# Constrained Horn Clauses (CHC) over Linear Integer Arithmetic (LIA)

Automated Program Verification (APV) Fall 2018

Prof. Arie Gurfinkel



# CONSTRAINED HORN CLAUSES



# **Precise Logic-based Program Verification**

## Low-Level Bounded Model Checking (BMC)

- decide whether a low level program/circuit has an execution of a given length that violates a safety property
- effective decision procedure via encoding to propositional SAT

## High-Level (Word-Level) Bounded Model Checking

- decide whether a program has an execution of a given length that violates a safety property
- efficient decision procedure via encoding to SMT

## What is an SMT-like equivalent for Safety Verification?

- Logic: SMT-Constrained Horn Clauses
- Decision Procedure: Spacer / GPDR
  - extend IC3/PDR algorithms from Hardware Model Checking



# **Constrained Horn Clauses (CHCs)**

A Constrained Horn Clause (CHC) is a FOL formula

$$\forall V \cdot (\varphi \wedge p_1[X_1] \wedge \cdots \wedge p_n[X_n]) \rightarrow h[X]$$

## where

- ullet  $\mathcal T$  is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- V are variables, and X<sub>i</sub> are terms over V
- ullet  $\varphi$  is a constraint in the background theory  ${\mathcal T}$
- $p_1$ , ...,  $p_n$ , h are n-ary predicates
- $p_i[X]$  is an application of a predicate to first-order terms



# **CHC Satisfiability**

A  $\mathcal{T}$ -model of a set of a CHCs  $\Pi$  is an extension of the model M of  $\mathcal{T}$  with a first-order interpretation of each predicate  $p_i$  that makes all clauses in  $\Pi$  true in M

A set of clauses is **satisfiable** if and only if it has a model

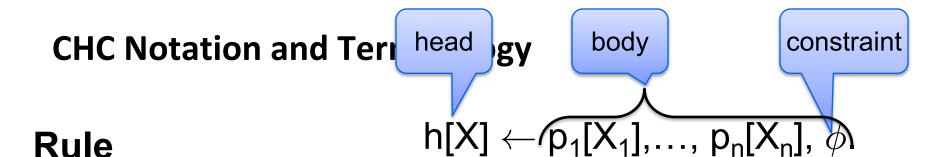
This is the usual FOL satisfiability

A  $\mathcal{T}$ -solution of a set of CHCs  $\Pi$  is a substitution  $\sigma$  from predicates  $p_i$  to  $\mathcal{T}$ formulas such that  $\Pi \sigma$  is  $\mathcal{T}$ -valid

In the context of program verification

- a program satisfies a property iff corresponding CHCs are satisfiable
- solutions are inductive invariants
- refutation proofs are counterexample traces





Query

false  $\leftarrow p_1[X_1], \dots, p_n[X_n], \phi$ .

**Fact** 

 $h[X] \leftarrow \phi$ .

**Linear CHC** 

 $h[X] \leftarrow p[X_1], \phi.$ 

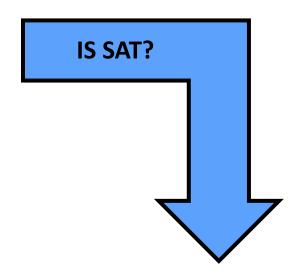
**Non-Linear CHC** 

$$h[X] \leftarrow p_1[X_1], ..., p_n[X_n], \phi.$$
for  $n > 1$ 



# **Program Verification with HORN(LIA)**

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```



## In SMT-LIB

```
(set-logic HORN)
;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (> B 0) (= C A) (= D 0))
            (Inv A B C D)))
 )
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )
          (and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D))
1)))
          (Inv A B C1 D1)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
            false
(check-sat)
(get-model)
```

```
Inv(x, y, z, i)
z = x + i
z <= x + y</pre>
```



# **Horn Clauses for Program Verification**

 $e_{out}(x_0, \mathbf{w}, e_o)$ , which is an energy point into successor edges. with the edges are formulated as follows:

$$p_{init}(x_0, \boldsymbol{w}, \perp) \leftarrow x = x_0$$
 where  $x$  occurs in  $\boldsymbol{w}$   
 $p_{exit}(x_0, ret, \top) \leftarrow \ell(x_0, \boldsymbol{w}, \top)$  for each label  $\ell$ , and  $re$   
 $p(x, ret, \perp, \perp) \leftarrow p_{exit}(x, ret, \perp)$   
 $p(x, ret, \perp, \top) \leftarrow p_{exit}(x, ret, \top)$   
 $\ell_{ext}(x_0, \boldsymbol{w}', e_0) \leftarrow \ell_{in}(x_0, \boldsymbol{w}, e_i) \land \neg e_i \land \neg wlv(S, \neg(e_i = x_0))$ 

5. incorrect :- Z=W+1, W>0, W+1 <read(A, W, U), read(A, Z)

6. 
$$p(I1, N, B) := 1 \le I$$
,  $I < N$ ,  $D = I - 1$ ,  $I1 = I + 1$ .  $V = U + 1$  read(A, D, U), write(A To translate a procedure c

7. p(I, N, A) := I = 1, N > 1.

De Angelis et al. Verifying Array Programs by Transforming Verification Conditions. VMCAI'14

Weakest Preconditions If we apply Boogie directly we obtain a translation from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

$$\begin{aligned} \operatorname{ToHorn}(\operatorname{program}) &:= \operatorname{wlp}(\operatorname{Main}(), \top) \wedge \bigwedge_{\operatorname{decl} \in \operatorname{program}} \operatorname{ToHorn}(\operatorname{decl}) \\ \operatorname{ToHorn}(\operatorname{def}\ p(x)\ \{S\}) &:= \operatorname{wlp}\left( \underset{\mathbf{assume}}{\operatorname{havoc}}\ x_0; \underset{\mathbf{assume}}{\operatorname{assume}}\ x_0 = x; \\ \underset{\mathbf{assume}}{\operatorname{ppre}}(x); S, & p(x_0, \operatorname{ret}) \right) \\ wlp(x &:= E, Q) &:= \operatorname{let}\ x = E \ \operatorname{in}\ Q \\ wlp((\operatorname{if}\ E \ \operatorname{then}\ S_1 \ \operatorname{else}\ S_2), Q) &:= \operatorname{wlp}(((\operatorname{assume}\ E; S_1) \square (\operatorname{assume}\ \neg E; S_2)), Q) \\ wlp((S_1\square S_2), Q) &:= \operatorname{wlp}(S_1, Q) \wedge \operatorname{wlp}(S_2, Q) \\ wlp(S_1; S_2, Q) &:= \operatorname{wlp}(S_1, \operatorname{wlp}(S_2, Q)) \\ wlp(\operatorname{havoc}\ x, Q) &:= \forall x \cdot Q \\ wlp(\operatorname{assume}\ \varphi, Q) &:= \varphi \wedge Q \\ wlp(\operatorname{assume}\ \varphi, Q) &:= \varphi \to Q \\ wlp((\operatorname{while}\ E \ \operatorname{do}\ S), Q) &:= \operatorname{inv}(w) \wedge \\ \forall w \cdot \begin{pmatrix} ((\operatorname{inv}(w) \wedge E) \ \to \operatorname{wlp}(S, \operatorname{inv}(w))) \\ \wedge ((\operatorname{inv}(w) \wedge \neg E) \ \to Q) \end{pmatrix} \end{aligned}$$

To translate a procedure call  $\ell: y := q(E); \ell'$  within a procedure p, create he clauses:

$$p(\boldsymbol{w}_0, \boldsymbol{w}_4) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2), q(\boldsymbol{w}_2, \boldsymbol{w}_3), return(\boldsymbol{w}_1, \boldsymbol{w}_3, \boldsymbol{w}_4)$$

$$q(\boldsymbol{w}_2, \boldsymbol{w}_2) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2)$$

$$call(\boldsymbol{w}, \boldsymbol{w}') \leftarrow \pi = \ell, x' = E, \pi' = \ell_{q_{init}}$$

$$return(\boldsymbol{w}, \boldsymbol{w}', \boldsymbol{w}'') \leftarrow \pi' = \ell_{q_{exit}}, \boldsymbol{w}'' = \boldsymbol{w}[ret'/y, \ell'/\pi]$$

