;) .
I2(Z,j,’l)) = ﬁBad(’L,_],’l))
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 1, .., Lk, Tk) A err(g, €1, 21, . .., fm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause er_lcoding for thread modularity at .leve?l k (where (¢;,s,£;) and (ZT, s, -) refer to statement s on af Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) p terized Svst ESE 2016
arameterize ystems.
G MveRsiTy or Hoenicke et al. Thread Modularity at Many Levels.
%@ WATERLOO | pOPL'17 15

Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable

e satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates

* inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample

e the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed
e SAT means there exists a counterexample —a BMC at some depth is SAT
e UNSAT means the program is safe — BMC at all depths are UNSAT

UNIVERSITY OF

WATERLOO

16

Semantics of Programming Languages

Denotational Semantics

* Meaning of a program is defined as the mathematical object it computes (e.g.,
partial functions).

e example: Abstract Interpretation

Axiomatic Semantics

* Meaning of a program is defined in terms of its effect on the truth of logical
assertions.

e example: Hoare Logic, Weakest precondition calculus

Operational Semantics

* Meaning of a program is defined by formalizing the individual computation steps of
the program.

e example: Natural (Big-Step) Semantics, Structural (Small-Step) Semantics

% WATERLOO 17

A Simple Programming Language (WHILE or IMP)

Prog ::= def Main(x) { body, }, .., def P (x) { body, }
body ::= stmt (; stmt)*
stmt ::= x = E | assert (E) | assume (E) |
while E do S | y = P(E) |
L:stmt | goto L (optional)
E := expression over program variables

%) WATERLOO

Axiomatic Semantics

An axiomatic semantics consists of:

e a language for stating assertions about programs;

 rules for establishing the truth of assertions.

Some typical kinds of assertions:
e This program terminates.

e If this program terminates, the variables x and y have the same value throughout
the execution of the program.

e The array accesses are within the array bounds.

Some typical languages of assertions
e First-order logic
e Other logics (temporal, linear, separation)

e Special-purpose specification languages (Z, Larch, JML)

%) WATERLOO

Assertions for WHILE

The assertions we make about WHILE programs are of
the form:
{A} c {B}
with the meaning that:
e If Aholdsinstategand g — q’

e then B holds in g’
A 'is the precondition and B is the post-condition
For example:
{y<x}z=xz:=z+1{y<z}
is a valid assertion

These are called Hoare triples or Hoare assertions

IIIIIIIIIIII

20

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a predicate
transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]
wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

{ {Pre} P {Post} is valid IFF Pre = wlp (P, Post) }

IIIIIIIII

WATERLOO 21

Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyy }, .., def P (x) { body, }

wlp (x=E, Q) =let x=Ein Q
wlp (assert(E),Q)=EAQ
wlp (assume(E), Q)=E=Q
wlp (while E do S,Q)=1I(w)A
Yw . ((I(w) A E) = wilp (S, I(w))) A ((I(w) A —=E) = Q))
wip (y = P(E), Q) =ppre(E) A (Y r. p(E, r) = Q[r/y])

ToHorn (def P(x) {S})=wlp (x0=x;assume(p,..(x));S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) A V{P € Prog} . ToHorn (P)

|

IIIIIIIIIIII

22

Example of a WLP Horn Encoding

{Pre: y> 0}

Xo = X;
Vo = V3 ToHorn

while y > 0 do
X = X+1;
y = y-1;
{Post: x=X,+Y,}

>

Cl: I(X,y,X,y) + y>=0.

