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Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

e if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
» check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)
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hint satisfaction problems arise in many diverse ar-
1ding software and hardware verification, type infer-
atic program analysis, test-case generation, schedul-
inning and graph problems. These areas share a
1 trait, they include a core component using logical
s for describing states and transformations between
"he most well-known constraint satisfaction problem
isitional satisfiability, SAT, where the goal is to de-
ether a formula over Boolean variables, formed using
~onnectives can be made true by choosing true/false
or its variables. Some problems are more naturally
»d using richer languages, such as arithmetic. A sup-
theory (of arithmetic) is then required to capture
ning of these formulas. Solvers for such formulations
hmonly called Satisfiability Modulo Theories (SMT)
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SMT solvers have been the focus of increased recent atten-
tion thanks to technological advances and industrial applica-
tions. Yet, they draw on a combination of some of the most
fundamental areas in computer science as well as discover-

1 ies from the past century of symbolic logic. They combine

the problem of Boolean Satisfiability with domains, such as,
those studied in convex optimization and term-manipulating
symbolic systems. They involve the decision problem, com-
pleteness and incompleteness of logical theories, and finally
complexity theory. In this article, we present an overview of
the field of Satisfiability Modulo Theories, and some of its
applications.
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key driving factor [4]. An important ingredient is a common
interchange format for benchmarks, called SMT-LIB [33],
and the classification of benchmarks into various categories
depending on which theories are required. Conversely, a
growing number of applications are able to generate bench-
marks in the SMT-LIB format to further inspire improving
SMT solvers.

There is a relatively long tradition of using SMT solvers in
select and specialized contexts. One prolific case is theorem
proving systems such as ACL2 [26] and PVS [32]. These use
decision procedures to discharge lemmas encountered during
interactive proofs. SMT solvers have also been used for a
long time in the context of program verification and ertended
static checking [21], where verification is focused on assertion
checking. Recent progress in SMT solvers, however, has
enabled their use in a set of diverse applications, including
interactive theorem provers and extended static checkers,
but also in the context of scheduling, planning, test-case
generation, model-based testing and program development,
static program analysis, program synthesis, and run-time
analysis, among several others.

We begin by introducing a motivating application and a
simple instance of it that we will use as a running example.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision prob-
lem. In this problem, there are n jobs, each composed of
m tasks of varying duration that have to be performed con-
secutively on m machines. The start of a new task can be
delayed as long as needed in order to wait for a machine
ahlo hant
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

SAT/SMT -p.3/50
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

Arithmetic

SAT/SMT - .3/50
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Array theory

SAT/SMT - .3/50
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

Uninterpreted function
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to

b+2=cA f(read(write(a,b,3),b)) # f(3)

SAT/SMT - p.3/50
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+2=cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,z),7) =«

b+2=cA f(3) # f(3)

SAT/SMT - p.3/50
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+2=cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,z),7) =«

b+2=cA f(3) # £(3)

then, the formula is unsatisfiable

SAT/SMT - p.3/50
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Example 2

z>0Af(z) >0ANy>0Afly) >0Az #y

SATSSMT - p.4/50
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Example 2

z>0Af(z) >0ANy>0Afly) >0Az #y

This formula is satisfiable
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Example 2

z>0Af(z) >0Ay>0Af(y) >0Az#y
This formula is satisfiable:
Example model:
z—1
Yy — 2
f(1) =0
f2)—1
f(...)—0

SAT/SMT - p.4/50
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SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories

SMT-LIB syntax

e based on s-expressions (LISP-like)

e common syntax for interpreted functions of different theories
—e.g. (and (=xy) (<= (* 2x) 2))

e commands to interact with the solver
— (declare-fun ...) declares a constant/function symbol
— (assert p) conjoins formula p to the curent context
— (check-sat) checks satisfiability of the current context
— (get-model) prints current model (if the context is satisfiable)

e see examples at http://rise4fun.com/z3
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SMT-LIB Syntax

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+vy 2)))
(declare-fun £ (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (fy) (8 x x)))
(check-sat)

(get-model)

IIIIIIIIIIIII
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Is this formula satisfiable?

1 ; This example illustrates basic arithmetic and
; uninterpreted functions

2

3

4 (declare-fun x (O Int)

5 (declare-fun y (O Int)

6 (declare-fun z () Int)

7 (assert (>=(* 2 x) (+y 2)))
8 (declare-fun f (Int) Int)

9 (declare-fun g (Int Int) Int)
10 (assert (< (f x) (g x x)))

11 (assert (G (f y) (g x x)))

12 (check-sat)

13 (get-model)

14 (push)

15 (assert (= x y))

16 (check-sat)

17 (pop)

18 (exit)

http://rise4fun.com/z3
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Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
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Is this formula satisfiable?

1

O NOYUT A WN

;; Is this formula satisfiable?

