Constrained Horn Clauses (CHC)
over Linear Integer Arithmetic (LIA)

Automated Program Verification (APV)
Fall 2018

Prof. Arie Gurfinkel

% WATERLOO

CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

Precise Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)

» decide whether a low level program/circuit has an execution of a given length
that violates a safety property

o effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking

» decide whether a program has an execution of a given length that violates a
safety property

o efficient decision procedure via encoding to SMT

~

What is an SMT-like equivalent for Safety Verification?
* Logic: SMT-Constrained Horn Clauses
e Decision Procedure: Spacer / GPDR
— extend IC3/PDR algorithms from Hardware Model Checking

- 4

UNIVERSITY OF

WATERLOO

Constrained Horn Clauses (CHCs)

A Constrained Horn Clause (CHC) is a FOL formula

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays, Bit-
Vectors, or combinations of the above)

e \/ are variables, and X; are terms over V
* ¢ is a constraint in the background theory T
° P4, ..., Pn, h are n-ary predicates

e p.[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

CHC Satisfiability

A T-model of a set of a CHCs I] is an extension of the model M of " with a
first-order interpretation of each predicate p, that makes all clauses in II true
in M

A set of clauses is satisfiable if and only if it has a model
e This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p;to T -
formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable

e solutions are inductive invariants
e refutation proofs are counterexample traces

UNIVERSITY OF

WATERLOO

CHC Notation and Tergy &Tstraint

Rule

Query

Fact
Linear CHC

Non-Linear CHC

IIIIIIIIIIII

A
h[X] %fp1[x1 yre ey pn[xn],

false <+ p4[X4l,..., Pn[X,], .
h[X] + o.
h[X] < p[X4], ¢.

h[X] . p'l[x'l]s"'s pn[xn]’ ¢
forn>1

Program Verification with HORN(LIA)

Z = X; 1 = 0;
assume (y > 0);

while (i < vy) {

‘ IS SAT?

Z =2 + 1;
i=1+ 1;

¥

assert(z == x + y); -\ /-

z=xXx&1 =08&y >0 = Inv(x, y, z, 1)
Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 7

In SMT-LIB

(set-logic HORN)

ey o 1) $ z3 add-by-one.smt2

(declare-fun Inv (Int Int Int Int) Bool) sat
(model
(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

(<= (+ x12 (* (- 1) x'@) (* (- 1) x!1)) @)

) (<= (+ x!@ x!3 (* (- 1) x!2)) 0)))
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>=D B) (not (= C (+ A B))))
false

)

)
)

(check-sat) Inv(x, Y, <, i)
Z =X + 1
Z <= X +Y

UNITVERSITY OF

WATERLOO

Horn Clauses for Program Verification

“out'\"'(.’lv woy ba}1 WY ALLLAL 1D Caa Ulltl_y PUAALL LW DULACDODUL Lus:.;a.

with the edges are formulated as follows:

Pinit(To,w, L) &z =10 where z occurs in w
pr.rif(I(h ret, I) €
plz,ret, L, L) «
p(z,ret, L, T) ¢ pezit(z,ret, T)

boilza.w' . e.) e blza. w.e) A —e: A —win(S.—(e: =

€(xo,w,T) for each label £, and re

prrit(z' V'Cf, -L)

5. incorrect :- Z=W+1, W>0, W+1<

read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)
decl€ program
havoc z,; assume z, = r;

ToHorn(def p(z) {S}) := wip (assume Poro(z); S
pre ? Ly

p(zo, net))

wlp(z :=E,Q):=let z=FE in Q
wip((if E then S; else S,), Q) := wip(((assume E: S;)0(assume —E; S;)), Q)

wip((5,08,),Q) := u(p(S Q) A wip(S;,Q)
wip(S1; 82, Q) := wip(S:, wip(S2,Q))

wip(havoc z,Q) :=Vz . Q

wilp(assert ¢, Q) :=pAQ

wlp(assume ¢, Q) :=p = Q
wip((while E do S).Q) := inv(w) A

Vo (((inv(w)AE) = wip(S.inv(w])))
"AA((inv(w) A-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A

7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming Verification
Conditions. VMCAI'14

To translate a procedure call £ :
he clauses:

y := q(£); £ within a procedure p, create

) ¢ plwg, w,), call(w;, w3), g(wa, ws), return(w;, w3, ws)
) 4 p(wu.uu).call(w;.wg)

calllw,w)+r=£4z' =Ex" =§,_,
)

—n' =4, . w' =wret'fy ¥ [x]

Bj@rner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

% WATERLOO

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions R1,..., Ry over Vand Ey,...,Exyover V,V’,
CM1: init(V) — Riy(V)
CM2: R;(V)Ap:i(V, V') — R; (V')