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification



# Horn Clauses for Concurrent / Distributed / **Parameterized Systems**

For assertions 
$$R_1, \ldots, R_N$$
 over  $V$  and  $E_1, \ldots, E_N$  over  $V, V'$ ,   
 $\operatorname{CM1}: init(V) \longrightarrow R_i(V)$    
 $\operatorname{CM2}: R_i(V) \land \rho_i(V, V') \longrightarrow R_i(V')$    
 $\operatorname{CM3}: (\bigvee_{i \in 1...N \setminus \{j\}} R_i(V) \land \rho_i(V, V')) \longrightarrow E_j(V, V')$    
 $\operatorname{CM4}: R_i(V) \land E_i(V, V') \land \rho_i^{=}(V, V') \longrightarrow R_i(V')$    
 $\operatorname{CM5}: R_1(V) \land \cdots \land R_N(V) \land error(V) \longrightarrow false$    
multi-threaded program  $P$  is safe

Rybalchenko et al. Synthesizing Software Verifiers from Proof Rules, PLDI'12

 $Inv(g, \ell^{\dagger}, x^{\dagger}, \ell_2, x_2, \dots, \ell_k, x_k) \wedge$ 

$$\left\{ R(\mathsf{g},\mathsf{p}_{\sigma(1)},\mathsf{l}_{\sigma(1)},\ldots,\mathsf{p}_{\sigma(k)},\mathsf{l}_{\sigma(k)}) \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge R(\mathsf{g},\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \right\}_{\sigma \in S_k} \tag{6}$$

$$R(\mathsf{g},\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge Init(\mathsf{g},\mathsf{l}_1) \wedge \cdots \wedge Init(\mathsf{g},\mathsf{l}_k) \tag{7}$$

$$R(\mathsf{g}',\mathsf{p}_1,\mathsf{l}_1',\ldots,\mathsf{p}_k,\mathsf{l}_k) \leftarrow \mathit{dist}(\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge \left( (\mathsf{g},\mathsf{l}_1) \overset{\mathsf{p}_1}{\rightarrow} (\mathsf{g}',\mathsf{l}_1') \right) \wedge R(\mathsf{g},\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \tag{8}$$

$$R(\mathsf{g}',\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \leftarrow \mathit{dist}(\mathsf{p}_0,\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge \left( (\mathsf{g},\mathsf{l}_0) \xrightarrow{\mathsf{p}_0} (\mathsf{g}',\mathsf{l}'_0) \right) \wedge RConj(0,\ldots,k) \tag{9}$$

$$false \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_r) \land \left(\bigwedge_{j=1,\ldots,m} (\mathsf{p}_j = p_j \land (\mathsf{g},\mathsf{l}_j) \in E_j)\right) \land RConj(1,\ldots,r) \tag{10}$$

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invariant.  $S_k$  is the symmetric group on  $\{1,\ldots,k\}$ , i.e., the group of all permutations of k numbers; as an optimisation, any generating subset of  $S_k$ , for instance transpositions, can be used instead of  $S_k$ . In (10), we define  $r = \max\{m, k\}$ .

Hojjat et al. Horn Clauses for Communicating Timed Systems. HCVS'14

 $Init(i,j,\overline{v}) \wedge Init(j,i,\overline{v}) \wedge$ 

$$Init(i,i,\overline{v}) \wedge Init(j,j,\overline{v}) \Rightarrow I_{2}(i,j,\overline{v})$$

$$I_{2}(i,j,\overline{v}) \wedge Tr(i,\overline{v},\overline{v}') \Rightarrow I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge Tr(i,\overline{v},\overline{v}') \Rightarrow I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge I_{2}(i,k,\overline{v}) \wedge I_{2}(j,k,\overline{v}) \wedge I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge I_{2}(i,j,\overline{v}') \wedge I_{2}(i,j,\overline{v}') \wedge I_{2}(i,j,\overline{v}')$$

$$I_{2}(i,j,\overline{v}) \wedge I_{2}(i,j,\overline{v}') \wedge$$

Figure 3:  $VC_2(T)$  for two-quantifier invariants.

**Figure 6.** Horn clause encoding for thread modularity at level k (where  $(\ell_i, s, \ell'_i)$  and  $(\ell^{\dagger}, s, \cdot)$  refer to statement s on at from  $\ell_i$  to  $\ell'_i$  and, respectively, from  $\ell^{\dagger}$  to some other location in the control flow graph)

 $Inv(q, \ell_1, x_1, \dots, \ell_k, x_k) \wedge err(q, \ell_1, x_1, \dots, \ell_m, x_m) \rightarrow false$ 

 $Inv(g, \ell_1, x_1, \dots, \ell_{k-1}, x_{k-1}, \ell^{\dagger}, x^{\dagger}) \wedge s(g, x^{\dagger}, g', \cdot) \rightarrow Inv(g', \ell_1, x_1, \dots, \ell_k, x_k)$ 

(non-interference)  $Inv(g, \ell_1, x_1, \dots, \ell_k, x_k) \wedge$ 

(initial)

(safe)

(inductive)

Hoenicke et al. Thread Modularity at Many Levels. POPL'17

Gurfinkel et al. SMT-Based Verification of Parameterized Systems. FSE 2016



# SOLVING CONSTRAINED HORN CLAUSES



## A Magician's Guide to Solving Undecidable Problems

Develop a procedure *P* for a decidable problem

Show that *P* is a decision procedure for the problem

• e.g., model checking of finite-state systems

#### Choose one of

- Always terminate with some answer (over-approximation)
- Always make useful progress (under-approximation)



Extend procedure P to procedure Q that "solves" the undecidable problem

- Ensure that Q is still a decision procedure whenever P is
- Ensure that Q either always terminates or makes progress



# **Procedures for Solving CHC(T)**

Predicate abstraction by lifting Model Checking to HORN

• QARMC, Eldarica, ...

Maximal Inductive Subset from a finite Candidate space (Houdini)

• TACAS'18: hoice, FreqHorn

Machine Learning

• PLDI'18: sample, ML to guess predicates, DT to guess combinations

Abstract Interpretation (Poly, intervals, boxes, arrays...)

• Approximate least model by an abstract domain (SeaHorn, ...)

Interpolation-based Model Checking

• Duality, QARMC, ...

SMT-based Unbounded Model Checking (IC3/PDR)

• Spacer, Implicit Predicate Abstraction



# **Linear CHC Satisfiability**

Satisfiability of a set of linear CHCs is reducible to satisfiability of THREE clauses of the form

$$Init(X) \to P(X)$$

$$P(X) \land Tr(X, X') \to P(X')$$

$$P(X) \to \neg Bad(X)$$

where,  $X' = \{x' \mid x \in X\}$ , P a fresh predicate, and *Init*, *Bad*, and *Tr* are constraints

#### **Proof**:

add extra arguments to distinguish between predicates

$$Q(y) \land \phi \rightarrow W(y, z)$$

$$P(id='Q', y) \land \phi \rightarrow P(id='W', y, z)$$



# IC3, PDR, and Friends (1)

#### IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

## PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

## PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

- A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS 2014
- J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014



# IC3, PDR, and Friends (2)

#### **GPDR: Non-Linear CHC with Arithmetic constraints**

- Generalized Property Directed Reachability
- K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

#### **SPACER: Non-Linear CHC with Arithmetic**

- fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
- A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

## **PolyPDR: Convex models for Linear CHC**

- simulating Numeric Abstract Interpretation with PDR
- N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

## **ArrayPDR: CHC with constraints over Airthmetic + Arrays**

- Required to model heap manipulating programs
- A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015



# IC3, PDR, and Friends (3)

## Quip: Forward Reachable States + Conjectures

- Use both forward and backward reachability information
- A. Gurfinkel and A. Ivrii: Pushing to the Top. FMCAD 2015

## Avy: Interpolation with IC3

- Use SAT-solver for blocking, IC3 for pushing
- Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014

## uPDR: Constraints in EPR fragment of FOL

- Universally quantified inductive invariants (or their absence)
- A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-Directed Inference of Universal Invariants or Proving Their Absence. CAV 2015

## Quic3: Universally quantified invariants for LIA + Arrays

- Extending Spacer with quantified reasoning
- A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018



## **Spacer: Solving SMT-constrained CHC**

## Spacer: a solver for SMT-constrained Horn Clauses

- now the default (and only) CHC solver in Z3
  - https://github.com/Z3Prover/z3
  - dev branch at https://github.com/agurfinkel/z3

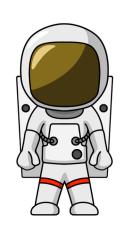
## **Supported SMT-Theories**

- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic
- Best-effort support for many other SMT-theories
  - data-structures, bit-vectors, non-linear arithmetic

## Support for Non-Linear CHC

- for procedure summaries in inter-procedural verification conditions
- for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.





