
Introduction: Recap

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

2 2

Ultimate Goal: Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments

and inputs

The algorithmic discovery of properties of program by inspection of the
source text

Manna and Pnueli

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification

3 3

Undecidability

A problem is undecidable if there does not exists a Turing machine that
can solve it
• i.e., not solvable by a computer program

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective

method can decide whether an algorithm computes a partial function with that
property

• in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

4 4

Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants

Testing

Automated Verification

Sym Exec

Deductive Verification

5 5

(User) Effort vs (Verification) Assurance
As

su
ra

nc
e/

C
ov

er
ag

e

Effort

Testing

Automated
Verification

Symbolic
Execution

Deductive
Verification

6 6

Key Challenges

Testing
• Coverage

Symbolic Execution and Automated Verification
• Scalability

Deductive Verification
• Usability

Common Challenge
• Specification / Oracle

7 7

Topics Covered in the Course

Foundations
• syntax, semantics, abstract syntax trees, visitors, control flow graphs

Testing
• coverage: structural, dataflow, and logic

Symbolic Execution
• using SMT solvers, constraints, path conditions, exploration strategies
• building a (toy) symbolic execution engine

Deductive Verification
• Hoare Logic, weakest pre-condition calculus, verification condition generation
• verifying algorithm using Dafny, building a small verification engine

Automated Verification
• (basics of) software model checking

8 8

A little about me

2007, PhD University of Toronto

2006-2016, Principle Researcher at Software
Engineering Institute, Carnegie Mellon University

Sep 2016, Associate Professor, University of Waterloo

FrankenBitUFO

SPACER

Avy SeaHorn

9 9

Interests and Tools

Interests
• Software Model Checking, Program Verification, Decision Procedures,

Abstract Interpretation, SMT, Horn Clauses, …

Active Tools
• SeaHorn – Algorithmic Logic-Based Verification framework for C
• AVY – Hardware Model Checker with Interpolating PDR
• SPACER – Horn Clause Solver based on Z3 GPDR
• for more, see http://arieg.bitbucket.org/tools.html

Current Work
• parametric symbolic reachability – verifying safety properties of parametric

systems
• automated verification of C
• …

Fault, Error, and Failure

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

based on slides by Prof. Lin Tan and others

11 11

Terminology, IEEE 610.12-1990

Fault -- often referred to as Bug [Avizienis’00]
–A static defect in software (incorrect lines of code)

Error
–An incorrect internal state (unobserved)

Failure
–External, incorrect behaviour with respect to the

expected behaviour (observed)

Not used consistently in literature!

12 12

What is this?

A failure?

An error?

A fault?

We need to describe specified
and desired behaviour first!

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

13 13

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

14 14

Design Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

15 15

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

16 16

Example: Fault, Error, Failure
public static int numZero (int[] x) {
//Effects: if x==null throw NullPointerException
// else return the number of occurrences of 0 in x

int count = 0;
for (int i = 1; i <x.length; i++) {

if (x[i]==0) {
count++;

}
}
return count;

x = [2,7,0], fault executed, error, no failure
x = [0,7,2], fault executed, error, failure
State of the program: x, i, count, PC

Error State:
x = [2,7,0]
i =1
count =0
PC=first iteration for

Expected State:
x = [2,7,0]
i =0
count =0
PC=first iteration for

Fix: for(int i=0; i<x.length; i++)

17 17

Exercise: The Program

/* Effect: if x==null throw NullPointerException.
Otherwise, return the index of the last element
in the array ‘x’ that equals integer ’y’.
Return -1 if no such element exists. */

public int findLast (int[] x, int y) {
for (int i=x.length-1; i>0; i--) {

if (x[i] == y) { return i; }
}
return -1;

}

/* test 1: x=[2,3,5], y=2;
expect: findLast(x,y) == 0
test 2: x=[2,3,5,2], y=2;
expect: findLast(x,y) == 3 */

18 18

Exercise: The Problem

Read this faulty program, which includes a test case that
results in failure. Answer the following questions.
• (a) Identify the fault, and fix the fault.
• (b) If possible, identify a test case that does not execute the fault.
• (c) If possible, identify a test case that executes the fault, but does not

result in an error state.
• (d) If possible identify a test case that results in an error, but not a

failure. Hint: Don't forget about the program counter.
• (e) For the given test case ‘test1’, identify the first error state. Be sure

to describe the complete state.

19 19

States
State 0:
• x = [2,3,5]
• y = 2
• i = undefined
• PC = findLast(...)

20 20

States

21 21

States
Incorrect Program

Correct Program

22 22

Exercise: Solutions (1/2)

(a) The for-loop should include the 0 index:
• for (int i=x.length-1; i >= 0; i--)

(b) The null value for x will result in a NullPointerException before the loop test is
evaluated, hence no execution of the fault.
• Input: x = null; y = 3
• Expected Output: NullPointerException
• Actual Output: NullPointerException

(c) For any input where y appears in a position that is not position 0, there is no
error. Also, if x is empty, there is no error.
• Input: x = [2, 3, 5]; y = 3;
• Expected Output: 1
• Actual Output: 1

23 23

Exercise: Solutions (2/2)

(d) For an input where y is not in x, the missing path (i.e. an incorrect PC on the final
loop that is not taken, normally i = 2, 1, 0, but this one has only i = 2, 1,) is an error,
but there is no failure.
• Input: x = [2, 3, 5]; y = 7;
• Expected Output: -1
• Actual Output: -1

(e) Note that the key aspect of the error state is that the PC is outside the loop
(following the false evaluation of the 0>0 test. In a correct program, the PC should
be at the if-test, with index i==0.
• Input: x = [2, 3, 5]; y = 2;
• Expected Output: 0
• Actual Output: -1
• First Error State:
– x = [2, 3, 5]
– y = 2;
– i = 0 (or undefined);
– PC = return -1;

24 24

RIP Model

Three conditions must be present for an error to
be observed (i.e., failure to happen):
•Reachability: the location or locations in the program
that contain the fault must be reached.
• Infection: After executing the location, the state of the
program must be incorrect.
•Propagation: The infected state must propagate to
cause some output of the program to be incorrect.

25 25

HOW DO WE DEAL WITH
FAULTS, ERRORS, AND
FAILURES?

26 26

Addressing Faults at Different Stages

Fault
Avoidance

Fault
Tolerance

Fault
Detection

Better Design,
Better PL, ...

Testing,
Debugging, ...

Redundancy,
Isolation, ...

27 27

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

28 28

Modular Redundancy: Fault Tolerance

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

29 29

Patching: Fixing the Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

30 30

Testing: Fault Detection

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

31 31

Testing vs. Debugging

Testing: Evaluating software by observing its
execution
Debugging: The process of finding a fault given a
failure

Testing is hard:
•Often, only specific inputs will trigger the fault into creating a

failure.
Debugging is hard:
•Given a failure, it is often difficult to know the fault.

32 32

Testing is hard

Only input x=100 & y=100 triggers the crash
If x and y are 32-bit integers, what is the
probability of a crash?
•1 / 264

if (x - 100 <= 0)
if (y - 100 <= 0)

if (x + y - 200 == 0)
crash();

