Constrained Horn Clauses (CHC)

Automated Program Verification (APV) Fall 2018

Prof. Arie Gurfinkel

PREDICATE ABSTRACTION

Predicate Abstraction

Extends Boolean reasoning methods to non-Boolean domains

Given a set of predicates P, abstract transition relation by restricting its effects to the set P

- Each step of Tr sets some predicates in P to true and some to false
- Computing abstraction requires theory reasoning
- Abstract transition relation is Boolean, so Boolean methods can be applied

Predicate abstraction is an over-approximation

 May introduce spurious counterexamples that cannot be replayed in the real system

Abstraction-Refinement: replay counterexamples using theory reasoner

- Use BMC to replay
- Use Interpolation to learn new predicates

Implicit Predicate Abstraction with IC3

Idea: do not compute abstract transition relation upfront!

IC3 only requires computing one predecessor at a time

- Use theory reasoning to compute a predecessor
- Each POB/CTI/state is a Boolean valuations to all predicates

The rest is exactly like Boolean IC3

Except that predecessor generalization does not work

To refine, replay the counterexamples using theory solver

• use interpolation to learn new predicates

Interesting idea to implement in Z3 using Spacer/CHC for refinement

Implicit Predicate Abstraction Construction

Boolean state variables

Predicates over

$$\left(\bigwedge_i (b_i \leftrightarrow p_i(V)) \right) \land \text{ Original transition relation} \right)$$

There is a counter-example over b_i variables iff there are no lemmas over p_i predicates that can block the counter-example

Precise Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)

- decide whether a low level program/circuit has an execution of a given length that violates a safety property
- effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking

- decide whether a program has an execution of a given length that violates a safety property
- efficient decision procedure via encoding to SMT

What is an SMT-like equivalent for Safety Verification?

- Logic: SMT-Constrained Horn Clauses
- Decision Procedure: Spacer / GPDR
 - extend IC3/PDR algorithms from Hardware Model Checking

CONSTRAINED HORN CLAUSES

Constrained Horn Clauses (CHCs)

A Constrained Horn Clause (CHC) is a FOL formula

$$\forall V \cdot (\varphi \wedge p_1[X_1] \wedge \cdots \wedge p_n[X_n]) \rightarrow h[X]$$

where

- ullet $\mathcal T$ is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- V are variables, and X_i are terms over V
- ullet φ is a constraint in the background theory ${\mathcal T}$
- p_1 , ..., p_n , h are n-ary predicates
- $p_i[X]$ is an application of a predicate to first-order terms

CHC Satisfiability

A \mathcal{T} -model of a set of a CHCs Π is an extension of the model M of \mathcal{T} with a first-order interpretation of each predicate p_i that makes all clauses in Π true in M

A set of clauses is **satisfiable** if and only if it has a model

This is the usual FOL satisfiability

A \mathcal{T} -solution of a set of CHCs Π is a substitution σ from predicates p_i to \mathcal{T} formulas such that $\Pi \sigma$ is \mathcal{T} -valid

In the context of program verification

- a program satisfies a property iff corresponding CHCs are satisfiable
- solutions are inductive invariants
- refutation proofs are counterexample traces

Query

Fact

 $h[X] \leftarrow \phi$.

false $\leftarrow p_1[X_1], \dots, p_n[X_n], \phi$.

Linear CHC

 $h[X] \leftarrow p[X_1], \phi.$

Non-Linear CHC

$$h[X] \leftarrow p_1[X_1], ..., p_n[X_n], \phi.$$
for $n > 1$

Program Verification with HORN(LIA)

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```


In SMT-LIB

```
(set-logic HORN)
;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (> B 0) (= C A) (= D 0))
            (Inv A B C D)))
 )
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )
          (and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D))
1)))
          (Inv A B C1 D1)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
            false
(check-sat)
(get-model)
```

```
Inv(x, y, z, i)
z = x + i
z <= x + y</pre>
```


Programs, CFG, Horn Clauses

```
\begin{array}{l} \text{int } x=1;\\ \text{int } y=0;\\ \text{while } (*) \; \{\\ x=x+y;\\ y=y+1;\\ \}\\ \text{assert} (x\geq y); \end{array}
```


Horn Clauses for Program Verification

 $\epsilon_{out}(x_0, \mathbf{w}, \epsilon_o)$, which is an energy point into successor edges. with the edges are formulated as follows:

$$p_{init}(x_0, \boldsymbol{w}, \perp) \leftarrow x = x_0$$
 where x occurs in \boldsymbol{w}
 $p_{exit}(x_0, ret, \top) \leftarrow \ell(x_0, \boldsymbol{w}, \top)$ for each label ℓ , and re
 $p(x, ret, \perp, \perp) \leftarrow p_{exit}(x, ret, \perp)$
 $p(x, ret, \perp, \top) \leftarrow p_{exit}(x, ret, \top)$
 $\ell_{ext}(x_0, \boldsymbol{w}', e_0) \leftarrow \ell_{in}(x_0, \boldsymbol{w}, e_i) \land \neg e_i \land \neg wlv(S, \neg(e_i = x_0))$

5. incorrect :- Z=W+1, W>0, W+1 <read(A, W, U), read(A, Z)

6.
$$p(I1, N, B) := 1 \le I$$
, $I < N$, $D = I - 1$, $I1 = I + 1$. $V = U + 1$ read(A, D, U), write(A To translate a procedure c

7. p(I, N, A) := I = 1, N > 1.