# **IC3/PDR: Solving Linear (Propositional) CHC**

#### **Unreachable and Reachable**

• terminate the algorithm when a solution is found

#### **Unfold**

increase search bound by 1

#### Candidate

choose a bad state in the last frame

#### **Decide**

- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. (s  $\land$   $F_i \land$  Tr  $\land$  cex') is SAT

#### Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t.  $L \Rightarrow \neg cex$ , Init  $\Rightarrow L$ , and  $L \land F_i \land Tr \Rightarrow L'$

#### Induction

propagate a lemma as far into the future as possible



# From Propositional PDR to Solving CHC

## Theories with infinitely many models

- infinitely many satisfying assignments
- can't simply enumerate (when computing predecessor)
- can't block one assignment at a time (when blocking)

#### Non-Linear Horn Clauses

multiple predecessors (when computing predecessors)

The problem is undecidable in general, but we want an algorithm that makes progress

- doesn't get stuck in a decidable sub-problem
- guaranteed to find a counterexample (if it exists)



# IC3/PDR: Solving Linear (Propositional) CHC

#### **Unreachable and Reachable**

• terminate the algorithm when a solution is found

#### **Unfold**

increase search bound by 1

#### Candidate

choose a bad state in the last frame

## Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. (s  $\land$  R<sub>i</sub>  $\land$  Tr  $\land$  cex') is SAT

#### Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t.  $L \Rightarrow \neg cex$ , Init  $\Rightarrow L$ , and  $L \land R_i \land Tr \Rightarrow L'$

#### Induction

propagate a lemma as far into the future as possible

₩ พันฟ์ เลี้ยง ally) strengthen by dropping literals

Theory dependent

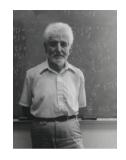
$$((F_i \land Tr) \lor Init') \Rightarrow \varphi'$$
$$\varphi' \Rightarrow \neg c'$$

Looking for φ'

# ARITHMETIC CONFLICT



# **Craig Interpolation Theorem**



**Theorem** (Craig 1957)

Let A and B be two First Order (FO) formulae such that A  $\Rightarrow \neg$ B, then there exists a FO formula I, denoted ITP(A, B), such that

$$A \Rightarrow I \qquad I \Rightarrow \neg B$$

$$\Sigma(I) \in \Sigma(A) \cap \Sigma(B)$$

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of  $A \land B$ 

In Model Checking, Craig Interpolation Theorem is used to safely overapproximate the set of (finitely) reachable states



# **Examples of Craig Interpolation for Theories**

## **Boolean logic**

$$A = (\neg b \land (\neg a \lor b \lor c) \land a)$$

$$B = (\neg a \lor \neg c)$$

$$ITP(A, B) = a \wedge c$$

## **Equality with Uniterpreted Functions (EUF)**

$$A = (f(a) = b \land p(f(a)))$$

$$B = (b = c \land \neg p(c))$$

$$ITP(A, B) = p(b)$$

## **Linear Real Arithmetic (LRA)**

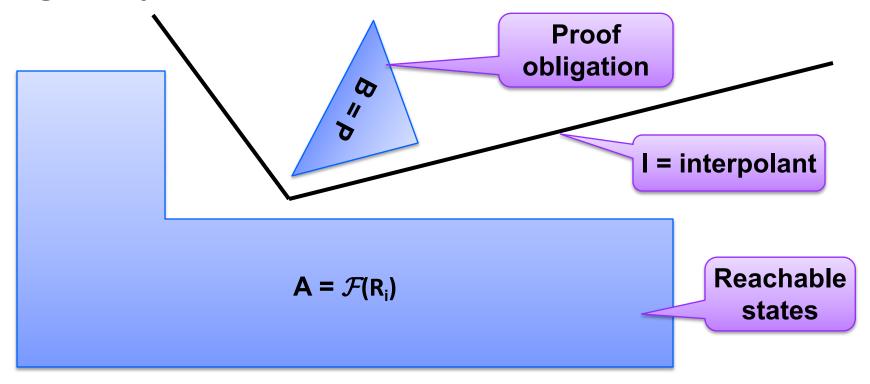
$$A = (z + x + y > 10 \land z < 5)$$

$$B = (x < -5 \land y < -3)$$

$$ITP(A, B) = x + y > 5$$



# **Craig Interpolation for Linear Arithmetic**



Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in ITP (A, B)$  then  $\neg I \in ITP (B, A)$
- if A is syntactically convex (a monomial), then I is convex
- if B is syntactically convex, then I is co-convex (a clause)
- if A and B are syntactically convex, then I is a half-space



## **Arithmetic Conflict**

Notation:  $\mathcal{F}(A) = (A(X) \land Tr) \lor Init(X')$ .

**Conflict** For  $0 \le i < N$ , given a counterexample  $\langle P, i+1 \rangle \in Q$  s.t.  $\mathcal{F}(F_i) \wedge P'$  is unsatisfiable, add  $P^{\uparrow} = \text{ITP}(\mathcal{F}(F_i), P')$  to  $F_j$  for  $j \le i+1$ .

## Counterexample is blocked using Craig Interpolation

summarizes the reason why the counterexample cannot be extended

#### Generalization is not inductive

- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem





# **Computing Interpolants for IC3/PDR**

Much simpler than general interpolation problem for A  $\wedge$  B

- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver

- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form  $(\Lambda B_i \Rightarrow V A_i)$

## Interpolating (UNSAT) Cores

- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations



## **Farkas Lemma**

Let M =  $t_1 \ge b_1 \land ... \land t_n \ge b_n$ , where  $t_i$  are linear terms and  $b_i$  are constants

M is *unsatisfiable* iff  $0 \ge 1$  is derivable from M by resolution

M is *unsatisfiable* iff  $M \vdash 0 \ge 1$ 

• e.g., 
$$x + y > 10$$
,  $-x > 5$ ,  $-y > 3 \vdash (x+y-x-y) > (10 + 5 + 3) \vdash 0 > 18$ 

M is unsatisfiable iff there exist Farkas coefficients  $g_1, \ldots, g_n$  such that

- $g_i \geq 0$
- $g_1 \times t_1 + ... + g_n \times t_n = 0$
- $g_1 \times b_1 + \dots + g_n \times b_n \ge 1$



# Frakas Lemma Example

## **Interpolants**

$$\begin{vmatrix}
z + x + y > 10 & \times 1 \\
-z > -5 & \times 1
\end{vmatrix}$$

$$x + y > 5$$

$$x + y < -8$$



# **Interpolation for Linear Real Arithmetic**

Let  $M = A \wedge B$  be UNSAT, where

- A =  $t_1 \ge b_1 \land ... \land t_i \ge b_i$ , and
- B =  $t_{i+1} \ge b_i \wedge ... \wedge t_n \ge b_n$

Let  $g_1, ..., g_n$  be the Farkas coefficients witnessing UNSAT

#### Then

- $g_1 \times (t_1 \ge b_1) + ... + g_i \times (t_i \ge b_i)$  is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n)$  is an interpolant between B and A
- $g_1 \times t_1 + ... + g_i \times t_i = (g_{i+1} \times t_{i+1} + ... + g_n \times t_n)$
- $\neg (g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n))$  is an interpolant between A and B



# **Program Verification with HORN(LIA)**

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

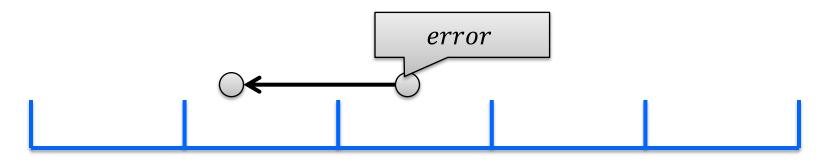
Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```





## **Lemma Generation Example**



## **Transition Relation**

$$x = x_0 \land z = z_0 + 1 \land i = i_0 + 1 \land y > i_0$$

$$i >= y \wedge x + y > z$$

Farkas explanation for unsat

$$x_0 + y_0 \le z_0, x \le x_0, z_0 \le z, i \le i_0 + 1$$
  $i >= y, x+y > z$   
 $x + i \le z$   $x + i > z$ 

false



Learn lemma:



## **Interpolation Problem in Spacer**

Given an arbitrary LRA formula A and a conjunction of literals s such that A  $\wedge$  s are UNSAT, compute an interpolant I such that