CM3: (Viel..N\{j} Ri(V)Api(V, V")) — E;(V, V')
CM4: R;(V)ANE;(V,VYApr (V,V') — Ri(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software Verifiers
from Proof Rules. PLDI'12

{R(-sPo(k)lok)) < dist(p1,---,Pk) AR(g,P1, 115+ -, Pks i) }o'esk (6)
R(g,p1,l1,-- 7pk,lk) <« dist(p1,...,px) Anit(g,l}) A --- Alnit(g, i) @)
R(&,p1,11,..,px, k) « dist(pi,.. ,pk)/\((g,ll) I{’4(g',l'l))/\R(g,pl,ll,...,pk,lk) 8)
R ,p1, 1y, Prslk) < dist(po,pis---,pe) A ((g,10) 2 (&/,10)) ARConj(0, ..., k))
false dist(p1,...,pr)/\(A (pj:pj/\(g,lj)eEj))/\RConj(l,...,r) (10)

J=1yeem

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed Systems.
HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)
I»(i,4,0) A Tr(i,v,0') = I»(i,5,7) (3)

dl

(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) Iz(’i] 5) A TT(j 5 5/) . 12(?: j 5’) (4)
1J)) b 1J)
(inductive) Inv(g, 41,1, ..., i, Tiy .., L, Tk) A 8(9, @iy g5 25) — Inv(g', b1, @1, 5, X5,y Ly I (i’j’ 5) A Iz(’i, k’ﬁ) A Iz(j, k, ﬁ) A (5)
(non-interference) Inv(g, 41,21, -, 2k, Tk) A — =0 : : 2 9 =0
P N AN Tr(k,v,v) Nk #1 /\'k f_j = Iz(z,],’f;) .
I2(Z,j,’l)) = ﬁBad(’L,_],’l))
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 1, .., Lk, Tk) A err(g, €1, 21, . .., fm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause er_lcoding for thread modularity at .leve?l k (where (¢;,s,£;) and (ZT, s, -) refer to statement s on af Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) p terized Svst ESE 2016
arameterize ystems.
G MveRsiTy or Hoenicke et al. Thread Modularity at Many Levels.
%@ WATERLOO | pOPL'17 10

SOLVING CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

11

A Magician’s Guide to Solving Undecidable Problems

Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem

e e.g., model checking of finite-state systems

Choose one of

Y

Extend procedure P to procedure Q that “solves” the undecidable problem

e Always terminate with some answer (over-approximation)

e Always make useful progress (under-approximation)

e Ensure that Q is still a decision procedure whenever P is

e Ensure that Q either always terminates or makes progress

UNIVERSITY OF

WATERLOO

12

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
e QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS’18: hoice, FreqHorn
Machine Learning
e PLDI’18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
e Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

p
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

UNIVERSITY OF

WATERLOO

13

>

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of THREE
clauses of the form

nit(X) — P(X)
P(X) A Tr(X,X') — P(X')
P(X) — =Bad(X)

where, X' ={x’ | x € X}, P a fresh predicate, and /nit, Bad, and Tr are

constraints

Proof:

add extra arguments to distinguish between predicates

Q(y) A ¢ = W(y, 2)
P(id='Q’, y) A ¢ — P(id="W, y, 2)

IIIIIIIIIIII

WATERLOO

14

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
* Incremental Construction of Inductive Clauses for Indubitable Correctness
e A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
e Property Directed Reachability

* N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed
reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

e J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided
Abstraction-Refinement (CTIGAR). CAV 2014

7] UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
e Generalized Property Directed Reachability
e K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

@CER: Non-Linear CHC with Arithmetic \

e fixes an incompleteness issue in GPDR and extends it with under-approximate summaries

e A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

e simulating Numeric Abstract Interpretation with PDR

e N. Bjgrner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays

e Required to model heap manipulating programs

e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification of
Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

%) WATERLOO 16

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

e Use both forward and backward reachability information

e A. Gurfinkel and A. lvrii: Pushing to the Top. FMCAD 2015
Avy: Interpolation with IC3

e Use SAT-solver for blocking, IC3 for pushing

e Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014
uPDR: Constraints in EPR fragment of FOL

e Universally quantified inductive invariants (or their absence)

e A. Karbyshev, N. Bjgrner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-Directed
Inference of Universal Invariants or Proving Their Absence. CAV 2015

Quic3: Universally quantified invariants for LIA + Arrays

e Extending Spacer with quantified reasoning
e A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

%) WATERLOO

17

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3
Supported SMT-Theories

e Linear Real and Integer Arithmetic

e Quantifier-free theory of arrays
e Universally quantified theory of arrays + arithmetic
e Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC
e for procedure summaries in inter-procedural verification conditions

e for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.