De Angelis et al. Verifying Array Programs by Transforming Verification Conditions. VMCAI'14

Weakest Preconditions If we apply Boogie directly we obtain a translation from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

To translate a procedure call $\ell: y := q(E); \ell'$ within a procedure p, create he clauses:

$$p(\boldsymbol{w}_0, \boldsymbol{w}_4) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2), q(\boldsymbol{w}_2, \boldsymbol{w}_3), return(\boldsymbol{w}_1, \boldsymbol{w}_3, \boldsymbol{w}_4)$$

$$q(\boldsymbol{w}_2, \boldsymbol{w}_2) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2)$$

$$call(\boldsymbol{w}, \boldsymbol{w}') \leftarrow \pi = \ell, x' = E, \pi' = \ell_{q_{init}}$$

$$return(\boldsymbol{w}, \boldsymbol{w}', \boldsymbol{w}'') \leftarrow \pi' = \ell_{q_{exit}}, \boldsymbol{w}'' = \boldsymbol{w}[ret'/y, \ell'/\pi]$$

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

Horn Clauses for Concurrent / Distributed / Parameterized Systems

For assertions
$$R_1, \ldots, R_N$$
 over V and E_1, \ldots, E_N over V, V' , $CM1: init(V) \rightarrow R_i(V)$ $CM2: R_i(V) \land \rho_i(V, V') \rightarrow R_i(V')$ $CM3: (\bigvee_{i \in 1...N \setminus \{j\}} R_i(V) \land \rho_i(V, V')) \rightarrow E_j(V, V')$ $CM4: R_i(V) \land E_i(V, V') \land \rho_i^{\equiv}(V, V') \rightarrow R_i(V')$ $CM5: R_1(V) \land \cdots \land R_N(V) \land error(V) \rightarrow false$ multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software Verifiers from Proof Rules. PLDI'12

$$\left\{ R(\mathsf{g}, \mathsf{p}_{\sigma(1)}, \mathsf{I}_{\sigma(1)}, \dots, \mathsf{p}_{\sigma(k)}, \mathsf{I}_{\sigma(k)}) \leftarrow dist(\mathsf{p}_1, \dots, \mathsf{p}_k) \land R(\mathsf{g}, \mathsf{p}_1, \mathsf{I}_1, \dots, \mathsf{p}_k, \mathsf{I}_k) \right\}_{\sigma \in S_k}$$

$$R(\mathsf{g}, \mathsf{p}_1, \mathsf{I}_1, \dots, \mathsf{p}_k, \mathsf{I}_k) \leftarrow dist(\mathsf{p}_1, \dots, \mathsf{p}_k) \land Init(\mathsf{g}, \mathsf{I}_1) \land \dots \land Init(\mathsf{g}, \mathsf{I}_k)$$
(7)

$$R(g', p_1, l'_1, \dots, p_k, l_k) \leftarrow dist(p_1, \dots, p_k) \wedge \left((g, l_1) \xrightarrow{p_1} (g', l'_1) \right) \wedge R(g, p_1, l_1, \dots, p_k, l_k)$$
(8)

$$R(\mathsf{g}',\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \leftarrow dist(\mathsf{p}_0,\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge \left((\mathsf{g},\mathsf{l}_0) \xrightarrow{\mathsf{p}_0} (\mathsf{g}',\mathsf{l}'_0) \right) \wedge RConj(0,\ldots,k) \tag{9}$$

$$false \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_r) \land \left(\bigwedge_{j=1,\ldots,m} (\mathsf{p}_j = p_j \land (\mathsf{g},\mathsf{l}_j) \in E_j)\right) \land RConj(1,\ldots,r) \tag{10}$$

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invariant. S_k is the symmetric group on $\{1,\ldots,k\}$, i.e., the group of all permutations of k numbers; as an optimisation, any generating subset of S_k , for instance transpositions, can be used instead of S_k . In (10), we define $r = \max\{m,k\}$.

Hojjat et al. Horn Clauses for Communicating Timed Systems. HCVS'14

 $Init(i,j,\overline{v}) \wedge Init(j,i,\overline{v}) \wedge$

$$Init(i,i,\overline{v}) \wedge Init(j,j,\overline{v}) \Rightarrow I_2(i,j,\overline{v})$$
 (initial)
$$I_2(i,j,\overline{v}) \wedge Tr(i,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (3)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (4)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (4)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (5)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(j,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,j,\overline{v}')$$
 (5)
$$I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (7)
$$I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (8)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (9)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline$$

Figure 6. Horn clause encoding for thread modularity at level k (where (ℓ_i, s, ℓ'_i) and $(\ell^{\dagger}, s, \cdot)$ refer to statement s on a from ℓ_i to ℓ'_i and, respectively, from ℓ^{\dagger} to some other location in the control flow graph)

 $Inv(q, \ell_1, x_1, \dots, \ell_k, x_k) \wedge err(q, \ell_1, x_1, \dots, \ell_m, x_m) \rightarrow false$

Gurfinkel et al. SMT-Based Verification of Parameterized Systems. FSE 2016

Figure 3: $VC_2(T)$ for two-quantifier invariants.

(safe)

Hoenicke et al. Thread Modularity at Many Levels. POPL'17

Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable

• satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates

• inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample

• the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed

- SAT means there exists a counterexample a BMC at some depth is SAT
- UNSAT means the program is safe BMC at all depths are UNSAT

Semantics of Programming Languages

Denotational Semantics

- Meaning of a program is defined as the mathematical object it computes (e.g., partial functions).
- example: Abstract Interpretation

Axiomatic Semantics

- Meaning of a program is defined in terms of its effect on the truth of logical assertions.
- example: Hoare Logic, Weakest precondition calculus

Operational Semantics

- Meaning of a program is defined by formalizing the individual computation steps of the program.
- example: Natural (Big-Step) Semantics, Structural (Small-Step) Semantics

A Simple Programming Language (WHILE or IMP)

Axiomatic Semantics

An axiomatic semantics consists of:

- a language for stating assertions about programs;
- rules for establishing the truth of assertions.

Some typical kinds of assertions:

- This program terminates.
- If this program terminates, the variables x and y have the same value throughout the execution of the program.
- The array accesses are within the array bounds.