(declare-fun b () Int)

(declare-fun ¢ () Int)

(declare-fun a (O (Array Int Int))

(declare-fun f (Int) Int)

(assert (= (+ b 2) ©))

(assert (not (= (f (select (storeab 3) (- c 2))) (f (+ (- cb) 1))
(check-sat)
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import z3

def main():
b, ¢ = z3.Ints ('b ¢")
a = z3.Array ('a', z3.IntSort(), z3.IntSort())

f = z3.Function ('f', z3.IntSort(), z3.IntSort())
solver = z3.Solver ()

solver.add (c == b + z3.IntVal(2))

lhs = ¥ (z3.Store (a, b, 3)[c-2])

rhs = f(c-b+1)

solver.add (lhs <> rhs)

res = solver.check ()

if res == z3.sat:
print 'sat'

elif res == z3.unsat:
print 'unsat’

else:
print 'unknown'’

if _name__ == ' main__ ':
main()
WATERLOO

20



def

if
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main():

b, ¢ = z3.Ints ('b ¢")
a = z3.Array ('a', z3.IntSort(), z3.IntSort())

f = z3.Function ('f', z3.IntSort(), z3.IntSort())
solver = z3.Solver () — ”
solver.add (c == b + z3. IntVal(Z))
lhs = ¥ (z3.Store (a, b, 3)[c-2])

rhs = f(c-b+1) " create constraints
solver.add (lhs <> rhs)
res = solver.check ()

if res == z3.sat:
print 'sat'
elif res == z3.unsat:
print 'unsat’
else:
print 'unknown'
__name___ == ' _ main__ ':
main()
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Useful Z3Py Functions

All these functions are under python package z3

Create constants and values
 Int(name) — an integer constant with a given name
 FreshInt(name) — unique constant starting with name
e IntVal(v), BoolVal(v) — integer and boolean values
Arithmetic functions and predicates
e +,-,/,<,<=,>,>=,==, etc.
e Distinct(a, b, ...) — the arugments are distinct (expands to many disequalities)
Propositional operators
e And, Or, Not
Methods of the z3.Solver class
e add(fml) — add formula fml to the solver
e check() — returns z3.sat, z3.unsat, or z3.unknown (on failure to solve)
 model() — model if the result is sat
Methods of z3.Model class
e eval(fml) — returns the value of fml in the model
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Job Shop Scheduling

Tasks
Jobs
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Job Shop Scheduling

Constraints:
Precedence: between two tasks of the same job

N

Resource: I\/Iclc”nnes e

e at most one joh at a time

%) WATERLOO
[Stathlz. . endzlz] N [Start4,2. . end4,2] =
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Job Shop Scheduling

Constraints: Encoding:
Precedence: t, 3 -start time of

\ / job 2 on mach 3
< 9 d, 3 - duration of
4 job 2 on mach 3

tr3+dy3 <ty
Resource:

B

/\\ Not convex
tro +dyy <ty
/ N 5

L_%tartm. cendy,| N [starty,..endy,| =0 tya+des <tos
P
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Job Shop Scheduling

d;; |Machme 1 Machine 2 Encoding
Job 1 2 1 (12 0)A(hp =21 +2)A(Ha+1<8) A
Job 2 3 1 (h1=20)A(h2=2h1+3)A(ha+1<8)A
Job 3 2 3 (31 20)A(t32>2161+2)A (132 +3<8) A
(1 =2n01+3)V(b1=2n1+2)) A
max = 8 (ha=2Ba1+2)V(B1=201+2)) A
(h1=261+2)V(s1=201+3)) A
Solution ((II)>173+1)V(f77>t1)+1))/\
hi=5hx=7hH)=2, (ha=B2+3)V(Ba=ha2+1)) A
th2=6,131=0,17=3 (ha=8B2+3)V(B2=h2+1))
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Bit Tricks

Let x, y be a 32 bit machine integers (a bit-vector)

Show that x!=0 && !(x & (x-1)) istrue iff x is a power
of 2

Show that x and y have different signs iff x*y < @
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Dog, Cat, Mouse

Spend exactly 100 dollars and buy exactly 100 animals.

e Dogs cost 15 dollars,
e cats cost 1 dollar,
e and mice cost 25 cents each.

You have to buy at least one of each.

How many of each should you buy?
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Eight Queens Problem

Place 8 queens on an 8x8 chess board so that no
two queen attacks one another
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Incremental Interface

Z3 provides two interfaces for incremental solving that allow for adding
and removing constraints

e push/pop, and assumptions

Constraints can be added at any time. This is not called incremental ©

Push/Pop Interface
e Store current solver state by a call to push
—s.push () in Python, and (push) in SMT-LIB
» Restore previous state by a call to pop
—s.pop () inPython and (pop) in SMT-LIB
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Incremental Interface: Assumptions

Requires two steps, but much more flexible than push/pop
1. tag constraints by fresh Boolean constants
—e.g., use (assert (=> p phi)) instead of (assert phi)
2. during check-sat, enable constraints by forcing tags to be true
— e.g., use (check-sat p)

For example,

(assert (=> a0 c0))
(assert (=> al cl))
(assert (=> a2 c2))

(check-sat a0) ; check whether cO 1is sat
(check-sat a0 a2) ; check whether co and c2 are sat
(check-set al a2) ; Check whether cl1 and c3 are sat

NIVERSITY
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Assumptions in Python Interface

Methods of z3.Solver class
e check(self, *assumptions) — check with assumptions

e unsat_core(self) —if the last call to check was unsat, returns the subset
of assumptions that were actually used to show unsat

UNIVERSITY

@ WATERLOO

32