C3: false + I(X,Y,%X,,VYo), Y<=0, X#X,+Y,

C2: I(X+1Jy'1JX0Jyo) — I(XJy)XOJyO)J y>@°

{y > 0} P {x = x,4+Yo1q} is valid IFF the C; AC, AC; is satisfiable

IIIIIIIIIIII

WATERLOO

23

EXAMPLE

IIIIIIIIIIII

24

Control Flow Graph basic block

A CFG is a graph of basic blocks

e edges represent different control flow

A CFG corresponds to a program syntax

e where statements are restricted to the form
L;:S ; goto L,

and S is control-free (i.e., assignments and
procedure calls)

UNIVERSITY OF

WATERLOO

|02
r=1
y=0

!

l1 : by = nondet()

1]

|2:

x
Y

=y+1
/
¥

25

Dual WLP

Dual weakest liberal pre-condition
dual-wlp (P, Post) = -wlp (P, —-Post)

s € dual-wlp (P, Post) IFF there exists an execution of P that starts
in s and ends in Post

dual-wlp (P, Post) is the weakest condition ensuring that an
execution of P can reach a state in Post

IIIIIIIIIIII

26

Examples of dual-wlp

dual-wlp(assume(E), Q) = “wlp(assume(E), " Q)="(E=>"Q)=E AQ

dual-wlp(x := x+y; y := y+1, x=x A y=y’') = y+1=y’ A X+y=X’

Wip(x := x +y, (y+1=y A x=X')) wip(y:=y+1, 7(x=x" A y=y'))
=let x = x+y in 7 (y+1=y' A x=X') =lety =y+1in 7(y=y' A x=x')
=7 (yH1=y' A xty=X) =7 (yH1=y A X=X)

Horn Clauses by Dual WLP

Assumptions

e each procedure is represent by a control flow graph
—i.e., statements of the form 1,:S ; goto 1;, whereSisloop-free
e program is unsafe iff the last statement of Main() is reachable

—i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates
e 1(w) for each label (i.e., basic block)

— Pen (Xg, X) for entry location of procedure p()
— pex(X@J r) for exit location of procedure p()

* p(x,r) for each procedure P(x):r

UNIVERSITY OF

WATERLOO

28

Horn Clauses by Dual WLP

The verification condition is a conjunction of clauses:
pen(XOIX) é Xo=X

(X0, W) & li(xg,W) A =wlp (S, =(w=w’))
*for each statement 1;: S; goto 1

p (XOIr) é pex(X01r)

false < Main,(x, ret)

IIIIIIIIIIII

29

Example Horn Encoding

o (1) po.
o (2) p1(z,y) <
Y = pOaleay:O'
nt y = 0; l; : by = nondet() F (4) p3(z,y) < pa(z,y) .
while (x) { (5) pr(2’,y)
T
r=T+Y; l T 1 p2(z,Y),
y=y+1 |k 5 : r'=2+y,
) ol B LA RSt
assert(xz > y); s % }\ (6) pa < (x> y),p3(x,y).
- S (7) perr < (z <), p3(z,y).
- (8) P4 < p4
(9) L < Pen

IIIIIIIIIIII

%) WATERLOO 30

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow
graph by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points ¢ and d summarizes all finite (loop-
free) executions from c to d that do not pass through any other
cut-points

IIIIIIIIIIII

%) WATERLOO 31

Cut Point Graph Example

CFG

IIIIIIIIIIII

CPG

32

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph by
(summary) edges

Cut Point Graph preserves reachability of (not-summarized) control location.
Summarizing loops is undecidable! (Halting program)

A cutset summary summarizes all location except for a cycle cutset of a CFG.
Computing minimal cutset summary is NP-hard (minimal feedback vertex set).

A reasonable compromise is to summarize everything but heads of loops.
(Polynomial-time computable).

IIIIIIIII

WATERLOO 33

Single Static Assighment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers

e explicit def-use chains

e simplifies optimizations and improves analyses

PHI-function are necessary to maintain unique definitions in branching control
flow

x = PHI (vo:bby, ..., v:bb,)) (phi-assignment)

“x gets v; if previously executed block was bb,”

UNIVERSITY OF

WATERLOO

34

Single Static Assighment: An Example

/7 0. goto 1
1: x @ = PHI(©:0, x 3:5);
y © = PHI(y:0, y 1:5);

if (x_ ©@ < N) goto 2 else goto 6

2: if (y_© > 0) goto 3 else goto 4

; |

; |

D |

|

: B .
|X=@; | | !