%) WATERLOO

https://github.com/Z3Prover/z3

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e choose an assignmentss.t. (s AF; A Tr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- Find a clause L s.t. L=-cex, Init=L,and LAFATr=1

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@bally) strengthen by dropping literals

21

From Propositional PDR to Solving CHC

Theories with infinitely many models
e infinitely many satisfying assignments
e can’t simply enumerate (when computing predecessor)

e can’t block one assignment at a time (when blocking)

Non-Linear Horn Clauses

e multiple predecessors (when computing predecessors)

The problem is undecidable in general, but we want an algorithm that makes
progress
e doesn’t get stuck in a decidable sub-problem

e guaranteed to find a counterexample (if it exists)

%) WATERLOO

22

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

(

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e choose an assignment ss.t. (s AR; A Tr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- Find a clause L s.t. L=>-cex, Init=L,andLARATr=1L

Theory
dependent

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@bally) strengthen by dropping literals

23

(E5; AN Tr) V Init') = ¢

N
QY = T1C

Looking for ¢’

ARITHMETIC CONFLICT

IIIIIIIIIIII

/

24

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A = —B, then there

exists a FO formula |, denoted ITP(A, B), such that

A=1 |= —B (1) € 2(A) N 5(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution
proof of unsatisfiability of AAB

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

UNIVERSITY OF

WATERLOO 75

Examples of Craig Interpolation for Theories

Boolean logic
A=(-bAN(-aVbVc)Aa) B = (—a V —c)
ITP(A,B)=aAc

Equality with Uniterpreted Functions (EUF)
A= (f(a) =bAp(f(a))) B = (b=cA-p(c))

ITP(A, B) = p(b)
Linear Real Arithmetic (LRA)
A=(z4+2xz4+y>10A2z<5H) B=(rx<-5Ny< -3

ITP(A,B)=z+y>5

%@ WATERLOO 26

Craig Interpolation for Linear Arithmetic

Proof

1= interpolant

Reachable

Useful properties of existing interpolation algorithms [CGS10] [HB12]
e | €ITP (A, B) then =l € ITP (B, A)

e if Ais syntactically convex (a monomial), then | is convex
e if B is syntactically convex, then | is co-convex (a clause)
e if Aand B are syntactically convex, then | is a half-space

%Y WATERLOO 27

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P’') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation

e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR

 inductive generalization for arithmetic is still an open problem

Y

UNIVERSITY OF

WATERLOO

28

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

e interpolation is restricted to clauses of the form (AB; = V A))

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

>

Farkas Lemma
LetM=t, > b, A..At, > Db,, where t, are linear terms and b, are constants
M is unsatisfiable iff 0 > 1 is derivable from M by resolution

M is unsatisfiable iff M0 > 1
e eg,x+y>10,-x>5,-y>3F (x+ty-x-y) >(10+5+3) 0> 18

M is unsatisfiable iff there exist Farkas coefficients g4, ..., g,
such that

°*g >0

e g xt;+...+g,xt, =0

e gixby+ ... +g,xb, > 1

IIIIIIIIIIII

WATERLOO

30

Frakas Lemma Example Interpolants

> 10 X 1
FrTty rT+y>0
—z > —H Xl
—x > 9 X 1 .
—y >3 X 1 TrYy <~
0>13

IIIIIIIIIIII

%) WATERLOO 31

Interpolation for Linear Real Arithmetic

Let M = A A B be UNSAT, where
° A=t12b1/\.../\ti2bi,and
e B=t,; >bA..At,> D,

Let g4, ..., 9,, be the Farkas coefficients witnessing UNSAT

Then
° g4X(ty > by) + ...+ gix(t > by) is an interpolant between A and B

* Qi1 X (ti1 > bj) + ... + g X (t, > by) is an interpolant between B and A
* 04 Xt +...+gi><ti = - (gi+1><ti+1 + ...+ antn)

e —(gi1 X(tisy > b)) + ... +g,x (t, > b,)) is an interpolant between A and B

UNIVERSITY OF

WATERLOO

32

Program Verification with HORN(LIA)

Z =X; 1= 0;

assume (y > 0);

while (1 < y) {
Z =27z + 1;
i=1+1;

}

assert(z == x + y);

z=X8&1=08&vy >0 = Inv(x, y, z, i)

Inv(x, y, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, z1, il)