Some typical languages of assertions

- First-order logic
- Other logics (temporal, linear, separation)
- Special-purpose specification languages (Z, Larch, JML)

Assertions for WHILE

The assertions we make about WHILE programs are of the form:

with the meaning that:

- If A holds in state q and $q \rightarrow q'$
- then B holds in q'

A is the precondition and B is the post-condition

For example:

$$\{ y \le x \} z := x; z := z + 1 \{ y < z \}$$

is a valid assertion

These are called Hoare triples or Hoare assertions

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a **predicate transformer**

Dijkstra's weakest liberal pre-condition calculus [Dijkstra'75]

wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

{Pre} P {Post} is valid

IFF

 $Pre \Rightarrow wlp (P, Post)$

Horn Clauses by Weakest Liberal Precondition

```
ToHorn (def P(x) {S}) = wlp (x0=x;assume(p_{pre}(x)); S, p(x0, ret)) ToHorn (Prog) = wlp (Main(), true) \land \forall \{P \in Prog\}. ToHorn (P)
```


Example of a WLP Horn Encoding

```
{Pre: y≥ 0}

X<sub>o</sub> = x;

y<sub>o</sub> = y;

while y > 0 do

x = x+1;

y = y-1;

{Post: x=x<sub>o</sub>+y<sub>o</sub>}
```

ToHorn


```
C1: I(x,y,x,y) \leftarrow y \ge 0.

C2: I(x+1,y-1,x_0,y_0) \leftarrow I(x,y,x_0,y_0), y \ge 0.

C3: false \leftarrow I(x,y,x_0,y_0), y \le 0, x \ne x_0 + y_0
```

 $\{y \ge 0\}$ P $\{x = x_{old} + y_{old}\}$ is **valid** IFF the $C_1 \land C_2 \land C_3$ is **satisfiable**

EXAMPLE

Control Flow Graph

A CFG is a graph of basic blocks

edges represent different control flow

A CFG corresponds to a program syntax

where statements are restricted to the form

and S is control-free (i.e., assignments and procedure calls)

Dual WLP

Dual weakest liberal pre-condition

dual-wlp (P, Post) =
$$\neg$$
wlp (P, \neg Post)

s ∈ dual-wlp (P, Post) IFF there exists an execution of P that starts in s and ends in Post

dual-wlp (P, Post) is the weakest condition ensuring that an execution of P can reach a state in Post

Examples of dual-wlp

dual-wlp(assume(E), Q) =
$$\neg$$
wlp(assume(E), \neg Q) = \neg (E \Rightarrow \neg Q) = E \wedge Q

dual-wlp(x := x+y; y := y+1, x=x'
$$\land$$
 y=y') = y+1=y' \land x+y=x'

wlp(x := x + y, ¬(y+1=y
$$\land$$
 x=x')) wlp(y:=y+1, ¬(x=x' \land y=y'))
= let x = x+y in ¬ (y+1=y' \land x=x') = let y = y+1 in ¬(y=y' \land x=x')
= ¬ (y+1=y' \land x+y=x') = ¬ (y+1=y \land x=x')

Horn Clauses by Dual WLP

Assumptions

- each procedure is represent by a control flow graph
 - -i.e., statements of the form $l_i:S$; goto l_i , where S is loop-free
- program is unsafe iff the last statement of Main() is reachable
 - i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates

- 1(w) for each label (i.e., basic block)
 - $-p_{en}(x_0,x)$ for entry location of procedure p()
 - $-p_{ex}(x_0, r)$ for exit location of procedure p()
- p(x,r) for each procedure P(x):r

Horn Clauses by Dual WLP

The verification condition is a conjunction of clauses:

$$p_{en}(x_0,x) \leftarrow x_0=x$$

$$I_{i}(x_{0},w') \leftarrow I_{i}(x_{0},w) \land \neg wlp(S, \neg(w=w'))$$

• for each statement l_i : S; goto l_j

$$p(x_0,r) \leftarrow p_{ex}(x_0,r)$$

false
$$\leftarrow$$
 Main_{ex}(x, ret)

Example Horn Encoding

```
\begin{array}{l} \text{int } x=1;\\ \text{int } y=0;\\ \text{while } (*) \; \{\\ x=x+y;\\ y=y+1;\\ \}\\ \text{assert} (x\geq y); \end{array}
```


From CFG to Cut Point Graph

A *Cut Point Graph* hides (summarizes) fragments of a control flow graph by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points c and d summarizes all finite (loop-free) executions from c to d that do not pass through any other cut-points

Cut Point Graph Example

From CFG to Cut Point Graph

A *Cut Point Graph* hides (summarizes) fragments of a control flow graph by (summary) edges

Cut Point Graph preserves reachability of (not-summarized) control location.

Summarizing loops is undecidable! (Halting program)

A *cutset summary* summarizes all location except for a *cycle cutset* of a CFG. Computing minimal cutset summary is NP-hard (minimal feedback vertex set).

A reasonable compromise is to summarize everything but heads of loops. (Polynomial-time computable).

