SMT Solver Z3

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

%) WATERLOO

Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

e if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
» check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)

UNIVERSITY

@” WATERLOO

September 201

N

(Optional) Background Reading: SMT

Leonardo de Moura
Microsoft Research
One Microsoft Way
Redmond, WA 98052
leonardo@microsoft.com

RACT

hint satisfaction problems arise in many diverse ar-
1ding software and hardware verification, type infer-
atic program analysis, test-case generation, schedul-
inning and graph problems. These areas share a
1 trait, they include a core component using logical
s for describing states and transformations between
"he most well-known constraint satisfaction problem
isitional satisfiability, SAT, where the goal is to de-
ether a formula over Boolean variables, formed using
~onnectives can be made true by choosing true/false
or its variables. Some problems are more naturally
»d using richer languages, such as arithmetic. A sup-
theory (of arithmetic) is then required to capture
ning of these formulas. Solvers for such formulations
hmonly called Satisfiability Modulo Theories (SMT)

e ! A
Wyt 0y

Cmmnmn v

AN Cvaup o
bigmww Tervgy
e e

¥ emam Mg

ARt w Yoy
Ao Maiww

.

SMT solvers have been the focus of increased recent atten-
tion thanks to technological advances and industrial applica-
tions. Yet, they draw on a combination of some of the most
fundamental areas in computer science as well as discover-

1 ies from the past century of symbolic logic. They combine

the problem of Boolean Satisfiability with domains, such as,
those studied in convex optimization and term-manipulating
symbolic systems. They involve the decision problem, com-
pleteness and incompleteness of logical theories, and finally
complexity theory. In this article, we present an overview of
the field of Satisfiability Modulo Theories, and some of its
applications.

UNIVERSITY OF

WATERLOO

el VAN R Y p e =Risfiability Modulo Theories: Introduction & Applications

Nikolaj Bjerner
Microsoft Research
One Microsoft Way

Redmond, WA 98052
nbjorner@microsoft.com

key driving factor [4]. An important ingredient is a common
interchange format for benchmarks, called SMT-LIB [33],
and the classification of benchmarks into various categories
depending on which theories are required. Conversely, a
growing number of applications are able to generate bench-
marks in the SMT-LIB format to further inspire improving
SMT solvers.

There is a relatively long tradition of using SMT solvers in
select and specialized contexts. One prolific case is theorem
proving systems such as ACL2 [26] and PVS [32]. These use
decision procedures to discharge lemmas encountered during
interactive proofs. SMT solvers have also been used for a
long time in the context of program verification and ertended
static checking [21], where verification is focused on assertion
checking. Recent progress in SMT solvers, however, has
enabled their use in a set of diverse applications, including
interactive theorem provers and extended static checkers,
but also in the context of scheduling, planning, test-case
generation, model-based testing and program development,
static program analysis, program synthesis, and run-time
analysis, among several others.

We begin by introducing a motivating application and a
simple instance of it that we will use as a running example.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision prob-
lem. In this problem, there are n jobs, each composed of
m tasks of varying duration that have to be performed con-
secutively on m machines. The start of a new task can be
delayed as long as needed in order to wait for a machine
ahlo hant

tn harnmo aw tacke rannnt ha intorrintod anco

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

SAT/SMT -p.3/50
IIIIIIIIIIII

WATERLOO

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

Arithmetic

SAT/SMT - .3/50

UNIVERSITY OF
%) WATERLOO

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Array theory

SAT/SMT - .3/50

UNIVERSITY OF
%) WATERLOO

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

Uninterpreted function

SAT/SMT -p.3/50

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

SAT/SMT -p.3/50
IIIIIIIIIIII

WATERLOO

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to

b+2=cA f(read(write(a,b,3),b)) # f(3)

SAT/SMT - p.3/50
IIIIIIIIIIII

WATERLOO

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+2=cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,z),7) =«

b+2=cA f(3) # f(3)