while (x < N) {1 I

. — ° l

: Ty >) , | 3: x 1 X 0 +y 0; goto 5 |

; X =x +vy; | | 4: x 2 =x 0 -y 0; goto 5 |

I else : : I

I X =X =Yy | | 5: X 3 = PHI(x 1:3, x 2:4); I

'y =-1%*y; | y1l=-1%y @; '

| }) | goto 1 '

I > \ 6: }
\- ________________ ~

%) WATERLOO 35

Large Step Encoding

Problem: Generate a
compact verification
condition for a loop-free
block of code

IIIIIIIII

: if (y @ > 9) goto 3 else goto 4

X_ PHI(©0:0, x 3:5);
y PHI(y:9, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

9 =
9 =

X1=x0+y 0; goto 5
X 2 =X0 -y 0; goto 5
: X 3 = PHI(x 1:3, x 2:4);
y1=-1*y.0;
—gote 1
: /
7’

36

Large Step Encoding: Extract all Actions

X1 = Xo + Yo
X, = Xg = Yo
yi = -1 * y,

w

: X 0 = PHI(9:0, x 3:5);

: if (y @ > 9) goto 3 else goto 4

x_1 X 0 +y 0f goto 5

X_2 X 0 -y 0] goto 5

y © = PHI(y:0, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

37

Example: Encode Control Flow

X1 = Xo + Yo
X, = Xg = Yo
y1 = -1 * y,
B, > Xg < N
B, > B, Ay, < 0

(Bs A X3=X;)

)) _
Bs A X7 g=X3 A Y o=Y3

‘ Y

p'l(X’OIy’O) ~— p1 (XOI yO)I ¢'

IIIIIIIII

1l: x @ = PHI(©0:0, x 3:5);
y © = PHI(y:0, y 1:5);
if (x_ ©@ < N) goto 2 else goto 6

:Jif (y @ > 9) goto 3 else goto 4
:Ix 1 =x0 +vy 0; goto 5
X 2 = x 0 -y 0; goto 5
:Ix 3 = PHI(x 1:3, x 2:4);

y1=-1%*y 0;
goto 1

38

Summary

Convert body of each procedure into SSA
For each procedure, compute a Cut Point Graph (CPG)

For each edge (s, t) in CPG use dual-wlp to construct the constraint for an
execution to flow fromstot

Procedure summary is determined by constraints at the exit point of a
procedure

UNIVERSITY OF

WATERLOO

39

Mixed Semantics

PROGRAM TRANSFORMATION

IIIIIIIIIIII

40

Deeply nested assertions

o UNIVERSITY F
WATERLOOO

Deeply nested assertions

Counter-examples are long

Hard to determine (from main) what is relevant

UNIVERSITY OF

WATERLOO

42

: : GWC'08,LQ 14
Mixed Semantics [Q14]

Stack-free program semantics combining:
e operational (or small-step) semantics
— i.e., usual execution semantics

e natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
— (o, o) € | |f| | iff the execution of f on input state ¢ terminates and results in state ¢’

e some execution steps are big, some are small
Non-deterministic executions of function calls
e update top activation record using function summary, or
e enter function body, forgetting history records (i.e., no return!)
Preserves reachability and non-termination
Theorem: Let K be the operational semantics, K™ the stack-free semantics, and L a
program location. Then,
K EEF(pc=L) < K™ E EF (pc=L) and KEEG (pc#L) < K™ E EG (pc#l)

7] UNIVERSITY OF

WATERLOO

rdef main()™ ~ ~ ~ ~ ~ 1
I'1: int x =
:2: X = X+1;
| 3: while(x>=0)
14: x=f(x);

Error;

|

|

|

|

|

I5: if(x<0) :
|

|

: END; |
|

|

I 'def f(int y): ret y

W le— N |e—

:9: if(y>=10){
 10: y=y+1;

(1<=x<=9 A x'=x) V
(x<=0 A x"=x-1)