%) WATERLOO 33

Lemma Generation Example

error

O« o

MkSafe

Transition Relation
X=XgAZ=Zt1 Ai=igtT Ay > g
Farkas explanation for unsat

Xog+ Vo <=2y X<=Xy,Zy<Z i<=ig+1

Pob

I>=yAX+y>2Z

| >=y, Xty >z

X+1<=Z

X+1>27

false

B Rz oF Learn lemma: | x+i<=1z

34

Interpolation Problem in Spacer

Given an arbitrary LRA formula A and a conjunction of literals s such that AA s
are UNSAT, compute an interpolant | such that

e s | | AA= FALSE |is over symbols common to s and A

Use an SMT solver to decide that s A A are UNSAT
e SMT solver uses LRA theory lemmas (called Farkas Theory Lemmas) of the form:
(s Ao A) A(ag A ... Aay))
where s; are literals from s and a; are literals from A
* Foreachsuchlemmal,;, ((s; A... Asg) A(ag A... Aap)is UNSAT
* Lett;be an interpolant corresponding to L

Then, an interpolant between s and A is a clause of the form
(-t; V... V =t,) with one literal per each theory lemma

e in practice, interpolation is optimized by examining and restructuring SMT
resolution proof, dealing with Boolean reasoning, and global optimization

7] UNIVERSITY OF

WATERLOO

Computing Interpolants in Spacer

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

* interpolation is restricted to clauses of the form (AB; = V A)

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

s C pre(c)

= s=3dX'.Tr Nc

Computing a predecessor s of a counterexample ¢

ARITHMETIC DECIDE

IIIIIIIIIIII

37

Model Based Projection

Definition: Let ¢ be a formula, U a set of variables, and M a
model of ¢. Then 1) = MBP (U, M, ¢) is a Model Based Projection
of U, M and ¢ iff

1. v is a monomial
2.Vars(y)) C Vars(p) \ U

3.MEY
4, p=dU.¢

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

IIIIIIIIIIII

%) WATERLOO 33

Model Based Projection

[Expensive to find a quantifier-free ¢(§) = dz - 90(5, ?) }

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 39

Quantifier Elimination

A quantifier elimination is a procedure that takes a formula of the form
3 x Y(x) and returns an equivalent formula ¢ without existential quantifier
and without the variable x

e QELIM(I xY(x))=¢ andIxYP(x) & @

Quantifier elimination in propositional logic
e QELIM(3 x U(x)) = Y(TRUE) V Y(FALSE)

Many theories support quantifier elimination (e.g., linear arithmetic)
e but not all

e No quantifier elimination for EUF, e.g., (3x f(x) # g(x)) cannot be expressed without
the existential quantifier

Quantifier elimination is usually expensive

e e.g., propositional gelim is exponential in the number of variables quantified

UNIVERSITY OF

WATERLOO 40

Loos-Weispfenning Quantifier Elimination for LRA

¢ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x <t atoms, and L set of s < x atoms

There are no other occurrences of x in $[x]

Jz.plz] = gloo] V. \/ lt]V \/ ot —¢]

r=tch rtelU

where
(x<tHt—e=t<t (s<a)t—e=s<t (z=c¢)ft— ¢ = false

The case of lower bounds is dual

e using —o° and t+e€

B WATERLGO "

Fourier—-Motzkin Quantifier Elimination for LRA

dr - \;jsi <z ANz <ty
= N\ \, resolve(s; < x,x < t;,x)

Y /\j i <ty

Quadratic increase in the formula size per each eliminated variable

IIIIIIIIIIII

42

Quantifier Elimination with Assumptions

(/\j;éotogtf")AHCE'/\iSi<x/\/\jm<tj
— (/\j;éo tg < tj) AN, resolve(s; < xz,z < tg,x)

Quantifier elimination is simplified by a choice of a minimal upper bound
e For each choice of minimal upper bound, no increase in term size

e Dually, can use largest lower bound

How to chose an the assumptions?!

e MBP == use the order chosen by the model

IIIIIIIIIIII

43

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

e Use the Model to uniquely pick a substitution term for x
Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

MBP technigues have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic

e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

44

Arithmetic Decide
Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite

e finitely many possible predecessors when all other arguments are fixed

Alternatively
e Completeness can follow from an interaction of Decide and Conflict

— but requires more rules to propagate implicants backward (as in PDR) and
forward (as in Spacer and Quip)

UNIVERSITY OF

WATERLOO 45

PolyPDR: Solving CHC(LRA)

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e find a model M of s s.t. (F; A Tr A cex’), and let s = MBP(X’, F; A Tr A cex’)
Conflict
e construct a lemma to explain why cex cannot be extended
K° Find an interpolant L s.t. L=-cex, Init=L,andF,ATr= L