•  $s \Rightarrow I$   $I \land A \Rightarrow FALSE$  I is over symbols common to s and A

Use an SMT solver to decide that s  $\Lambda$  A are UNSAT

• SMT solver uses LRA theory lemmas (called Farkas Theory Lemmas) of the form:

$$\neg ((s_1 \land ... \land s_k) \land (a_1 \land ... \land a_m))$$

where s<sub>i</sub> are literals from s and a<sub>i</sub> are literals from A

- For each such lemma  $L_i$ ,  $((s_1 \land ... \land s_k) \land (a_1 \land ... \land a_m)$  is UNSAT
- Let t<sub>i</sub> be an interpolant corresponding to L<sub>i</sub>

Then, an interpolant between s and A is a clause of the form

 $(\neg t_1 \lor ... \lor \neg t_k)$  with one literal per each theory lemma

 in practice, interpolation is optimized by examining and restructuring SMT resolution proof, dealing with Boolean reasoning, and global optimization



## **Computing Interpolants in Spacer**

Much simpler than general interpolation problem for A  $\wedge$  B

- B is always a conjunction of literals
- A is dynamically split into DNF by the SMT solver
- DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T) proof produced by the solver

- every theory-lemma that mixes B-pure literals with other literals is interpolated to produce a single literal in the final solution
- interpolation is restricted to clauses of the form  $(AB_i \Rightarrow VA_i)$

## Interpolating (UNSAT) Cores

- improve interpolation algorithms and definitions to the specific case of PDR
- classical interpolation focuses on eliminating non-shared literals
- in PDR, the focus is on finding good generalizations



$$s \subseteq pre(c)$$
  
 $s \Rightarrow \exists X' . Tr \land c'$ 

Computing a predecessor  $\boldsymbol{s}$  of a counterexample  $\boldsymbol{c}$ 

# **ARITHMETIC DECIDE**



# **Model Based Projection**

**Definition:** Let  $\phi$  be a formula, U a set of variables, and M a model of  $\phi$ . Then  $\psi$  = MBP (U, M,  $\phi$ ) is a Model Based Projection of U, M and  $\phi$  iff

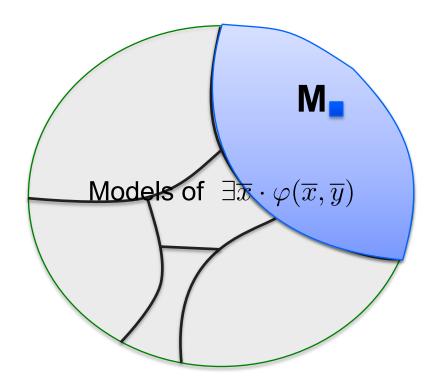
- 1.  $\psi$  is a monomial
- 2.  $Vars(\psi) \subseteq Vars(\phi) \setminus U$
- 3. M  $\models \psi$
- 4.  $\psi \Rightarrow \exists U. \varphi$

Model Based Projection under-approximates existential quantifier elimination relative to a given model (i.e., satisfying assignment)



## **Model Based Projection**

Expensive to find a quantifier-free  $\psi(\overline{y}) \equiv \exists \overline{x} \cdot \varphi(\overline{x}, \overline{y})$ 



1. Find model M of  $\phi$  (x,y)

2. Compute a partition containing M



### **Quantifier Elimination**

A quantifier elimination is a procedure that takes a formula of the form  $\exists x \psi(x)$  and returns an equivalent formula  $\varphi$  without existential quantifier and without the variable x

• QELIM( $\exists x \psi(x)$ ) =  $\varphi$  and  $\exists x \psi(x) \Leftrightarrow \varphi$ 

Quantifier elimination in propositional logic

• QELIM( $\exists x \psi(x)$ ) =  $\psi(TRUE) \lor \psi(FALSE)$ 

Many theories support quantifier elimination (e.g., linear arithmetic)

- but not all
- No quantifier elimination for EUF, e.g.,  $(\exists x \ f(x) \neq g(x))$  cannot be expressed without the existential quantifier

Quantifier elimination is usually expensive

• e.g., propositional qelim is exponential in the number of variables quantified



### Loos-Weispfenning Quantifier Elimination for LRA

φ is LRA formula in Negation Normal Form

E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms

There are no other occurrences of x in  $\phi[x]$ 

$$\exists x. \varphi[x] \equiv \varphi[\infty] \vee \bigvee_{x=t \in E} \varphi[t] \vee \bigvee_{x < t \in U} \varphi[t - \epsilon]$$

where

$$(x < t')[t - \epsilon] \equiv t \le t'$$
  $(s < x)[t - \epsilon] \equiv s < t$   $(x = e)[t - \epsilon] \equiv false$ 

The case of lower bounds is dual

• using  $-\infty$  and  $t+\epsilon$ 



### Fourier-Motzkin Quantifier Elimination for LRA

$$\exists x \cdot \bigwedge_{i} s_{i} < x \wedge \bigwedge_{j} x < t_{j}$$

$$= \bigwedge_{i} \bigwedge_{j} resolve(s_{i} < x, x < t_{j}, x)$$

$$= \bigwedge_{i} \bigwedge_{j} s_{i} < t_{j}$$

Quadratic increase in the formula size per each eliminated variable



### **Quantifier Elimination with Assumptions**

$$\left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \exists x \cdot \bigwedge_i s_i < x \wedge \bigwedge_j x < t_j$$

$$= \left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \bigwedge_i resolve(s_i < x, x < t_0, x)$$

$$= \left(\bigwedge_{j\neq 0} t_0 \leq t_j\right) \wedge \bigwedge_i s_i < t_0$$

Quantifier elimination is simplified by a choice of a minimal upper bound

- For each choice of minimal upper bound, no increase in term size
- Dually, can use largest lower bound

How to chose an the assumptions?!

MBP == use the order chosen by the model



### **MBP for Linear Rational Arithmetic**

#### Compute a single disjunct from LW-QE that includes the model

Use the Model to uniquely pick a substitution term for x

$$Mbp_x(M, x = s \land L) = L[x \leftarrow s]$$

$$Mbp_x(M, x \neq s \land L) = Mbp_x(M, s < x \land L) \text{ if } M(x) > M(s)$$

$$Mbp_x(M, x \neq s \land L) = Mbp_x(M, -s < -x \land L) \text{ if } M(x) < M(s)$$

$$Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \le t_j \text{ where } M(t_0) \le M(t_i), \forall i$$

#### MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types



### **Arithmetic Decide**

Notation:  $\mathcal{F}(A) = (A(X) \land Tr(X, X') \lor Init(X').$ 

**Decide** If  $\langle P, i+1 \rangle \in Q$  and there is a model m(X, X') s.t.  $m \models \mathcal{F}(F_i) \wedge P'$ , add  $\langle P_{\downarrow}, i \rangle$  to Q, where  $P_{\downarrow} = \text{MBP}(X', m, \mathcal{F}(F_i) \wedge P')$ .

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite

• finitely many possible predecessors when all other arguments are fixed

#### Alternatively

- Completeness can follow from an interaction of Decide and Conflict
  - but requires more rules to propagate implicants backward (as in PDR) and forward (as in Spacer and Quip)



# PolyPDR: Solving CHC(LRA)

#### **Unreachable and Reachable**

• terminate the algorithm when a solution is found

#### **Unfold**

increase search bound by 1

#### Candidate

choose a bad state in the last frame

#### **Decide**

- extend a cex (backward) consistent with the current frame
- find a model **M** of **s** s.t.  $(F_i \land Tr \land cex')$ , and let **s** = MBP(X',  $F_i \land Tr \land cex')$

#### Conflict

- construct a lemma to explain why cex cannot be extended
- Find an interpolant L s.t.  $L \Rightarrow \neg cex$ , Init  $\Rightarrow L$ , and  $F_i \land Tr \Rightarrow L'$

#### Induction

propagate a lemma as far into the future as possible



## **Non-Linear CHC Satisfiability**

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to satisfiability of THREE (3) clauses of the form

$$Init(X) \to P(X)$$
 
$$P(X) \land P(X^o) \land Tr(X, X^o, X') \to P(X')$$
 
$$P(X) \to \neg Bad(X)$$

where,  $X' = \{x' \mid x \in X\}$ ,  $X^o = \{x^o \mid x \in X\}$ , P a fresh predicate, and Init, Bad, and Tr are constraints



### **Generalized GPDR**

**Input**: A safety problem  $\langle Init(X), Tr(X, X^o, X'), Bad(X) \rangle$ .

Output: Unreachable or Reachable

**Data**: A cex queue Q, where a cex  $\langle c_0, \ldots, c_k \rangle \in Q$  is a tuple, each  $c_j = \langle m, i \rangle$ , m is a cube over state variables, and  $i \in \mathbb{N}$ . A level  $\overline{N}$ .