Single Static Assignment

SSA == every value has a unique assignment (a *definition*)

A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers

- explicit def-use chains
- simplifies optimizations and improves analyses

PHI-function are necessary to maintain unique definitions in branching control flow

$$x = PHI (v_0:bb_0, ..., v_n:bb_n)$$
 (phi-assignment)

"x gets V_i if previously executed block was bb_i"

Single Static Assignment: An Example

val:bb

```
int x, y, n;

x = 0;
while (x < N) {
   if (y > 0)
        x = x + y;
   else
        x = x - y;
   y = -1 * y;
}
```

```
/ 0: goto 1
 1: x = 0 = PHI(0:0, x = 3:5);
    y 0 = PHI(y:0, y 1:5);
    if (x \ 0 < N) goto 2 else goto 6
 2: if (y_0 > 0) goto 3 else goto 4
 3: x_1 = x_0 + y_0; goto 5
 4: x 2 = x 0 - y 0; goto 5
 5: x = PHI(x : 1:3, x : 2:4);
    y 1 = -1 * y 0;
    goto 1
 6:
```

Large Step Encoding

Problem: Generate a compact verification condition for a loop-free block of code

```
1: x = 0 = PHI(0:0, x = 3:5);
   y 0 = PHI(y:0, y 1:5);
   if (x \ 0 < N) goto 2 else goto 6
2: if (y_0 > 0) goto 3 else goto 4
3: x_1 = x_0 + y_0; goto 5
4: x_2 = x_0 - y_0; goto 5
5: x_3 = PHI(x_1:3, x_2:4);
   y 1 = -1 * y 0;
6:
```


Large Step Encoding: Extract all Actions

$$x_1 = x_0 + y_0$$

 $x_2 = x_0 - y_0$
 $y_1 = -1 * y_0$

```
1: x = 0 = PHI(0:0, x = 3:5);
  y 0 = PHI(y:0, y 1:5);
   if (x 0 < N) goto 2 else goto 6
2: if (y_0 > 0) goto 3 else goto 4
3: x_1 = x_0 + y_0 goto 5
4: x_2 = x_0 - y_0 goto 5
5: x_3 = PHI(x_1:3, x_2:4);
  y_1 = -1 * y_0;
   goto 1
```


Example: Encode Control Flow

$$x_{1} = x_{0} + y_{0}$$
 $x_{2} = x_{0} - y_{0}$
 $y_{1} = -1 * y_{0}$
 $B_{2} \rightarrow x_{0} < N$
 $B_{3} \rightarrow B_{2} \wedge y_{0} > 0$
 $B_{4} \rightarrow B_{2} \wedge y_{0} \leq 0$
 $B_{5} \rightarrow (B_{3} \wedge x_{3} = x_{1}) \vee (B_{4} \wedge x_{3} = x_{2})$

$$p_1(x'_0,y'_0) \leftarrow p_1(x_0,y_0), \phi.$$

 $B_5 \wedge x_0 = x_3 \wedge y_0 = y_1$

```
1: x = 0 = PHI(0:0, x = 3:5);
   y 0 = PHI(y:0, y_1:5);
   if (x 0 < N) goto 2 else goto 6
2: if (y_0 > 0) goto 3 else goto 4
3: x_1 = x_0 + y_0; goto 5
4: x_2 = x_0 - y_0; goto 5
5: x_3 = PHI(x_1:3, x_2:4);

y_1 = -1 * y_0;
   goto 1
```

Summary

Convert body of each procedure into SSA

For each procedure, compute a Cut Point Graph (CPG)

For each edge (s, t) in CPG use dual-wlp to construct the constraint for an execution to flow from s to t

Procedure summary is determined by constraints at the exit point of a procedure

Mixed Semantics

PROGRAM TRANSFORMATION

Deeply nested assertions

Deeply nested assertions

Counter-examples are long

Hard to determine (from main) what is relevant

Mixed Semantics

Stack-free program semantics combining:

- operational (or small-step) semantics
 - i.e., usual execution semantics
- natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
 - $-(\sigma,\sigma) \in ||f||$ iff the execution of f on input state σ terminates and results in state σ'
- some execution steps are big, some are small

Non-deterministic executions of function calls

- update top activation record using function summary, or
- enter function body, forgetting history records (i.e., no return!)

Preserves reachability and non-termination

<u>Theorem:</u> Let K be the operational semantics, K^m the stack-free semantics, and L a program location. Then,

```
K \models EF (pc=L) \Leftrightarrow K^m \models EF (pc=L) and K \models EG (pc\neq L) \Leftrightarrow K^m \models EG (pc\neq L)
```


Mixed Semantics Transformation via Inlining

```
void main() {
  p1(); p2();
  assert(c1);
void p1() {
  p2();
  assert(c2);
void p2() {
  assert(c3);
```

```
void main() {
  if(nd()) p1(); else goto p1;
  if(nd()) p2(); else goto p2;
  assert(c1);
  assume(false);
  p1: if (nd) p2(); else goto p2;
  assume(!c2);
  assert(false);
  p2: assume(!c3);
  assert(false);
  void p1() {p2(); assume(c2);}
   void p2() {assume(c3);}
```

Mixed Semantics: Summary

Every procedure is inlined at most once

- in the worst case, doubles the size of the program
- can be restricted to only inline functions that directly or indirectly call errror()

Easy to implement at compiler level

- create "failing" and "passing" versions of each function
- reduce "passing" functions to returning paths
- in main(), introduce new basic block bb.F for every failing function F(), and call failing.F in bb.F
- inline all failing calls
- replace every call to F to non-deterministic jump to bb.F or call to passing F

Increases context-sensitivity of context-insensitive analyses

- context of failing paths is explicit in main (because of inlining)
- enables / improves many traditional analyses

SOLVING CONSTRAINED HORN CLAUSES

A Magician's Guide to Solving Undecidable Problems

Develop a procedure *P* for a decidable problem

Show that *P* is a decision procedure for the problem

• e.g., model checking of finite-state systems

Choose one of

- Always terminate with some answer (over-approximation)
- Always make useful progress (under-approximation)

Extend procedure P to procedure Q that "solves" the undecidable problem

- Ensure that Q is still a decision procedure whenever P is
- Ensure that Q either always terminates or makes progress

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN

• QARMC, Eldarica, ...

Maximal Inductive Subset from a finite Candidate space (Houdini)

• TACAS'18: hoice, FreqHorn

Machine Learning

• PLDI'18: sample, ML to guess predicates, DT to guess combinations

Abstract Interpretation (Poly, intervals, boxes, arrays...)