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@{aally) strengthen by dropping literals

46

>

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to
satisfiability of THREE (3) clauses of the form

Init(X) = P(X)
P(X)AP(X°) A Tr(X,X° X") — P(X")
P(X) = —Bad(X)

where, X' ={x’ | x € X}, X° ={x° | x € X}, P a fresh predicate, and Init, Bad, and

Tr are constraints

IIIIIIIIIIII

WATERLOO

47

Generalized GPDR

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X))

Output: Unreachable or Reachable Counterexample
Data: A cex queue @, where a cex (cp,...,cx) € @ is a tuple, each iS a tree

¢; = (m,1), m is a cube over state variables, and i € N. A level N.
A trace Fy, Fy,...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and

F(A)=F(AA)

Initially: Q =0, N =0, Fy = Init,Vi >0-F; =0

Require: Init — - Bad

repeat

Unreachable If there is an ¢ < N s.t. F; C F; 41 return Unreachable.

Reachable if exists t € @ s.t. for all (c,i) € t, i = 0, return Reachable.

Unfold If Fy — —Bad, then set N < N + 1 and Q + 0.
Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q. two

Decide If there is a t € Q, with ¢ = (m, i + 1) € £, my — m, lo Am§ Am is predecessors
satisfiable, and lo A mg Am) — F; A F? A Tr Am/ then add t to Q, where
t = t with ¢ replaced by two tuples (lg,), and (mg,).

Conflict If there is a t € Q with ¢ = (m,i+ 1) € ¢, s.t. F(F;) Am/ is theory'aware
unsatisfiable. Then, add ¢ = ITP(F(F;),m’) to F;, for all 0 < j <i -+ 1. .
) o £ Conflict

Leaf If there is t € @ with ¢ = (m,i) € ¢, 0 <i <N and F(F;_1) Am/ is
unsatisfiable, then add ¢ to @, where ¢ is ¢ with ¢ replaced by (m,i+ 1).

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi 11,
F(p N F;) — ¢, then add ¢ to Fj, for all j < i+ 1.

until oo;

%) WATERLOO 48

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
e we call such a derivation a counterexample
For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree

l FALSE

S’y ESy ASO3 ATr S5ESgASATr

[I | [I |
l S, € Init l S5 € Init l So € Init l S¢1 € Init

WATERLOO

49

GPDR Search Space

Bad
gueue -
element

° -~ -
>
(1)
- ‘

-~ - -~ -~

/ \

v O O O O O O O

In Decide, one POB in the frontier is chosen and its two children are expanded

% WATERLOO 50

GPDR: Splitting predecessors

Consider a clause
Plx)y APy Nx>yANz=z+y = P(2)

How to compute a predecessor for a proof obligationz>0

Predecessor over the constraint is:
dz-x>yNz=xz+yNz>0
= x>yNxz+y>0

Need to create two separate proof obligation
e one for P(x) and one for P(y)

e gpdr solution: split by substituting values from the model (incomplete)

IIIIIIIIIIII

51

GPDR: Deciding predecessors

Decide If there is a t € Q, with ¢ = (m,i+ 1) € t, my — m, lo Amd Am] is
satisfiable, and g A mJ Am’ — F; A F2 A Tr Am’ then add ¢ to @), where
t = t with ¢ replaced by two tuples (ly,), and (mg, 7).

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

e e.g., BFS or DFS exploration order

Number of predecessors is unbounded

e incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

e worst-case exponential for Boolean Push-Down Systems

%) WATERLOO

Input: A safety problem (Init(X), Tr(X,X°, X'), Bad(X)).
S Output: Unreachable or Reachable
pa ce r Data: A cex queue @, where a cex ¢ € @ is a pair (m,i), m is a cube
over state variables, and 7 € N. A level N. A set of reachable
states REACH. A trace Fy, F1, ...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
Same queue as o
in |C3/PDR Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (), REACH = Init
Require: Init — —Bad
repeat

Unreachable If there is an i« < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Cache Reachable

Unfold If Fy — —Bad, then set N < N + 1 and Q «+ 0.
states

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M = 1), where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).
Th ree variants Of DecideMust If there is (m,i+ 1) € @, and a model M M = 1), where

. Y = F(F;, VREACH) Am/. Then, add s to @, where
Decide s € MBP({X°, X'},).

DecideMay If there is (m,i+ 1) € @ and a model M M |= v, where
= F(F;) Am/. Then, add s to @, where s° € MBP({X, X'},).