SAT/SMT - p.3/50
IIIIIIIIIIII

WATERLOO 10

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+2=cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,z),7) =«

b+2=cA f(3) # £(3)

then, the formula is unsatisfiable

SAT/SMT - p.3/50
IIIIIIIII

%) WATERLOO 11

IIIIIIII

Example 2

z>0Af(z) >0ANy>0Afly) >0Az #y

SATSSMT - p.4/50

12

Example 2

z>0Af(z) >0ANy>0Afly) >0Az #y

This formula is satisfiable

UNIVERSITY OF

%) WATERLOO

SAT/SMT - p.4/50

13

Example 2

z>0Af(z) >0Ay>0Af(y) >0Az#y
This formula is satisfiable:
Example model:
z—1
Yy — 2
f(1) =0
f2)—1
f(...)—0

SAT/SMT - p.4/50
IIIIIIIIIIII

WATERLOO

SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories

SMT-LIB syntax

e based on s-expressions (LISP-like)

e common syntax for interpreted functions of different theories
—e.g. (and (=xy) (<= (* 2x) 2))

e commands to interact with the solver
— (declare-fun ...) declares a constant/function symbol
— (assert p) conjoins formula p to the curent context
— (check-sat) checks satisfiability of the current context
— (get-model) prints current model (if the context is satisfiable)

e see examples at http://rise4fun.com/z3

UNIVERSITY

%@ WATERLOO

15

SMT-LIB Syntax

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+vy 2)))
(declare-fun £ (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (fy) (8 x x)))
(check-sat)

(get-model)

IIIIIIIIIIIII

16

z 3 Research

Is this formula satisfiable?

1 ; This example illustrates basic arithmetic and
; uninterpreted functions

2

3

4 (declare-fun x (O Int)

5 (declare-fun y (O Int)

6 (declare-fun z () Int)

7 (assert (>=(* 2 x) (+y 2)))
8 (declare-fun f (Int) Int)

9 (declare-fun g (Int Int) Int)
10 (assert (< (f x) (g x x)))

11 (assert (G (f y) (g x x)))

12 (check-sat)

13 (get-model)

14 (push)

15 (assert (= x y))

16 (check-sat)

17 (pop)

18 (exit)

http://rise4fun.com/z3

UNIVERSITY OF

WATERLOO

SMT Example

17

Example

b+2=cA f(read(write(a,b,3),c —2)) # f(c—b+1)

IIIIIIIIIIII

WATERLOO

SAT/SMT -p.3/50

18

Microsoft

z 3 Research

Is this formula satisfiable?

1

O NOYUT A WN

;; Is this formula satisfiable?

(declare-fun b () Int)

(declare-fun ¢ () Int)

(declare-fun a (O (Array Int Int))

(declare-fun f (Int) Int)

(assert (= (+ b 2) ©))

(assert (not (= (f (select (storeab 3) (- c 2))) (f (+ (- cb) 1))
(check-sat)

UNIVERSITY OF

WATERLOO

19

import z3

def main():
b, ¢ = z3.Ints ('b ¢")
a = z3.Array ('a', z3.IntSort(), z3.IntSort())

f = z3.Function ('f', z3.IntSort(), z3.IntSort())
solver = z3.Solver ()

solver.add (c == b + z3.IntVal(2))

lhs = ¥ (z3.Store (a, b, 3)[c-2])

rhs = f(c-b+1)

solver.add (lhs <> rhs)

res = solver.check ()

if res == z3.sat:
print 'sat'

elif res == z3.unsat:
print 'unsat’

else:
print 'unknown'’

if _name__ == ' main__ ':
main()
WATERLOO

20

def

if

UNIVERSITY OF

WATERLOO

main():

b, ¢ = z3.Ints ('b ¢")
a = z3.Array ('a', z3.IntSort(), z3.IntSort())

f = z3.Function ('f', z3.IntSort(), z3.IntSort())
solver = z3.Solver () — ”
solver.add (c == b + z3. IntVal(Z))
lhs = ¥ (z3.Store (a, b, 3)[c-2])

rhs = f(c-b+1) " create constraints
solver.add (lhs <> rhs)
res = solver.check ()

if res == z3.sat:
print 'sat'
elif res == z3.unsat:
print 'unsat’
else:
print 'unknown'
__name___ == ' _ main__ ':
main()