• Approximate least model by an abstract domain (SeaHorn, ...)

Interpolation-based Model Checking

• Duality, QARMC, ...

SMT-based Unbounded Model Checking (IC3/PDR)

• Spacer, Implicit Predicate Abstraction

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of THREE clauses of the form

$$P(X) \wedge Tr(X, X') \to P(X')$$

$$P(X) \to \neg Bad(X)$$

where, $X' = \{x' \mid x \in X\}$, P a fresh predicate, and *Init*, *Bad*, and *Tr* are constraints

Proof:

add extra arguments to distinguish between predicates

$$Q(y) \land \phi \rightarrow W(y, z)$$

$$P(id='Q', y) \land \phi \rightarrow P(id='W', y, z)$$

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

- A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS 2014
- J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

- Generalized Property Directed Reachability
- K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic

- fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
- A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

- simulating Numeric Abstract Interpretation with PDR
- N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

ArrayPDR: CHC with constraints over Airthmetic + Arrays

- Required to model heap manipulating programs
- A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

- Use both forward and backward reachability information
- A. Gurfinkel and A. Ivrii: Pushing to the Top. FMCAD 2015

Avy: Interpolation with IC3

- Use SAT-solver for blocking, IC3 for pushing
- Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014

uPDR: Constraints in EPR fragment of FOL

- Universally quantified inductive invariants (or their absence)
- A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-Directed Inference of Universal Invariants or Proving Their Absence. CAV 2015

Quic3: Universally quantified invariants for LIA + Arrays

- Extending Spacer with quantified reasoning
- A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

- now the default (and only) CHC solver in Z3
 - https://github.com/Z3Prover/z3
 - dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic
- Best-effort support for many other SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic

Support for Non-Linear CHC

- for procedure summaries in inter-procedural verification conditions
- for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.

Program Verification with HORN(LIA)

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```


In SMT-LIB

```
(set-logic HORN)
;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (> B 0) (= C A) (= D 0))
            (Inv A B C D)))
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )
         (=>
          (and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D
1)))
          (Inv A B C1 D1)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
            false
(check-sat)
(get-model)
```

```
$ z3 add-by-one.smt2

sat

(model

  (define-fun Inv ((x!0 Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

        (and (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!3)) 0)

              (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!1)) 0)

              (<= (+ x!0 x!3 (* (- 1) x!2)) 0)))

)
```

```
Inv(x, y, z, i)
z = x + i
z <= x + y</pre>
```


IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

• terminate the algorithm when a solution is found

Unfold

increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. (s \land $F_i \land$ Tr \land cex') is SAT

Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. $L \Rightarrow \neg cex$, Init $\Rightarrow L$, and $L \land F_i \land Tr \Rightarrow L'$

Induction

propagate a lemma as far into the future as possible

From Propositional PDR to Solving CHC

Theories with infinitely many models

- infinitely many satisfying assignments
- can't simply enumerate (when computing predecessor)
- can't block one assignment at a time (when blocking)

Non-Linear Horn Clauses

multiple predecessors (when computing predecessors)

The problem is undecidable in general, but we want an algorithm that makes progress

- doesn't get stuck in a decidable sub-problem
- guaranteed to find a counterexample (if it exists)

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

terminate the algorithm when a solution is found

Unfold

increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. (s \land R_i \land Tr \land cex') is SAT

Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. $L \Rightarrow \neg cex$, Init $\Rightarrow L$, and $L \land R_i \land Tr \Rightarrow L'$

Induction

propagate a lemma as far into the future as possible

₩ พันฟ์ เลี้ยง ally) strengthen by dropping literals

Theory dependent

$$((F_i \land Tr) \lor Init') \Rightarrow \varphi'$$
$$\varphi' \Rightarrow \neg c'$$

Looking for φ'

ARITHMETIC CONFLICT

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that A $\Rightarrow \neg$ B, then there exists a FO formula I, denoted ITP(A, B), such that

$$A \Rightarrow I \qquad I \Rightarrow \neg B$$

$$\Sigma(I) \in \Sigma(A) \cap \Sigma(B)$$

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of $A \land B$

In Model Checking, Craig Interpolation Theorem is used to safely overapproximate the set of (finitely) reachable states

Examples of Craig Interpolation for Theories

Boolean logic

$$A = (\neg b \land (\neg a \lor b \lor c) \land a)$$

$$B = (\neg a \lor \neg c)$$

$$ITP(A, B) = a \wedge c$$

Equality with Uniterpreted Functions (EUF)

$$A = (f(a) = b \land p(f(a)))$$

$$B = (b = c \land \neg p(c))$$

$$ITP(A, B) = p(b)$$

Linear Real Arithmetic (LRA)

$$A = (z + x + y > 10 \land z < 5)$$

$$B = (x < -5 \land y < -3)$$

$$ITP(A, B) = x + y > 5$$

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in ITP (A, B)$ then $\neg I \in ITP (B, A)$
- if A is syntactically convex (a monomial), then I is convex
- if B is syntactically convex, then I is co-convex (a clause)
- if A and B are syntactically convex, then I is a half-space

Arithmetic Conflict

Notation: $\mathcal{F}(A) = (A(X) \wedge Tr) \vee Init(X')$.

Conflict For $0 \le i < N$, given a counterexample $\langle P, i+1 \rangle \in Q$ s.t. $\mathcal{F}(F_i) \wedge P'$ is unsatisfiable, add $P^{\uparrow} = \text{ITP}(\mathcal{F}(F_i), P')$ to F_j for $j \le i+1$.