A trace  $F_0, F_1, \ldots$ 

**Notation:**  $\mathcal{F}(A,B) = Init(X') \vee (A(X) \wedge B(X^o) \wedge Tr)$ , and

 $\mathcal{F}(A) = \mathcal{F}(A, A)$ 

**Initially:**  $Q = \emptyset$ , N = 0,  $F_0 = Init$ ,  $\forall i > 0 \cdot F_i = \emptyset$ 

**Require:**  $Init \rightarrow \neg Bad$ 

repeat

Unreachable If there is an i < N s.t.  $F_i \subseteq F_{i+1}$  return Unreachable.

**Reachable** if exists  $t \in Q$  s.t. for all  $\langle c, i \rangle \in t$ , i = 0, return Reachable.

**Unfold** If  $F_N \to \neg Bad$ , then set  $N \leftarrow N+1$  and  $Q \leftarrow \emptyset$ .

**Candidate** If for some  $m, m \to F_N \wedge Bad$ , then add  $\langle \langle m, N \rangle \rangle$  to Q.

**Decide** If there is a  $t \in Q$ , with  $c = \langle m, i+1 \rangle \in t$ ,  $m_1 \to m$ ,  $l_0 \wedge m_0^o \wedge m_1^o$  is satisfiable, and  $l_0 \wedge m_0^o \wedge m_1^o \to F_i \wedge F_i^o \wedge Tr \wedge m'$  then add  $\hat{t}$  to Q, where  $\hat{t} = t$  with c replaced by two tuples  $\langle l_0, i \rangle$ , and  $\langle m_0, i \rangle$ .

Conflict If there is a  $t \in Q$  with  $c = \langle m, i+1 \rangle \in t$ , s.t.  $\mathcal{F}(F_i) \wedge m'$  is unsatisfiable. Then, add  $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$  to  $F_j$ , for all  $0 \leq j \leq i+1$ .

**Leaf** If there is  $t \in Q$  with  $c = \langle m, i \rangle \in t$ , 0 < i < N and  $\mathcal{F}(F_{i-1}) \wedge m'$  is unsatisfiable, then add  $\hat{t}$  to Q, where  $\hat{t}$  is t with c replaced by  $\langle m, i+1 \rangle$ .

**Induction** For  $0 \le i < N$  and a clause  $(\varphi \lor \psi) \in F_i$ , if  $\varphi \notin F_{i+1}$ ,  $\mathcal{F}(\phi \land F_i) \to \phi'$ , then add  $\varphi$  to  $F_j$ , for all  $j \le i+1$ .

until  $\infty$ ;

counterexample is a tree

two predecessors

theory-aware **Conflict** 

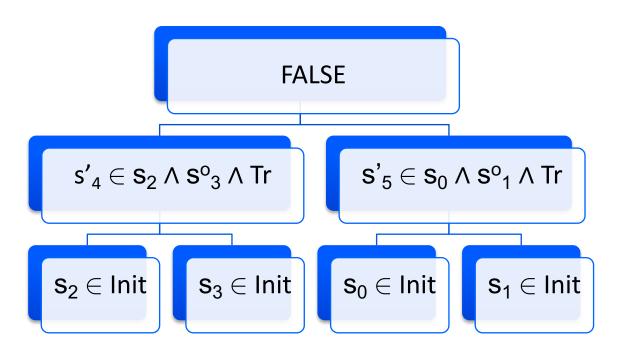


### **Counterexamples to non-linear CHC**

A set S of CHC is unsatisfiable iff S can derive FALSE

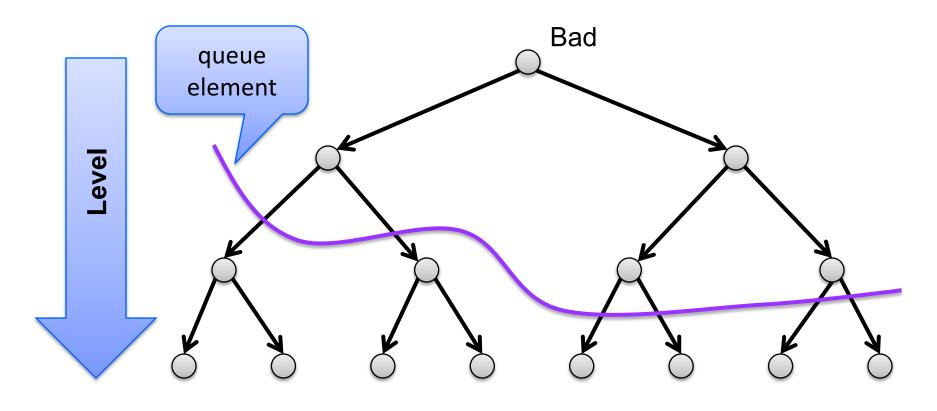
• we call such a derivation a counterexample

For linear CHC, the counterexample is a path For non-linear CHC, the counterexample is a tree





# **GPDR Search Space**



In Decide, one POB in the frontier is chosen and its two children are expanded



## **GPDR: Splitting predecessors**

Consider a clause

$$P(x) \land P(y) \land x > y \land z = x + y \implies P(z)$$

How to compute a predecessor for a proof obligation z > 0

Predecessor over the constraint is:

$$\exists z \cdot x > y \land z = x + y \land z > 0$$
$$= x > y \land x + y > 0$$

Need to create two separate proof obligation

- one for P(x) and one for P(y)
- gpdr solution: split by substituting values from the model (incomplete)



### **GPDR: Deciding predecessors**

**Decide** If there is a  $t \in Q$ , with  $c = \langle m, i+1 \rangle \in t$ ,  $m_1 \to m$ ,  $l_0 \wedge m_0^o \wedge m_1'$  is satisfiable, and  $l_0 \wedge m_0^o \wedge m_1' \to F_i \wedge F_i^o \wedge Tr \wedge m'$  then add  $\hat{t}$  to Q, where  $\hat{t} = t$  with c replaced by two tuples  $\langle l_0, i \rangle$ , and  $\langle m_0, i \rangle$ .

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

• e.g., BFS or DFS exploration order

Number of predecessors is unbounded

• incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

• worst-case exponential for Boolean Push-Down Systems



## **Spacer**

Same queue as in IC3/PDR

Cache Reachable states

Three variants of **Decide** 

Same **Conflict** as in APDR/GPDR

**Input**: A safety problem  $\langle Init(X), Tr(X, X^o, X'), Bad(X) \rangle$ .

Output: Unreachable or Reachable

**Data**: A cex queue Q, where a cex  $c \in Q$  is a pair  $\langle m, i \rangle$ , m is a cube over state variables, and  $i \in \mathbb{N}$ . A level N. A set of reachable states REACH. A trace  $F_0, F_1, \ldots$ 

**Notation:**  $\mathcal{F}(A,B) = Init(X') \vee (A(X) \wedge B(X^o) \wedge Tr)$ , and  $\mathcal{F}(A) = \mathcal{F}(A,A)$ 

Initially:  $Q = \emptyset$ , N = 0,  $F_0 = Init$ ,  $\forall i > 0 \cdot F_i = \emptyset$ , REACH = Init

**Require:**  $Init \rightarrow \neg Bad$ 

repeat

**Unreachable** If there is an i < N s.t.  $F_i \subseteq F_{i+1}$  return *Unreachable*.

**Reachable** If Reach  $\wedge$  Bad is satisfiable, **return** Reachable.

**Unfold** If  $F_N \to \neg Bad$ , then set  $N \leftarrow N+1$  and  $Q \leftarrow \emptyset$ .

**Candidate** If for some  $m, m \to F_N \wedge Bad$ , then add  $\langle m, N \rangle$  to Q.

**Successor** If there is  $\langle m, i+1 \rangle \in Q$  and a model M  $M \models \psi$ , where  $\psi = \mathcal{F}(\forall \text{Reach}) \land m'$ . Then, add s to Reach, where  $s' \in \text{MBP}(\{X, X^o\}, \psi)$ .