111: y=f(y);
112: else if(y>0)

|

| x<0
F13: y=y+1; |

|

|

[

Summary of f(y)

|
(1<=y<=9 Ay’ =y) V :
(y<=0 Ay =y-1) :

UNIVERSITY OF

%) WATERLOO

8 :END

y' = y+1

6:Error

l y =y-1

44

>

Mixed Semantics Transformation via Inlining

void main() {

p1(); p2();

assert(cl);

}

void pl() {
p2();
assert(c2);

}
void p2() {

assert(c3);

IIIIIIIIIIII

WATERLOO

void main() {
if(nd()) p1(); else goto pi;
if(nd()) p2(); else goto p2;
assert(cl);
assume(false);
pl: if (nd) p2(); else goto p2;
assume(!c2);
assert(false);
p2: assume(!c3);

assert(false);

} |void p1() {p2(); assume(c2);}

void p2() {assume(c3);}

45

Mixed Semantics: Summary

Every procedure is inlined at most once
* in the worst case, doubles the size of the program

e can be restricted to only inline functions that directly or indirectly call errror()
function

Easy to implement at compiler level
e create “failing” and “passing” versions of each function
e reduce “passing” functions to returning paths

* in main(), introduce new basic block bb.F for every failing function F(), and call
failing.F in bb.F

e inline all failing calls

e replace every call to F to non-deterministic jump to bb.F or call to passing F
Increases context-sensitivity of context-insensitive analyses

e context of failing paths is explicit in main (because of inlining)

* enables / improves many traditional analyses

%) WATERLOO

46

SOLVING CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

47

A Magician’s Guide to Solving Undecidable Problems

Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem

e e.g., model checking of finite-state systems

Choose one of

Y

Extend procedure P to procedure Q that “solves” the undecidable problem

e Always terminate with some answer (over-approximation)

e Always make useful progress (under-approximation)

e Ensure that Q is still a decision procedure whenever P is

e Ensure that Q either always terminates or makes progress

UNIVERSITY OF

WATERLOO

48

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
e QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS’18: hoice, FreqHorn
Machine Learning
e PLDI’18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
e Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

p
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

UNIVERSITY OF

WATERLOO

49

>

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of THREE
clauses of the form

nit(X) — P(X)
P(X) A Tr(X,X') — P(X')
P(X) — =Bad(X)

where, X' ={x’ | x € X}, P a fresh predicate, and /nit, Bad, and Tr are

constraints

Proof:

add extra arguments to distinguish between predicates

Q(y) A ¢ = W(y, 2)
P(id='Q’, y) A ¢ — P(id="W, y, 2)

IIIIIIIIIIII

WATERLOO

50

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
* Incremental Construction of Inductive Clauses for Indubitable Correctness
e A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
e Property Directed Reachability

* N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed
reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

e J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided
Abstraction-Refinement (CTIGAR). CAV 2014

7] UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
e Generalized Property Directed Reachability
e K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

@CER: Non-Linear CHC with Arithmetic \

e fixes an incompleteness issue in GPDR and extends it with under-approximate summaries

e A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

e simulating Numeric Abstract Interpretation with PDR

e N. Bjgrner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays

e Required to model heap manipulating programs

e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification of
Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

%) WATERLOO 52

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

e Use both forward and backward reachability information

e A. Gurfinkel and A. lvrii: Pushing to the Top. FMCAD 2015
Avy: Interpolation with IC3

e Use SAT-solver for blocking, IC3 for pushing

e Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014
uPDR: Constraints in EPR fragment of FOL

e Universally quantified inductive invariants (or their absence)

e A. Karbyshev, N. Bjgrner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-Directed
Inference of Universal Invariants or Proving Their Absence. CAV 2015

Quic3: Universally quantified invariants for LIA + Arrays

e Extending Spacer with quantified reasoning
e A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

%) WATERLOO

53

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3
Supported SMT-Theories

e Linear Real and Integer Arithmetic

e Quantifier-free theory of arrays
e Universally quantified theory of arrays + arithmetic
e Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC
e for procedure summaries in inter-procedural verification conditions

e for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.