Counterexample is blocked using Craig Interpolation

summarizes the reason why the counterexample cannot be extended

Generalization is not inductive

- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A \wedge B

- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver

- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form $(\Lambda B_i \Rightarrow V A_i)$

Interpolating (UNSAT) Cores

- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations

Farkas Lemma

Let M = $t_1 \ge b_1 \land ... \land t_n \ge b_n$, where t_i are linear terms and b_i are constants

M is *unsatisfiable* iff $0 \ge 1$ is derivable from M by resolution

M is *unsatisfiable* iff $M \vdash 0 \ge 1$

• e.g.,
$$x + y > 10$$
, $-x > 5$, $-y > 3 \vdash (x+y-x-y) > (10 + 5 + 3) \vdash 0 > 18$

M is unsatisfiable iff there exist *Farkas* coefficients $g_1, ..., g_n$ such that

- $g_i \geq 0$
- $g_1 \times t_1 + ... + g_n \times t_n = 0$
- $g_1 \times b_1 + \dots + g_n \times b_n \ge 1$

Frakas Lemma Example

Interpolants

$$\begin{vmatrix}
z + x + y > 10 & \times 1 \\
-z > -5 & \times 1
\end{vmatrix}$$

$$x + y > 5$$

$$x + y < -8$$

Interpolation for Linear Real Arithmetic

Let $M = A \wedge B$ be UNSAT, where

- A = $t_1 \ge b_1 \land ... \land t_i \ge b_i$, and
- B = $t_{i+1} \ge b_i \wedge ... \wedge t_n \ge b_n$

Let $g_1, ..., g_n$ be the Farkas coefficients witnessing UNSAT

Then

- $g_1 \times (t_1 \ge b_1) + ... + g_i \times (t_i \ge b_i)$ is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n)$ is an interpolant between B and A
- $g_1 \times t_1 + ... + g_i \times t_i = (g_{i+1} \times t_{i+1} + ... + g_n \times t_n)$
- $\neg (g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n))$ is an interpolant between A and B

Program Verification with HORN(LIA)

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```


Lemma Generation Example

Transition Relation

$$x = x_0 \land z = z_0 + 1 \land i = i_0 + 1 \land y > i_0$$

$$i >= y \wedge x + y > z$$

Farkas explanation for unsat

$$x_0 + y_0 \le z_0, x \le x_0, z_0 \le z, i \le i_0 + 1$$
 $i >= y, x+y > z$
 $x + i \le z$ $x + i > z$

false

Learn lemma:

Interpolation Problem in Spacer

Given an arbitrary LRA formula A and a conjunction of literals s such that A \wedge s are UNSAT, compute an interpolant I such that

• $s \Rightarrow I$ $I \land A \Rightarrow FALSE$ I is over symbols common to s and A

Use an SMT solver to decide that s Λ A are UNSAT

• SMT solver uses LRA theory lemmas (called Farkas Theory Lemmas) of the form:

$$\neg ((s_1 \wedge ... \wedge s_k) \wedge (a_1 \wedge ... \wedge a_m))$$

where s_i are literals from s and a_i are literals from A

- For each such lemma L_i , $((s_1 \land ... \land s_k) \land (a_1 \land ... \land a_m)$ is UNSAT
- Let t_i be an interpolant corresponding to L_i

Then, an interpolant between s and A is a clause of the form $(\neg t_1 \lor ... \lor \neg t_k)$ with one literal per each theory lemma

 in practice, interpolation is optimized by examining and restructuring SMT resolution proof, dealing with Boolean reasoning, and global optimization

Computing Interpolants in Spacer

Much simpler than general interpolation problem for A \wedge B

- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver

- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form $(\Lambda B_i \Rightarrow V A_i)$

Interpolating (UNSAT) Cores

- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations

$$s \subseteq pre(c)$$

 $s \Rightarrow \exists X' . Tr \land c'$

Computing a predecessor **s** of a counterexample **c**

ARITHMETIC DECIDE

Model Based Projection

Definition: Let ϕ be a formula, U a set of variables, and M a model of ϕ . Then ψ = MBP (U, M, ϕ) is a Model Based Projection of U, M and ϕ iff

- 1. ψ is a monomial
- 2. $Vars(\psi) \subseteq Vars(\phi) \setminus U$
- 3. M $\models \psi$
- 4. $\psi \Rightarrow \exists U. \varphi$

Model Based Projection under-approximates existential quantifier elimination relative to a given model (i.e., satisfying assignment)

Model Based Projection

Expensive to find a quantifier-free $\psi(\overline{y})$

$$\psi(\overline{y}) \equiv \exists \overline{x} \cdot \varphi(\overline{x}, \overline{y})$$

1. Find model M of φ (x,y)

2. Compute a partition containing M

Quantifier Elimination

A quantifier elimination is a procedure that takes a formula of the form $\exists x \psi(x)$ and returns an equivalent formula φ without existential quantifier and without the variable x

• QELIM($\exists x \psi(x)$) = φ and $\exists x \psi(x) \Leftrightarrow \varphi$

Quantifier elimination in propositional logic

• QELIM($\exists x \psi(x)$) = $\psi(TRUE) \lor \psi(FALSE)$

Many theories support quantifier elimination (e.g., linear arithmetic)

- but not all
- No quantifier elimination for EUF, e.g., $(\exists x \ f(x) \neq g(x))$ cannot be expressed without the existential quantifier

Quantifier elimination is usually expensive

e.g., propositional qelim is exponential in the number of variables quantified

Loos-Weispfenning Quantifier Elimination for LRA

φ is LRA formula in Negation Normal Form

E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms

There are no other occurrences of x in $\phi[x]$

$$\exists x. \varphi[x] \equiv \varphi[\infty] \vee \bigvee_{x=t \in E} \varphi[t] \vee \bigvee_{x < t \in U} \varphi[t - \epsilon]$$

where

$$(x < t')[t - \epsilon] \equiv t \le t'$$
 $(s < x)[t - \epsilon] \equiv s < t$ $(x = e)[t - \epsilon] \equiv false$