**DecideMust** If there is  $\langle m, i+1 \rangle \in Q$ , and a model M  $M \models \psi$ , where  $\psi = \mathcal{F}(F_i, \vee \text{REACH}) \wedge m'$ . Then, add s to Q, where  $s \in \text{MBP}(\{X^o, X'\}, \psi)$ .

**DecideMay** If there is  $\langle m, i+1 \rangle \in Q$  and a model M  $M \models \psi$ , where  $\psi = \mathcal{F}(F_i) \wedge m'$ . Then, add s to Q, where  $s^o \in \mathrm{MBP}(\{X, X'\}, \psi)$ .

Conflict If there is an  $\langle m, i+1 \rangle \in Q$ , s.t.  $\mathcal{F}(F_i) \wedge m'$  is unsatisfiable. Then, add  $\varphi = \text{ITP}(\mathcal{F}(F_i), m')$  to  $F_j$ , for all  $0 \leq j \leq i+1$ .

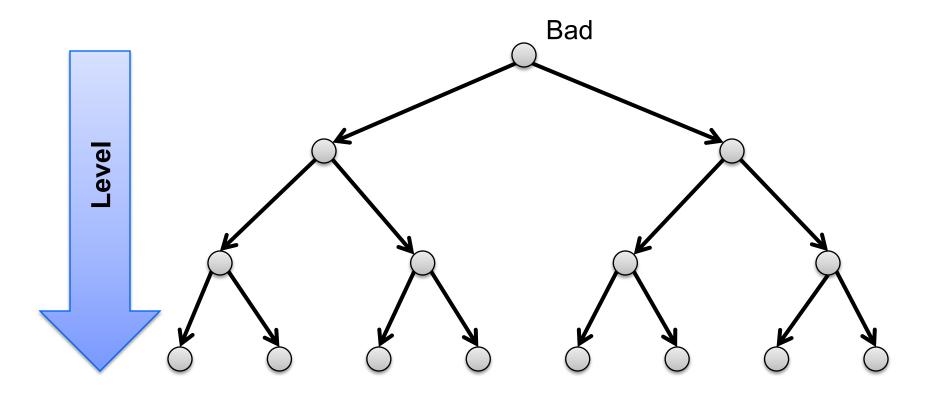
**Leaf** If  $\langle m, i \rangle \in Q$ , 0 < i < N and  $\mathcal{F}(F_{i-1}) \wedge m'$  is unsatisfiable, then add  $\langle m, i+1 \rangle$  to Q.

**Induction** For  $0 \le i < N$  and a clause  $(\varphi \lor \psi) \in F_i$ , if  $\varphi \notin F_{i+1}$ ,  $\mathcal{F}(\phi \land F_i) \to \phi'$ , then add  $\varphi$  to  $F_i$ , for all  $j \le i+1$ .

until  $\infty$ ;



### **SPACER Search Space**



In Decide, unfold the derivation tree in a fixed depth-first order

• use MBP to decide on counterexamples

Successor: Learn new facts (reachable states) on the way up

use MBP to propagate facts bottom up



### **Successor Rule: Computing Reachable States**

```
Successor If there is \langle m, i+1 \rangle \in Q and a model M M \models \psi, where \psi = \mathcal{F}(\forall \text{REACH}) \land m'. Then, add s to REACH, where s' \in \text{MBP}(\{X, X^o\}, \psi).
```

# Computing new reachable states by under-approximating forward image using MBP

• since MBP is finite, guarantee to exhaust all reachable states

#### Second use of MBP

- orthogonal to the use of MBP in Decide
- can allow REACH to contain auxiliary variables, but this might explode

#### For Boolean CHC, the number of reachable states is bounded

- complexity is polynomial in the number of states
- same as reachability in Push Down Systems



### **Decide Rule: Must and May refinement**

**DecideMust** If there is  $\langle m, i+1 \rangle \in Q$ , and a model M  $M \models \psi$ , where  $\psi = \mathcal{F}(F_i, \forall \text{REACH}) \land m'$ . Then, add s to Q, where  $s \in \text{MBP}(\{X^o, X'\}, \psi)$ .

**DecideMay** If there is  $\langle m, i+1 \rangle \in Q$  and a model M  $M \models \psi$ , where  $\psi = \mathcal{F}(F_i) \wedge m'$ . Then, add s to Q, where  $s^o \in \mathrm{MBP}(\{X, X'\}, \psi)$ .

#### **DecideMust**

• use computed summary (REACH) to skip over a call site

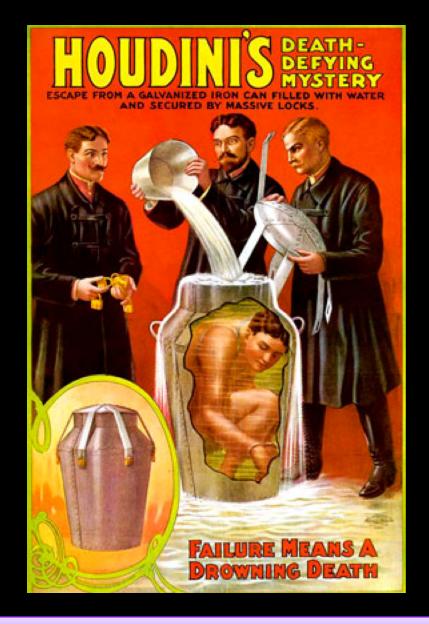
### **DecideMay**

- use over-approximation of a calling context to guess an approximation of the callsite
- the call-site either refutes the approximation (**Conflict**) or refines it with a witness (**Successor**)



# **CHC VIA MACHINE LEARNING**

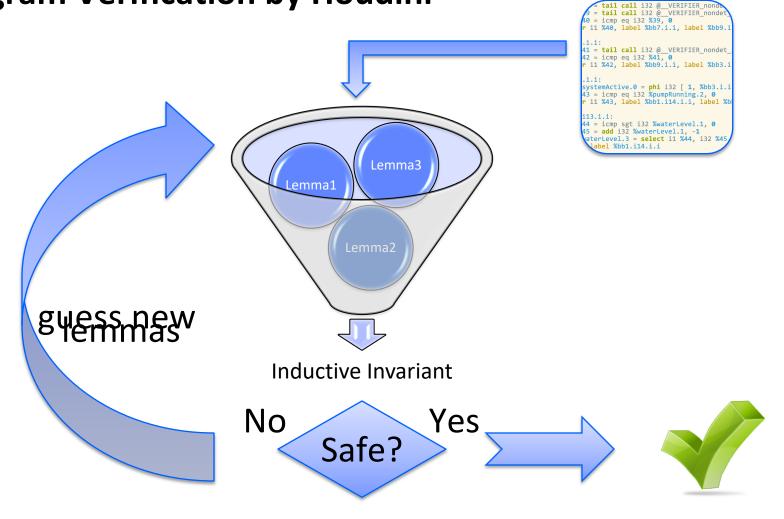




Cormac Flanagan, K. Rustan M. Leino: Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517



# **Program Verification by Houdini**





## Finding an Inductive Invariant

Discovering an inductive invariants involves two steps

**Step 1**: find a candidate inductive invariant **Inv** 

**Step 2**: check whether **Inv** is an inductive invariant

Invariant Inference is the process of automating both of these phases



### Finding an Inductive Invariant

Two popular approaches to invariant inference:

#### Machine Learning based Invariant Synthesis (MLIS)

- e.g. ICE: Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider: ICE: A Robust Framework for Learning Invariants. CAV 2014: 69-87
- referred to as a Black-Box approach

#### SAT-based Model Checking (SAT-MC)

- e.g. IC3: Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87
- referred to as a White-Box approach



### **Our Goal**

Study the Relationship between SAT-MC and MLIS

Or, is there a difference between White-Box and Black-Box?



### **Our Goal**

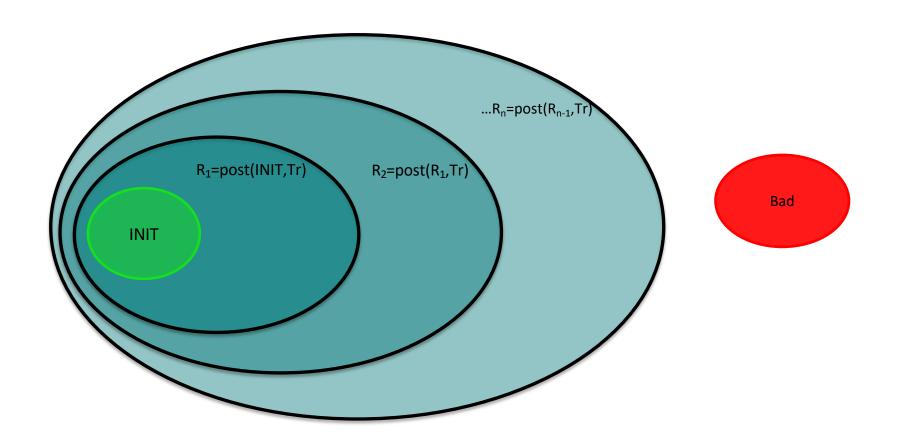
Study the Relationship between SAT-MC and MLIS

Or, is there a difference between White-Box and Black-Box?