%) WATERLOO

https://github.com/Z3Prover/z3

Program Verification with HORN(LIA)

Z =X; 1= 0;

assume (y > 0);

while (1 < y) {
Z =27z + 1;
i=1+1;

}

assert(z == x + y);

z=XxX8&1=08&vy >0 = Inv(x, y, z, i)

Inv(x, y, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, z1, il)

%) WATERLOO 55

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

Z <= X + Y

UNITVERSITY OF

WATERLOO

56

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e choose an assignmentss.t. (s AF; A Tr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- Find a clause L s.t. L=-cex, Init=L,and LAFATr=1

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@bally) strengthen by dropping literals

59

From Propositional PDR to Solving CHC

Theories with infinitely many models
e infinitely many satisfying assignments
e can’t simply enumerate (when computing predecessor)

e can’t block one assignment at a time (when blocking)

Non-Linear Horn Clauses

e multiple predecessors (when computing predecessors)

The problem is undecidable in general, but we want an algorithm that makes
progress
e doesn’t get stuck in a decidable sub-problem

e guaranteed to find a counterexample (if it exists)

%) WATERLOO

60

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

(

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e choose an assignment ss.t. (s AR; A Tr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- Find a clause L s.t. L=>-cex, Init=L,andLARATr=1L

Theory
dependent

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@bally) strengthen by dropping literals

61

(E5; AN Tr) V Init') = ¢

N
QY = T1C

Looking for ¢’

ARITHMETIC CONFLICT

IIIIIIIIIIII

/

62

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A = —B, then there

exists a FO formula |, denoted ITP(A, B), such that

A=1 |= —B (1) € 2(A) N 5(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution
proof of unsatisfiability of AAB

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

UNIVERSITY OF

WATERLOO 63

Examples of Craig Interpolation for Theories

Boolean logic
A=(-bAN(-aVbVc)Aa) B = (—a V —c)
ITP(A,B)=aAc

Equality with Uniterpreted Functions (EUF)
A= (f(a) =bAp(f(a))) B = (b=cA-p(c))

ITP(A, B) = p(b)
Linear Real Arithmetic (LRA)
A=(z4+2xz4+y>10A2z<5H) B=(rx<-5Ny< -3

ITP(A,B)=z+y>5

%) WATERLOO 64

Craig Interpolation for Linear Arithmetic

Proof

1= interpolant

Reachable

Useful properties of existing interpolation algorithms [CGS10] [HB12]
e | €ITP (A, B) then =l € ITP (B, A)

e if Ais syntactically convex (a monomial), then | is convex
e if B is syntactically convex, then | is co-convex (a clause)
e if Aand B are syntactically convex, then | is a half-space

%Y WATERLOO 65

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P’') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation

e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR

 inductive generalization for arithmetic is still an open problem

Y

UNIVERSITY OF

WATERLOO

66

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

e interpolation is restricted to clauses of the form (AB; = V A))

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

>

Farkas Lemma
LetM=t, > b, A..At, > Db,, where t, are linear terms and b, are constants
M is unsatisfiable iff 0 > 1 is derivable from M by resolution

M is unsatisfiable iff M0 > 1
e eg,x+y>10,-x>5,-y>3F (x+ty-x-y) >(10+5+3) 0> 18

M is unsatisfiable iff there exist Farkas coefficients g4, ..., g,
such that

°*g >0

e g xt;+...+g,xt, =0

e gixby+ ... +g,xb, > 1

IIIIIIIIIIII

WATERLOO

68

Frakas Lemma Example Interpolants

> 10 X 1
FrTty rT+y>0
—z > —H Xl
—x > 9 X 1 .
—y >3 X 1 TrYy <~
0>13

IIIIIIIIIIII

%) WATERLOO 69

Interpolation for Linear Real Arithmetic

Let M = A A B be UNSAT, where
° A=t12b1/\.../\ti2bi,and
e B=t,; >bA..At,> D,

Let g4, ..., 9,, be the Farkas coefficients witnessing UNSAT

Then
° g4X(ty > by) + ...+ gix(t > by) is an interpolant between A and B

* Qi1 X (ti1 > bj) + ... + g X (t, > by) is an interpolant between B and A
* 04 Xt +...+gi><ti = - (gi+1><ti+1 + ...+ antn)