The case of lower bounds is dual

• using $-\infty$ and $t+\epsilon$

Fourier-Motzkin Quantifier Elimination for LRA

$$\exists x \cdot \bigwedge_{i} s_{i} < x \wedge \bigwedge_{j} x < t_{j}$$

$$= \bigwedge_{i} \bigwedge_{j} resolve(s_{i} < x, x < t_{j}, x)$$

$$= \bigwedge_{i} \bigwedge_{j} s_{i} < t_{j}$$

Quadratic increase in the formula size per each eliminated variable

Quantifier Elimination with Assumptions

$$\left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \exists x \cdot \bigwedge_i s_i < x \wedge \bigwedge_j x < t_j$$

$$= \left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \bigwedge_i resolve(s_i < x, x < t_0, x)$$

$$= \left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \bigwedge_i s_i < t_0$$

Quantifier elimination is simplified by a choice of a minimal upper bound

- For each choice of minimal upper bound, no increase in term size
- Dually, can use largest lower bound

How to chose an the assumptions?!

• MBP == use the order chosen by the model

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

Use the Model to uniquely pick a substitution term for x

$$Mbp_x(M, x = s \land L) = L[x \leftarrow s]$$

$$Mbp_x(M, x \neq s \land L) = Mbp_x(M, s < x \land L) \text{ if } M(x) > M(s)$$

$$Mbp_x(M, x \neq s \land L) = Mbp_x(M, -s < -x \land L) \text{ if } M(x) < M(s)$$

$$Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \le t_j \text{ where } M(t_0) \le M(t_i), \forall i$$

MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types

Arithmetic Decide

Notation: $\mathcal{F}(A) = (A(X) \land Tr(X, X') \lor Init(X').$

Decide If $\langle P, i+1 \rangle \in Q$ and there is a model m(X, X') s.t. $m \models \mathcal{F}(F_i) \wedge P'$, add $\langle P_{\downarrow}, i \rangle$ to Q, where $P_{\downarrow} = \text{MBP}(X', m, \mathcal{F}(F_i) \wedge P')$.

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite

finitely many possible predecessors when all other arguments are fixed

Alternatively

- Completeness can follow from an interaction of Decide and Conflict
 - but requires more rules to propagate implicants backward (as in PDR) and forward (as in Spacer and Quip)

PolyPDR: Solving CHC(LRA)

Unreachable and Reachable

• terminate the algorithm when a solution is found

Unfold

increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- find a model **M** of **s** s.t. $(F_i \land Tr \land cex')$, and let **s** = MBP(X', $F_i \land Tr \land cex')$

Conflict

- construct a lemma to explain why cex cannot be extended
- Find an interpolant L s.t. $L \Rightarrow \neg cex$, Init $\Rightarrow L$, and $F_i \land Tr \Rightarrow L'$

Induction

propagate a lemma as far into the future as possible

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to satisfiability of THREE (3) clauses of the form

$$Init(X) \to P(X)$$

$$P(X) \land P(X^o) \land Tr(X, X^o, X') \to P(X')$$

$$P(X) \to \neg Bad(X)$$

where, $X' = \{x' \mid x \in X\}$, $X^o = \{x^o \mid x \in X\}$, P a fresh predicate, and Init, Bad, and Tr are constraints

Generalized GPDR

Input: A safety problem $\langle Init(X), Tr(X, X^o, X'), Bad(X) \rangle$.

Output: Unreachable or Reachable

Data: A cex queue Q, where a cex $\langle c_0, \ldots, c_k \rangle \in Q$ is a tuple, each $c_i = \langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level \overline{N} .

A trace F_0, F_1, \ldots

Notation: $\mathcal{F}(A,B) = Init(X') \vee (A(X) \wedge B(X^o) \wedge Tr)$, and

 $\mathcal{F}(A) = \mathcal{F}(A, A)$

Initially: $Q = \emptyset$, N = 0, $F_0 = Init$, $\forall i > 0 \cdot F_i = \emptyset$

Require: $Init \rightarrow \neg Bad$

repeat

Unreachable If there is an i < N s.t. $F_i \subseteq F_{i+1}$ return Unreachable.

Reachable if exists $t \in Q$ s.t. for all $\langle c, i \rangle \in t$, i = 0, return Reachable.

Unfold If $F_N \to \neg Bad$, then set $N \leftarrow N+1$ and $Q \leftarrow \emptyset$.

Candidate If for some $m, m \to F_N \wedge Bad$, then add $\langle \langle m, N \rangle \rangle$ to Q.

Decide If there is a $t \in Q$, with $c = \langle m, i+1 \rangle \in t$, $m_1 \to m$, $l_0 \wedge m_0^o \wedge m_1^o$ is satisfiable, and $l_0 \wedge m_0^o \wedge m_1^o \to F_i \wedge F_i^o \wedge Tr \wedge m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, i \rangle$, and $\langle m_0, i \rangle$.

Conflict If there is a $t \in Q$ with $c = \langle m, i+1 \rangle \in t$, s.t. $\mathcal{F}(F_i) \wedge m'$ is unsatisfiable. Then, add $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$ to F_j , for all $0 \leq j \leq i+1$.

Leaf If there is $t \in Q$ with $c = \langle m, i \rangle \in t$, 0 < i < N and $\mathcal{F}(F_{i-1}) \wedge m'$ is unsatisfiable, then add \hat{t} to Q, where \hat{t} is t with c replaced by $\langle m, i+1 \rangle$.