Conflict If there is an (m,i+ 1) € @, s.t. F(F;) Am’ is unsatisfiable. Then,

add ¢ = ITP(F(F;),m') to Fj, for all 0 < j <i+1.
Same Conflict as Leaf If (m,i) € @, 0 <i < N and F(F;_1) A m/ is unsatisfiable, then add
. (m,i+1) to Q.
in APDR/GPDR _ | .
Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi41,

F(p N F;) — ¢, then add ¢ to Fj, for all j <i+ 1.

until oo;

% WATERLOO 53

SPACER Search Space

Bad

Level

v O O O O O

In Decide, unfold the derivation tree in a fixed depth-first order

e use MBP to decide on counterexamples

Successor: Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

UNIVERSITY OF

WATERLOO

54

Successor Rule: Computing Reachable States

Successor If there is (m,i+ 1) € @) and a model M M |= 1, where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).

Computing new reachable states by under-approximating forward image using
MBP

e since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

e orthogonal to the use of MBP in Decide

e can allow REACH to contain auxiliary variables, but this might explode

For Boolean CHC, the number of reachable states is bounded
e complexity is polynomial in the number of states

e same as reachability in Push Down Systems

UNIVERSITY OF

WATERLOO 55

Decide Rule: Must and May refinement

DecideMust If there is (m,7+ 1) € @, and a model M M = ¢, where
Y = F(F;, VREACH) A m’. Then, add s to @), where
s € MBP({X°, X'}, v).

DecideMay If there is (m,i+ 1) € @ and a model M M |= ¢, where
Y = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'},).

DecideMust
e use computed summary (REACH) to skip over a call site
DecideMay
e use over-approximation of a calling context to guess an approximation of the call-
site

e the call-site either refutes the approximation (Conflict) or refines it with a witness
(Successor)

UNIVERSITY OF

WATERLOO

56

CHC VIA MACHINE LEARNING

IIIIIIIIIIII

57

HOUDINI'S &

ESCAPE FROM A GALVANIZED IRON CAN I'H.LID WITN 'WA_TIR
AND SECURED BY MASSIVE LOCKS

Cormac Flanagan, K. Rustan M. Leino: Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517

58

Program Verification by Houdini

UNIVERSITY OF

A WATERLOO

EY&rriasV

Lemmal)

Lemma3

S—

Inductive Invariant

No

Yes

call i32 @_ VERIFIER_non
call i32 @_ VERIFIER_nondet
p eq i32 %39, @

label %bb7.i.i, label %bb9.i

call i32 @_ VERIFIER_nondet_.
eq i32 %41, ©
r i1 %42, label %bb9.i.i, label %bb3.i

oiloild

systemActive.@ = phi i32 [1, %bb3.i.i
|43 = icmp eq 132 %pumpRunning.2, ©

r i1 %43, label %bbl.i14.i.i, label %b

i13.3.4:
44 mp sgt i32 %waterLevel.1, @

5 dd i32 %waterLevel.1, -1
aterLevel.3 = select il %44, i32 %45
abel %bbl.il14.i.i

59

>

Finding an Inductive Invariant

Discovering an inductive invariants involves two steps
Step 1: find a candidate inductive invariant Inv
Step 2: check whether Invis an inductive invariant

Invariant Inference is the process of automating both of these
phases

IIIIIIIIIIII

WATERLOO

60

Finding an Inductive Invariant

Two popular approaches to invariant inference:

Machine Learning based Invariant Synthesis (MLIS)

e e.g. ICE: Pranav Garg, Christof Loding, P. Madhusudan, Daniel Neider: ICE: A Robust
Framework for Learning Invariants. CAV 2014: 69-87

e referred to as a Black-Box approach

SAT-based Model Checking (SAT-MC)

e e.g.1C3: Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI
2011: 70-87

e referred to as a White-Box approach

UNIVERSITY OF

WATERLOO

61

Our Goal

X UNIVERSITY OF

2 WATERLOO

62

Our Goal

Study the Relationship between SAT-

Or, is there a difference between

 Study two state-of-the-art algorithms: ICE and IC3
* In other words: can we describe IC3 as an instance of ICE?