e —(gi1 X(tisy > b)) + ... +g,x (t, > b,)) is an interpolant between A and B

UNIVERSITY OF

WATERLOO

70

Program Verification with HORN(LIA)

Z =X; 1= 0;

assume (y > 0);

while (1 < y) {
Z =27z + 1;
i=1+1;

}

assert(z == x + y);

z=X8&1=08&vy >0 = Inv(x, y, z, i)

Inv(x, y, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, z1, il)

%) WATERLOO =

Lemma Generation Example

error

O« o

MkSafe

Transition Relation
X=XgAZ=Zt1 Ai=igtT Ay > g
Farkas explanation for unsat

Xog+ Vo <=2y X<=Xy,Zy<Z i<=ig+1

Pob

I>=yAX+y>2Z

| >=y, Xty >z

X+1<=Z

X+1>27

false

B Rz oF Learn lemma: | x+i<=1z

72

Interpolation Problem in Spacer

Given an arbitrary LRA formula A and a conjunction of literals s such that AA s
are UNSAT, compute an interpolant | such that

e s | | AA= FALSE |is over symbols common to s and A

Use an SMT solver to decide that s A A are UNSAT
e SMT solver uses LRA theory lemmas (called Farkas Theory Lemmas) of the form:
(s Ao A) A(ag A ... Aay))
where s; are literals from s and a; are literals from A
* Foreachsuchlemmal,;, ((s; A... Asg) A(ag A... Aap)is UNSAT
* Lett;be an interpolant corresponding to L

Then, an interpolant between s and A is a clause of the form
(-t; V... V =t,) with one literal per each theory lemma

e in practice, interpolation is optimized by examining and restructuring SMT
resolution proof, dealing with Boolean reasoning, and global optimization

7] UNIVERSITY OF

WATERLOO

Computing Interpolants in Spacer

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

* interpolation is restricted to clauses of the form (AB; = V A)

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

s C pre(c)

= s=3dX'.Tr Nc

Computing a predecessor s of a counterexample ¢

ARITHMETIC DECIDE

IIIIIIIIIIII

75

Model Based Projection

Definition: Let ¢ be a formula, U a set of variables, and M a
model of ¢. Then 1) = MBP (U, M, ¢) is a Model Based Projection
of U, M and ¢ iff

1. v is a monomial
2.Vars(y)) C Vars(p) \ U

3.MEY
4, p=dU.¢

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

IIIIIIIIIIII

%) WATERLOO 76

Model Based Projection

[Expensive to find a quantifier-free ¢(§) = dz - 90(5, ?) }

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 77

Quantifier Elimination

A quantifier elimination is a procedure that takes a formula of the form
3 x Y(x) and returns an equivalent formula ¢ without existential quantifier
and without the variable x

e QELIM(I xY(x))=¢ andIxYP(x) & @

Quantifier elimination in propositional logic
e QELIM(3 x U(x)) = Y(TRUE) V Y(FALSE)

Many theories support quantifier elimination (e.g., linear arithmetic)
e but not all

e No quantifier elimination for EUF, e.g., (3x f(x) # g(x)) cannot be expressed without
the existential quantifier

Quantifier elimination is usually expensive

e e.g., propositional gelim is exponential in the number of variables quantified

UNIVERSITY OF

WATERLOO 78

Loos-Weispfenning Quantifier Elimination for LRA

¢ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x <t atoms, and L set of s < x atoms

There are no other occurrences of x in $[x]