Induction For $0 \le i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \notin F_{i+1}$, $\mathcal{F}(\phi \land F_i) \to \phi'$, then add φ to F_j , for all $j \le i+1$.

until ∞ ;

counterexample is a tree

two predecessors

theory-aware **Conflict**

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE

• we call such a derivation a counterexample

For linear CHC, the counterexample is a path For non-linear CHC, the counterexample is a tree

GPDR Search Space

In Decide, one POB in the frontier is chosen and its two children are expanded

GPDR: Splitting predecessors

Consider a clause

$$P(x) \land P(y) \land x > y \land z = x + y \implies P(z)$$

How to compute a predecessor for a proof obligation z > 0

Predecessor over the constraint is:

$$\exists z \cdot x > y \land z = x + y \land z > 0$$
$$= x > y \land x + y > 0$$

Need to create two separate proof obligation

- one for P(x) and one for P(y)
- gpdr solution: split by substituting values from the model (incomplete)

GPDR: Deciding predecessors

Decide If there is a $t \in Q$, with $c = \langle m, i+1 \rangle \in t$, $m_1 \to m$, $l_0 \wedge m_0^o \wedge m_1'$ is satisfiable, and $l_0 \wedge m_0^o \wedge m_1' \to F_i \wedge F_i^o \wedge Tr \wedge m'$ then add \hat{t} to Q, where $\hat{t} = t$ with c replaced by two tuples $\langle l_0, i \rangle$, and $\langle m_0, i \rangle$.

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

• e.g., BFS or DFS exploration order

Number of predecessors is unbounded

• incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

• worst-case exponential for Boolean Push-Down Systems

Spacer

Same queue as in IC3/PDR

Cache Reachable states

Three variants of **Decide**

Same **Conflict** as in APDR/GPDR

Input: A safety problem $\langle Init(X), Tr(X, X^o, X'), Bad(X) \rangle$.

Output: Unreachable or Reachable

Data: A cex queue Q, where a cex $c \in Q$ is a pair $\langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level N. A set of reachable states REACH. A trace F_0, F_1, \ldots

Notation: $\mathcal{F}(A,B) = Init(X') \vee (A(X) \wedge B(X^o) \wedge Tr)$, and $\mathcal{F}(A) = \mathcal{F}(A,A)$

Initially: $Q = \emptyset$, N = 0, $F_0 = Init$, $\forall i > 0 \cdot F_i = \emptyset$, REACH = Init

Require: $Init \rightarrow \neg Bad$

repeat

Unreachable If there is an i < N s.t. $F_i \subseteq F_{i+1}$ return Unreachable.

Reachable If Reach \wedge Bad is satisfiable, **return** Reachable.

Unfold If $F_N \to \neg Bad$, then set $N \leftarrow N+1$ and $Q \leftarrow \emptyset$.

Candidate If for some $m, m \to F_N \wedge Bad$, then add $\langle m, N \rangle$ to Q.

Successor If there is $\langle m, i+1 \rangle \in Q$ and a model M $M \models \psi$, where $\psi = \mathcal{F}(\vee \text{Reach}) \wedge m'$. Then, add s to Reach, where $s' \in \text{MBP}(\{X, X^o\}, \psi)$.

DecideMust If there is $\langle m, i+1 \rangle \in Q$, and a model M $M \models \psi$, where $\psi = \mathcal{F}(F_i, \forall \text{REACH}) \land m'$. Then, add s to Q, where $s \in \text{MBP}(\{X^o, X'\}, \psi)$.

DecideMay If there is $\langle m, i+1 \rangle \in Q$ and a model M $M \models \psi$, where $\psi = \mathcal{F}(F_i) \wedge m'$. Then, add s to Q, where $s^o \in \mathrm{MBP}(\{X, X'\}, \psi)$.

Conflict If there is an $\langle m, i+1 \rangle \in Q$, s.t. $\mathcal{F}(F_i) \wedge m'$ is unsatisfiable. Then, add $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$ to F_j , for all $0 \leq j \leq i+1$.

Leaf If $\langle m, i \rangle \in Q$, 0 < i < N and $\mathcal{F}(F_{i-1}) \wedge m'$ is unsatisfiable, then add $\langle m, i+1 \rangle$ to Q.

Induction For $0 \le i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \notin F_{i+1}$, $\mathcal{F}(\phi \land F_i) \to \phi'$, then add φ to F_j , for all $j \le i+1$.

until ∞ ;

SPACER Search Space

In Decide, unfold the derivation tree in a fixed depth-first order

• use MBP to decide on counterexamples

Successor: Learn new facts (reachable states) on the way up

use MBP to propagate facts bottom up

Successor Rule: Computing Reachable States

```
Successor If there is \langle m, i+1 \rangle \in Q and a model M M \models \psi, where \psi = \mathcal{F}(\forall \text{REACH}) \land m'. Then, add s to REACH, where s' \in \text{MBP}(\{X, X^o\}, \psi).
```

Computing new reachable states by under-approximating forward image using MBP

• since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

- orthogonal to the use of MBP in Decide
- can allow REACH to contain auxiliary variables, but this might explode

For Boolean CHC, the number of reachable states is bounded

- complexity is polynomial in the number of states
- same as reachability in Push Down Systems

Decide Rule: Must and May refinement

DecideMust If there is $\langle m, i+1 \rangle \in Q$, and a model M $M \models \psi$, where $\psi = \mathcal{F}(F_i, \forall \text{REACH}) \land m'$. Then, add s to Q, where $s \in \text{MBP}(\{X^o, X'\}, \psi)$.

DecideMay If there is $\langle m, i+1 \rangle \in Q$ and a model M $M \models \psi$, where $\psi = \mathcal{F}(F_i) \wedge m'$. Then, add s to Q, where $s^o \in \mathrm{MBP}(\{X, X'\}, \psi)$.

DecideMust

• use computed summary (REACH) to skip over a call site

DecideMay

- use over-approximation of a calling context to guess an approximation of the callsite
- the call-site either refutes the approximation (**Conflict**) or refines it with a witness (**Successor**)