] UNIVERSITY OF
WATERLOO

63

Reachability Analysis

] UNIVERSITY OF
WATERLOO

64

Reachability Analysis

Computing states reachable from a set of states S using the post operator

post®(S) =S
post'tl = post!(S)u {t|s € SA(s,t) € Tr)

Computing states reaching a set of states S using the pre operator

pre®(S) =S
pret*l = pre!(S) U{t|s € SA(t,s) € Tr}

Transitive closure is denoted by post* and pre*

UNIVERSITY OF

WATERLOO 65

SAT-based Model Checking

Search for a counterexample for a specific length

If a counterexample does not exist, generalize the bounded proof into a
candidate /nv

Check if Inv is a safe inductive invariant

Referred to as White-Box: Rely on a close interaction between the main
algorithm and the decision procedure used

UNIVERSITY OF

WATERLOO

66

SMT-based Model Checking
Generalizing from bounded
LT, N=0
~

proofs
counterexam
ple of length

exists? .
y - sasafe
inductive
No + bounded . . Y—ES>
variant?
—proof y
Generalize 1
proof .
. candidat
N 7 e Iny

%) WATERLOO 67

-

Yes No, N:=N+1

-

Machine Learning-based Invariant Synthesis

MLIS consists of two entities: Teacher and Learner

Learner comes up with a candidate /nv
e Agnostic of the transition system

e Using machine learning techniques

Learner asks the Teacher if /nv is a safe inductive invariant

If not, Teacher replies with a witness: positive or negative

e Aware of the transition system

Referred to as Black-Box

UNIVERSITY OF

WATERLOO

68

Machine Learning-based Invariant Synthesis

-
/<JEL Teacher

IIIIIIIIIIII

o

~

4

NO

candidat
e Inv

a witnhess
S

-

o

Learner

~

/

69

Machine Learning-based Invariant Synthesis

p

N

aware of
Tr

~

/<JEL Teacher

IIIIIIIIIIII

o

~

4

NO

candidat
e Inv

a
witnhess

-

not

aware of

Tr

-

o

Learner

|

~

/

\

70

ICE: MLIS Framework (Garg et al. CAV
2014)

Given a transition system T=(INIT, Tr, Bad) and a candidate Inv generated by
the Learner

When the Teacher determines Inv is not a safe inductive invariant, a witness is
returned:

e E-example: s € post®(INIT) but s & Inv

e C-example: s € pre*(Bad) and s € Inv

e |-example: (s,t) € T such thats € Invbutt & Inv

Given a set of states S, the triple (E, C, 1) is an ICE state
e EFCS,CES,IE€SxS

A set J € Sis consistent with ICE state iff

eEC)Jand)JnC=0
e for(s,t) €EIl,ifs€Jthent €

UNIVERSITY OF

WATERLOO 71

ICE (Garg et al. CAV
2014)

Input: A transition system T' = (V, Init, Tr, Bad)
(Q < 0 LEARNER(T) ; TEACHER(T);

repeat

J < LEARNER.SYNCANDIDATE(Q);

e < TEACHER.ISIND(J);

if ¢ = 1 then return SAFE;

Q + QU {e};

until oo;

IIIIIIIIIIII

%) WATERLOO 72

ICE

Input: A transition system T = (V,

@ < 0 LEARNER(T) ; TEACHER(T):

repeat

e < TEACHER.ISIND(J);
if ¢ = 1 then return|SAFE;

Q < QU {e};

until oo;

ner
passive - has

no control over
“ the Teacher

IIIIIIIIIIII

(Garg et al. CAV

2014)

f

J < LEARNER.SYNCANDIDATE(Q):

o

[o)

requirement

or

~

J must be

consistent with

Q

/

73

PDR/IC3 — SAT Queries

Trace [F,,...,Fy], and Q € pre*(Bad), a states € Q N F;,,

Strengthening
e (FFA-S)ATAS
e is(FFA-s)AT > -5’ valid?

If this is satisfiable then there exists a state t in F, that can reach Bad

e This looks like a C-example
In order to "fix” F, t must be removed

Now check
e (FiA-t)ATAY

UNIVERSITY OF

WATERLOO

74

PDR/IC3 — SAT Queries

Trace [Fy,...,Fy], try to push alemmac€F, toF,,
Pushing

e (FAC)ATA-C

e is(FFAC)AT—> ¢ valid?

If this is satisfiable then there exists a pair (s,t) ETs.t.s€F, andt & F,,
e |t looks like an I-example

— Also, can be either an E- or C-example

In order to “fix” F, either s is removed from F, or t is added to it

e Strengthening vs Weakening

UNIVERSITY OF

WATERLOO

75

The Problem

IC3 reasons about relative induction

F is inductive relative to G when:
e INIT —F, and
e G(V)AFV)ATV,V)— F(V)

But, in ICE, the Learner (Teacher) asks (answers) about induction

and, the Learner in ICE is passive
e cannot control the Teacher in any way

e No guarantee for incrementality

UNIVERSITY OF

WATERLOO 76

RICE - ICE + Relative Induction

Input: A transition system T = (V, Ingta|iBivsi8hd)
Q<+ 0; | .
LEARNER(T) ; TEACHER(T); have some
repeat control over |
(F,G) < LEARNER.SYNCANDANDBRJIEACHE

e + TEACHER.ISRELIND(F, G);

if ¢ = L A G = true then return SAFE;

Q «— QU {e};

until oco;

Learner to

When G is true\

it is a regular
............ inductive check

%) WATERLOO 77

RICE - ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction
The Learner can “manipulate” the Teacher using relative induction

RICE is a generalization of ICE where the Learner is an active learning
algorithm

UNIVERSITY OF

WATERLOO

78

RICE - ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction
Is F inductive relative to G?