Jz.plz] = gloo] V. \/ lt]V \/ ot —¢]

r=tch rtelU

where
(x<tHt—e=t<t (s<a)t—e=s<t (z=c¢)ft— ¢ = false

The case of lower bounds is dual

e using —o° and t+e€

%) WATERLOO 79

Fourier—-Motzkin Quantifier Elimination for LRA

dr - \;jsi <z ANz <ty
= N\ \, resolve(s; < x,x < t;,x)

Y /\j i <ty

Quadratic increase in the formula size per each eliminated variable

IIIIIIIIIIII

80

Quantifier Elimination with Assumptions

(/\j;éotogtf")AHCE'/\iSi<x/\/\jm<tj
— (/\j;éo tg < tj) AN, resolve(s; < xz,z < tg,x)

Quantifier elimination is simplified by a choice of a minimal upper bound
e For each choice of minimal upper bound, no increase in term size

e Dually, can use largest lower bound

How to chose an the assumptions?!

e MBP == use the order chosen by the model

IIIIIIIIIIII

81

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

e Use the Model to uniquely pick a substitution term for x
Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

MBP technigues have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic

e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

82

Arithmetic Decide
Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite

e finitely many possible predecessors when all other arguments are fixed

Alternatively
e Completeness can follow from an interaction of Decide and Conflict

— but requires more rules to propagate implicants backward (as in PDR) and
forward (as in Spacer and Quip)

UNIVERSITY OF

WATERLOO 33

PolyPDR: Solving CHC(LRA)

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e find a model M of s s.t. (F; A Tr A cex’), and let s = MBP(X’, F; A Tr A cex’)
Conflict
e construct a lemma to explain why cex cannot be extended
K° Find an interpolant L s.t. L=-cex, Init=L,andF,ATr= L

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@{aally) strengthen by dropping literals

84

>

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to
satisfiability of THREE (3) clauses of the form

Init(X) = P(X)
P(X)AP(X°) A Tr(X,X° X") — P(X")
P(X) = —Bad(X)

where, X' ={x’ | x € X}, X° ={x° | x € X}, P a fresh predicate, and Init, Bad, and

Tr are constraints

IIIIIIIIIIII

WATERLOO

85

Generalized GPDR

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X))

Output: Unreachable or Reachable Counterexample
Data: A cex queue @, where a cex (cp,...,cx) € @ is a tuple, each iS a tree

¢; = (m,1), m is a cube over state variables, and i € N. A level N.
A trace Fy, Fy,...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and

F(A)=F(AA)

Initially: Q =0, N =0, Fy = Init,Vi >0-F; =0

Require: Init — - Bad

repeat

Unreachable If there is an ¢ < N s.t. F; C F; 41 return Unreachable.

Reachable if exists t € @ s.t. for all (c,i) € t, i = 0, return Reachable.

Unfold If Fy — —Bad, then set N < N + 1 and Q + 0.
Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q. two

Decide If there is a t € Q, with ¢ = (m, i + 1) € £, my — m, lo Am§ Am is predecessors
satisfiable, and lo A mg Am) — F; A F? A Tr Am/ then add t to Q, where
t = t with ¢ replaced by two tuples (lg,), and (mg,).

Conflict If there is a t € Q with ¢ = (m,i+ 1) € ¢, s.t. F(F;) Am/ is theory'aware
unsatisfiable. Then, add ¢ = ITP(F(F;),m’) to F;, for all 0 < j <i -+ 1. .
) o £ Conflict

Leaf If there is t € @ with ¢ = (m,i) € ¢, 0 <i <N and F(F;_1) Am/ is
unsatisfiable, then add ¢ to @, where ¢ is ¢ with ¢ replaced by (m,i+ 1).