21

®

Useful Z3Py Functions

All these functions are under python package z3

Create constants and values
 Int(name) — an integer constant with a given name
 FreshInt(name) — unique constant starting with name
e IntVal(v), BoolVal(v) — integer and boolean values
Arithmetic functions and predicates
e +,-,/,<,<=,>,>=,==, etc.
e Distinct(a, b, ...) — the arugments are distinct (expands to many disequalities)
Propositional operators
e And, Or, Not
Methods of the z3.Solver class
e add(fml) — add formula fml to the solver
e check() — returns z3.sat, z3.unsat, or z3.unknown (on failure to solve)
 model() — model if the result is sat
Methods of z3.Model class
e eval(fml) — returns the value of fml in the model

UNIVERSITY OF

WATERLOO

22

Job Shop Scheduling

Tasks
Jobs

23

@” WATERLOO

Job Shop Scheduling

Constraints:
Precedence: between two tasks of the same job

N

Resource: I\/Iclc”nnes e

e at most one joh at a time

%) WATERLOO
[Stathlz. . endzlz] N [Start4,2. . end4,2] =

24

Job Shop Scheduling

Constraints: Encoding:
Precedence: t, 3 -start time of

\ / job 2 on mach 3
< 9 d, 3 - duration of
4 job 2 on mach 3

tr3+dy3 <ty
Resource:

B

/\\ Not convex
tro +dyy <ty
/ N 5

L_%tartm. cendy,| N [starty,..endy,| =0 tya+des <tos
P

IIIIIIII

WATERLOO 25

Job Shop Scheduling

d;; |Machme 1 Machine 2 Encoding
Job 1 2 1 (12 0)A(hp =21 +2)A(Ha+1<8) A
Job 2 3 1 (h1=20)A(h2=2h1+3)A(ha+1<8)A
Job 3 2 3 (31 20)A(t32>2161+2)A (132 +3<8) A
(1 =2n01+3)V(b1=2n1+2)) A
max = 8 (ha=2Ba1+2)V(B1=201+2)) A
(h1=261+2)V(s1=201+3)) A
Solution ((II)>173+1)V(f77>t1)+1))/\
hi=5hx=7hH)=2, (ha=B2+3)V(Ba=ha2+1)) A
th2=6,131=0,17=3 (ha=8B2+3)V(B2=h2+1))

UNIVERSITY OF

WATERLOO

Bit Tricks

Let x, y be a 32 bit machine integers (a bit-vector)

Show that x!=0 && !(x & (x-1)) istrue iff x is a power
of 2

Show that x and y have different signs iff x*y < @

) UNIVERSITY OF
/\ WATERLOO

27

Dog, Cat, Mouse

Spend exactly 100 dollars and buy exactly 100 animals.

e Dogs cost 15 dollars,
e cats cost 1 dollar,
e and mice cost 25 cents each.

You have to buy at least one of each.

How many of each should you buy?

IIIIIIIIIIIIII

28

Eight Queens Problem

Place 8 queens on an 8x8 chess board so that no
two queen attacks one another

IIIIIIIIIIII

WATERLOO

29

Incremental Interface

Z3 provides two interfaces for incremental solving that allow for adding
and removing constraints

e push/pop, and assumptions

Constraints can be added at any time. This is not called incremental ©

Push/Pop Interface
e Store current solver state by a call to push
—s.push () in Python, and (push) in SMT-LIB
» Restore previous state by a call to pop
—s.pop () inPython and (pop) in SMT-LIB

UNIVERSITY

%@ WATERLOO

30

Incremental Interface: Assumptions

Requires two steps, but much more flexible than push/pop
1. tag constraints by fresh Boolean constants
—e.g., use (assert (=> p phi)) instead of (assert phi)
2. during check-sat, enable constraints by forcing tags to be true
— e.g., use (check-sat p)

For example,

(assert (=> a0 c0))
(assert (=> al cl))
(assert (=> a2 c2))

(check-sat a0) ; check whether cO 1is sat
(check-sat a0 a2) ; check whether co and c2 are sat
(check-set al a2) ; Check whether cl1 and c3 are sat

NIVERSITY

%@' ATERLOO

Assumptions in Python Interface

Methods of z3.Solver class
e check(self, *assumptions) — check with assumptions

e unsat_core(self) —if the last call to check was unsat, returns the subset
of assumptions that were actually used to show unsat

UNIVERSITY

@ WATERLOO

32