If not, a witness is returned:
e E-example: s € post*(INIT) but s € F’
e C-example: s € pre*(Bad) ands € F

e |-example: (s,t) ETsuchthatse FAGbutt&F

UNIVERSITY OF

WATERLOO

79

IC3 AS AN INSTANCE OF RICE

IIIIIIIIIIII

80

IC3 Learner

The IC3 Learner is active and incremental

Maintains the following:
e atrace [Fy, ..., F\] of candidates
e RICE state Q=(E, C, |)

The Learner must be consistent with the RICE state

E-examples and C-examples may exist when F is inductive relative to G

e The Teacher may return an E-example or C-example when F is inductive relative to G

%) WATERLOO

81

IC3 Learner - Strengthening

INIT — F, and
G(V) AF(V) AT(V,V') = F(V’)

Strengthening:
e a C-example sinF,
* (FA-sA-C(Q)ATA(sVC(Q))

E-example: a

cex exists
C is(=s A =C(Q)) c o
inductive relative ~Example:
add to Q

_ to Fi? Y,

l-example:
treat like C-

%) WATERLOO 32

IC3 Learner - Pushing

INIT — F, and
G(V) AFR(V) AT(V,V') = F(V’)

Pushing:
e alemmacinF,
* (FFACA-C(Q)AF) ATA(-cV C(Q)V -Fi,)

do not push
and add to

~ is(cA-=C(Q)A
F..1) inductive
. relativeto F;?

do not push
and add to

do not push
and add to

Q

IIIIIIIIIIII

E- and C-
IC3 Learner - Pushing

examples
may exist
even when
Pushing: relative

e alemmacinF induction
* (RACA-C(Q) AFi) ATA(-cVC(Q)V =Fi,q) yolds

do not push
and add to

is (c A =C(Q) A
F..1) inductive
relative to F;?

do not push
and add to

do not push
and add to

Q

IIIIIIIIIIII

84

IC3 Teacher

Using a general Teacher, the described Learner computes a trace [F, ..., Fy]
such that

e post*(INIT) - F, > -pre*(Bad)
Generic Teacher is infeasible
e required to look arbitrary far into the future (for E-examples)

e required to look arbitrary far into the past (for C-examples)

Solution: add restrictions on E- and C-examples

UNIVERSITY OF

WATERLOO

85

IC3 Teacher

Is F inductive relative to G?

If not, a witness is returned:
e C-example: s € pre™(Bad) and s € F
e |-example: (s,t) ETsuchthats€e FAGbutt&F
e E-example: s € posto(INIT) but s & F

Claim: Using this IC3 Teacher and the IC3 Learner results in an algorithm
that behaves like (simulates) IC3

UNIVERSITY OF

WATERLOO

86

What Can We Learn?

Can we lift the restriction that requires E-example to be in INIT only?

e Yes, a variant of IC3, called Quip, does that

There is no “real” weakening mechanism in IC3

e Future work...

Can we introduce other active Learners for MLIS?

UNIVERSITY OF

WATERLOO

87

Conclusions

An extension of ICE to RICE

e Taking ques from IC3: incrementality, active Learner

e Overcomes a deficiency in ICE

|IC3 can benefit from (R)ICE

e Weakening, E-examples, ...

%) WATERLOO

CHC-COMP: CHC Solving Competition

First edition on July 13, 2018 at HVCS@FLO

Constrained Horn Clauses (CHC) is a fragment of First Order Logic (FOL) that is
sufficiently expressive to describe many verification, inference, and synthesis
problems including inductive invariant inference, model checking of safety
properties, inference of procedure summaries, regression verification, and
sequential equivalence. The CHC competition (CHC-COMP) will compare state-
of-the-art tools for CHC solving with respect to performance and effectiveness
on a set of publicly available benchmarks. The winners among participating
solvers are recognized by measuring the number of correctly solved

benchmarks as well as the runtime.

WATERLOO 89

Web: https://chc-comp.github.io/

Gitter: https://gitter.im/chc-comp/Lobby

GitHub: https://github.com/chc-comp

Format: https://chc-comp.github.io/2018/format.html

https://gitter.im/chc-comp/Lobby
https://github.com/chc-comp