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi 11,
F(p N F;) — ¢, then add ¢ to Fj, for all j < i+ 1.

until oo;

% WATERLOO 86

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
e we call such a derivation a counterexample
For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree

l FALSE

S’y ESy ASO3 ATr S5ESgASATr

[I | [I |
l S, € Init l S5 € Init l So € Init l S¢1 € Init

WATERLOO

87

GPDR Search Space

Bad
gueue -
element

° -~ -
>
(1)
- ‘

-~ - -~ -~

/ \

v O O O O O O O

In Decide, one POB in the frontier is chosen and its two children are expanded

% WATERLOO 88

GPDR: Splitting predecessors

Consider a clause
Plx)y APy Nx>yANz=z+y = P(2)

How to compute a predecessor for a proof obligationz>0

Predecessor over the constraint is:
dz-x>yNz=xz+yNz>0
= x>yNxz+y>0

Need to create two separate proof obligation
e one for P(x) and one for P(y)

e gpdr solution: split by substituting values from the model (incomplete)

IIIIIIIIIIII

89

GPDR: Deciding predecessors

Decide If there is a t € Q, with ¢ = (m,i+ 1) € t, my — m, lo Amd Am] is
satisfiable, and g A mJ Am’ — F; A F2 A Tr Am’ then add ¢ to @), where
t = t with ¢ replaced by two tuples (ly,), and (mg, 7).

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

e e.g., BFS or DFS exploration order

Number of predecessors is unbounded

e incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

e worst-case exponential for Boolean Push-Down Systems

%) WATERLOO

Input: A safety problem (Init(X), Tr(X,X°, X'), Bad(X)).
S Output: Unreachable or Reachable
pa ce r Data: A cex queue @, where a cex ¢ € @ is a pair (m,i), m is a cube
over state variables, and 7 € N. A level N. A set of reachable
states REACH. A trace Fy, F1, ...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
Same queue as o
in |C3/PDR Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (), REACH = Init
Require: Init — —Bad
repeat

Unreachable If there is an i« < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Cache Reachable

Unfold If Fy — —Bad, then set N < N + 1 and Q «+ 0.
states

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M = 1), where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).
Th ree variants Of DecideMust If there is (m,i+ 1) € @, and a model M M = 1), where

. Y = F(F;, VREACH) Am/. Then, add s to @, where
Decide s € MBP({X°, X'},).

DecideMay If there is (m,i+ 1) € @ and a model M M |= v, where
= F(F;) Am/. Then, add s to @, where s° € MBP({X, X'},).

Conflict If there is an (m,i+ 1) € @, s.t. F(F;) Am’ is unsatisfiable. Then,

add ¢ = ITP(F(F;),m') to Fj, for all 0 < j <i+1.
Same Conflict as Leaf If (m,i) € @, 0 <i < N and F(F;_1) A m/ is unsatisfiable, then add
. (m,i+1) to Q.
in APDR/GPDR _ | .
Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi41,

F(p N F;) — ¢, then add ¢ to Fj, for all j <i+ 1.

until oo;

%) WATERLOO 91

SPACER Search Space

Bad

Level

v O O O O O

In Decide, unfold the derivation tree in a fixed depth-first order

e use MBP to decide on counterexamples

Successor: Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

UNIVERSITY OF

WATERLOO

92

Successor Rule: Computing Reachable States

Successor If there is (m,i+ 1) € @) and a model M M |= 1, where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).

Computing new reachable states by under-approximating forward image using
MBP

e since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

e orthogonal to the use of MBP in Decide

e can allow REACH to contain auxiliary variables, but this might explode

For Boolean CHC, the number of reachable states is bounded
e complexity is polynomial in the number of states

e same as reachability in Push Down Systems

UNIVERSITY OF

WATERLOO 93

Decide Rule: Must and May refinement

DecideMust If there is (m,7+ 1) € @, and a model M M = ¢, where
Y = F(F;, VREACH) A m’. Then, add s to @), where
s € MBP({X°, X'}, v).

DecideMay If there is (m,i+ 1) € @ and a model M M |= ¢, where
Y = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'},).

DecideMust
e use computed summary (REACH) to skip over a call site
DecideMay
e use over-approximation of a calling context to guess an approximation of the call-
site

e the call-site either refutes the approximation (Conflict) or refines it with a witness
(Successor)

UNIVERSITY OF

WATERLOO

94