- Study two state-of-the-art algorithms: ICE and IC3
- In other words: can we describe IC3 as an instance of ICE?



# **Reachability Analysis**





## **Reachability Analysis**

Computing states reachable from a set of states S using the post operator

$$\begin{cases} post^{0}(S) = S \\ post^{i+1} = post^{i}(S) \cup \{t \mid s \in S \land (s,t) \in Tr\} \end{cases}$$

Computing states reaching a set of states S using the pre operator

$$\begin{cases} pre^{0}(S) = S \\ pre^{i+1} = pre^{i}(S) \cup \{t \mid s \in S \land (t,s) \in Tr\} \end{cases}$$

Transitive closure is denoted by post\* and pre\*



### **SAT-based Model Checking**

Search for a counterexample for a specific length

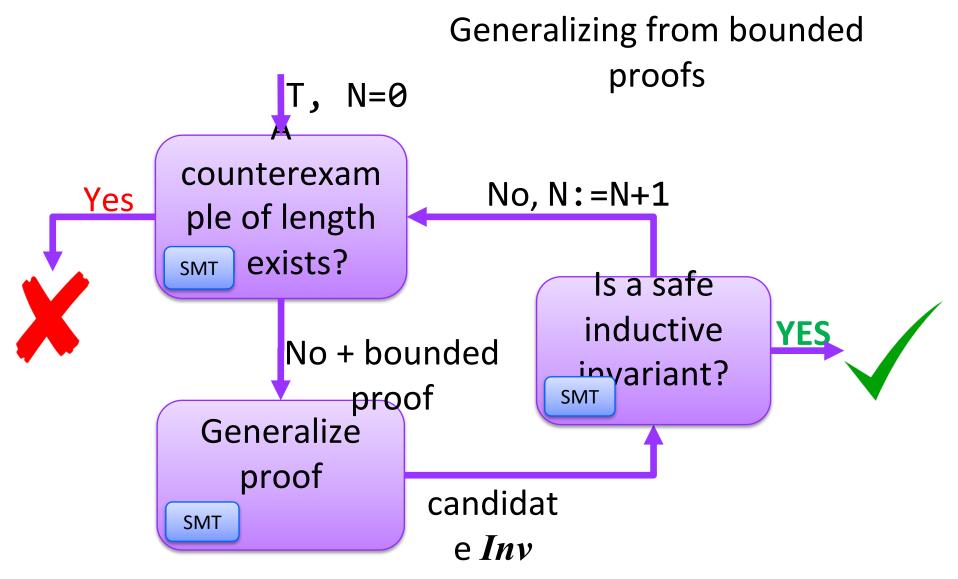
If a counterexample does not exist, generalize the bounded proof into a candidate *Inv* 

Check if *Inv* is a safe inductive invariant

Referred to as White-Box: Rely on a close interaction between the main algorithm and the decision procedure used



### **SMT-based Model Checking**





### **Machine Learning-based Invariant Synthesis**

MLIS consists of two entities: Teacher and Learner

Learner comes up with a candidate *Inv* 

- Agnostic of the transition system
- Using machine learning techniques

Learner asks the Teacher if *Inv* is a safe inductive invariant

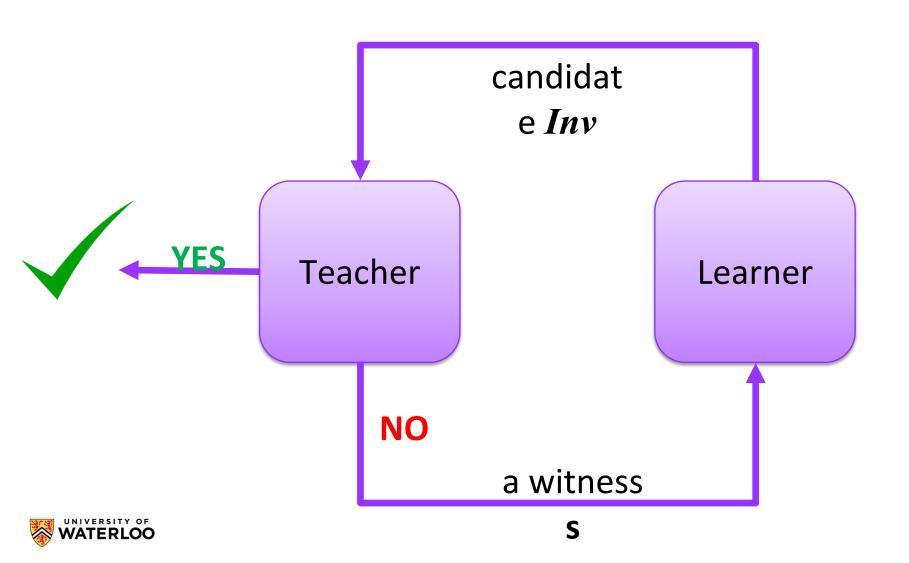
If not, Teacher replies with a witness: positive or negative

Aware of the transition system

Referred to as Black-Box

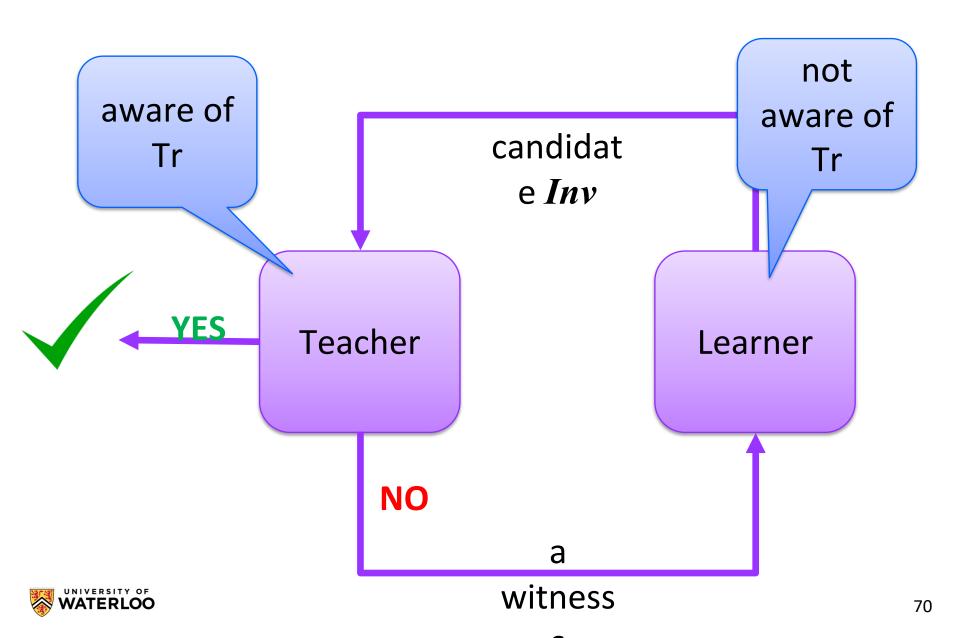


## **Machine Learning-based Invariant Synthesis**



# 0

### **Machine Learning-based Invariant Synthesis**



### **ICE: MLIS Framework**

(Garg et al. CAV 2014)

Given a transition system T=(INIT, Tr, Bad) and a candidate *Inv* generated by the Learner

When the Teacher determines *Inv* is not a safe inductive invariant, a witness is returned:

- E-example: s ∈ post\*(INIT) but s ∉ Inv
- C-example:  $s \in pre^*(Bad)$  and  $s \in Inv$
- I-example:  $(s,t) \in T$  such that  $s \in Inv$  but  $t \notin Inv$

Given a set of states S, the triple (E, C, I) is an ICE state

•  $E \subseteq S$ ,  $C \subseteq S$ ,  $I \subseteq S \times S$ 

A set  $J \subseteq S$  is **consistent** with ICE state iff

- $E \subseteq J$  and  $J \cap C = \emptyset$
- for  $(s,t) \in I$ , if  $s \in J$  then  $t \in J$



### **ICE**

(Garg et al. CAV 2014)

```
Input: A transition system T = (\mathcal{V}, Init, Tr, Bad)
Q \leftarrow \emptyset Learner(T); Teacher(T);
repeat
     J \leftarrow \text{Learner.SynCandidate}(Q);
    \varepsilon \leftarrow \text{Teacher.IsInd}(J);
    if \varepsilon = \bot then return SAFE;
    Q \leftarrow Q \cup \{\varepsilon\};
until \infty;
```



### **ICE**

(Garg et al. CAV 2014)

Input: A transition system  $T = (\mathcal{V}, \mathcal{I})$   $Q \leftarrow \emptyset$  Learner(T); Teacher(T); repeat

requirement for incrementality

 $J \leftarrow \text{Learner.SynCandidate}(Q)$   $\varepsilon \leftarrow \text{Teacher.IsInd}(J);$ 

if  $\varepsilon = \bot$  then return SAFE;

 $Q \leftarrow Q \cup \{\varepsilon\};$ 

until  $\infty$ ;

The Learner is passive - has no control over the Teacher

J must be consistent with Q



4

# PDR/IC3 – SAT Queries

Trace  $[F_0,...,F_N]$ , and  $Q \subseteq pre^*(Bad)$ , a state  $s \in Q \cap F_{i+1}$ Strengthening

- $(F_i \land \neg s) \land T \land s'$
- is  $(F_i \land \neg s) \land T \rightarrow \neg s'$  valid?

If this is satisfiable then there exists a state t in F<sub>i</sub> that can reach Bad

• This looks like a C-example

In order to "fix" F<sub>i</sub> t must be removed

Now check

•  $(F_{i-1} \land \neg t) \land T \land t'$ 



# PDR/IC3 – SAT Queries

Trace  $[F_0,...,F_N]$ , try to push a lemma  $c \in F_i$  to  $F_{i+1}$ Pushing

- $(F_i \wedge c) \wedge T \wedge \neg c'$
- is  $(F_i \land c) \land T \rightarrow c'$  valid?

If this is satisfiable then there exists a pair  $(s,t) \in T$  s.t.  $s \in F_i$  and  $t \notin F_{i+1}$ 

- It looks like an I-example
  - Also, can be either an E- or C-example

In order to "fix" F<sub>i</sub>, either s is removed from F<sub>i</sub> or t is added to it

Strengthening vs Weakening

### The Problem

IC3 reasons about relative induction

F is inductive relative to G when:

- INIT  $\rightarrow$  F, and
- $G(V) \wedge F(V) \wedge T(V,V') \rightarrow F(V')$

But, in ICE, the Learner (Teacher) asks (answers) about induction

and, the Learner in ICE is passive

- cannot control the Teacher in any way
- No guarantee for incrementality



## **RICE - ICE + Relative Induction**

Input: A transition system  $T = (\mathcal{V}, Incital Ews Red)$   $Q \leftarrow \emptyset;$ Learner to have some

repeat

 $(F,G) \leftarrow \text{Learner.SynCandAndBase}(F,G)$ 

 $\varepsilon \leftarrow \text{Teacher.IsRelInd}(F, G);$ 

if  $\varepsilon = \bot \land G = true$  then return SAFE;

 $Q \leftarrow Q \cup \{\varepsilon\};$ 

until  $\infty$ ;

When G is true it is a regular inductive check

control over



### **RICE – ICE + Relative Induction**

The Teacher in RICE reacts to queries about relative induction

The Learner can "manipulate" the Teacher using relative induction

RICE is a generalization of ICE where the Learner is an active learning algorithm



### **RICE – ICE + Relative Induction**

The Teacher in RICE reacts to queries about relative induction

Is F inductive relative to G?

If not, a witness is returned:

- E-example:  $s \in post^*(INIT)$  but  $s \notin F$
- C-example:  $s \in pre^*(Bad)$  and  $s \in F$
- I-example: (s,t)  $\in$  T such that s  $\in$   $F \land G$  but t  $\notin$  F



# IC3 AS AN INSTANCE OF RICE



### **IC3** Learner

The IC3 Learner is active and incremental

### Maintains the following:

- a trace [F<sub>0</sub>, ..., F<sub>N</sub>] of candidates
- RICE state Q=(E, C, I)

The Learner must be consistent with the RICE state

E-examples and C-examples may exist when F is inductive relative to G

• The Teacher may return an E-example or C-example when F is inductive relative to G



## **IC3** Learner - Strengthening

 $\begin{array}{c} \mathsf{INIT} \to \mathsf{F, and} \\ \mathsf{G(V)} \land \mathsf{F(V)} \land \mathsf{T(V,V')} \to \mathsf{F(V')} \end{array}$ 

### Strengthening:

- a C-example s in F<sub>i</sub>
- $(F_i \land \neg s \land \neg C(Q)) \land T \land (s \lor C(Q))'$

E-example: a cex exists is (¬s ^ ¬C(Q)) C-example: inductive relative add to Q to F<sub>i</sub>? I-example: treat like Cexample

# **IC3 Learner - Pushing**

INIT  $\rightarrow$  F, and  $G(V) \wedge F(V) \wedge T(V,V') \rightarrow F(V')$ 

### Pushing:

• a lemma c in F<sub>i</sub>

•  $(F_i \land c \land \neg C(Q) \land F_{i+1}) \land T \land (\neg c \lor C(Q) \lor \neg F_{i+1})'$ E-example: do not push and add to C-example: is  $(c \land \neg C(Q) \land$ do not push F<sub>i+1</sub>) inductive and add to relative to F<sub>i</sub>? I-example: do not push and add to

# **IC3 Learner - Pushing**

# E- and Cexamples

may exist even when

relative

induction

E-example do not push

and add to

C-example:

do not push and add to

I-example: do not push and add to

### Pushing:

• a lemma c in F<sub>i</sub>

•  $(F_i \land c \land \neg C(Q) \land F_{i+1}) \land T \land (\neg c \lor C(Q) \lor \neg F_{i+1})'$ 

is (c  $\land \neg C(Q) \land F_{i+1}$ ) inductive relative to  $F_i$ ?



### **IC3** Teacher

Using a general Teacher, the described Learner computes a trace  $[F_0, ..., F_N]$  such that

• post\*(INIT)  $\rightarrow$  F<sub>i</sub>  $\rightarrow$  ¬pre\*(Bad)

#### Generic Teacher is infeasible

- required to look arbitrary far into the future (for E-examples)
- required to look arbitrary far into the past (for C-examples)

Solution: add restrictions on E- and C-examples



### **IC3** Teacher

Is F inductive relative to G?

If not, a witness is returned:

- C-example:  $s \in pre^m(Bad)$  and  $s \in F$
- I-example: (s,t)  $\in$  T such that s  $\in$   $F \land G$  but t  $\notin$  F
- E-example:  $s \in post^0(INIT)$  but  $s \notin F$

Claim: Using this IC3 Teacher and the IC3 Learner results in an algorithm that behaves like (simulates) IC3



### What Can We Learn?

Can we lift the restriction that requires E-example to be in INIT only?

• Yes, a variant of IC3, called Quip, does that

There is no "real" weakening mechanism in IC3

• Future work...

Can we introduce other active Learners for MLIS?



## **Conclusions**

### An extension of ICE to RICE

- Taking ques from IC3: incrementality, active Learner
- Overcomes a deficiency in ICE

### IC3 can benefit from (R)ICE

• Weakening, E-examples, ...



## **CHC-COMP: CHC Solving Competition**

# First edition on July 13, 2018 at HVCS@FLO

Constrained Horn Clauses (CHC) is a fragment of First Order Logic (FOL) that is sufficiently expressive to describe many verification, inference, and synthesis problems including inductive invariant inference, model checking of safety properties, inference of procedure summaries, regression verification, and sequential equivalence. The CHC competition (CHC-COMP) will compare state-of-the-art tools for CHC solving with respect to performance and effectiveness on a set of publicly available benchmarks. The winners among participating solvers are recognized by measuring the number of correctly solved benchmarks as well as the runtime.

Web: https://chc-comp.github.io/

Gitter: <a href="https://gitter.im/chc-comp/Lobby">https://gitter.im/chc-comp/Lobby</a>

GitHub: <a href="https://github.com/chc-comp">https://github.com/chc-comp</a>

Format: https://chc-comp.github.io/2018/format.html



