
Semantics of Symbolic Execution

Arie Gurfinkel

February 8, 2018

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 1 / 16

Preliminaries

L is a set of program variables (locations)

concrete state q (a.k.a., an environment) is a map from program
variables L to integers Z
Q : L→ Z is the set of all states.

Notation

q(v) stands for the value of variable v in state q

[] stands for an empty state (no variables)

[x := u, y := v] stands for a state s.t. x is u and y is v

q[x := n] is a state obtained from q by sub the value of x by n

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 2 / 16

Operational Semantics: Expressions

〈n, q〉 ⇓ n
n ∈ Z

〈v , q〉 ⇓ q(v)
v ∈ L

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 + a2, q〉 ⇓ n1 + n2

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 × a2, q〉 ⇓ n1 × n2

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 < a2, q〉 ⇓ n1 < n2

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 > a2, q〉 ⇓ n1 > n2

〈b1, q〉 ⇓ r1 〈b2, q〉 ⇓ r2

〈b1 ∧ b2, q〉 ⇓ r1 ∧ r2

〈b1, q〉 ⇓ r1 〈b2, q〉 ⇓ r2

〈b1 ∨ b2, q〉 ⇓ r1 ∨ r2

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 3 / 16

Operational Semantics: Statements

〈skip, q〉 ⇓ q 〈print state, q〉 ⇓ q

〈s1, q〉 ⇓ q′′ 〈s2, q
′′〉 ⇓ q′

〈s1 ; s2, q〉 ⇓ q′
〈e, q〉 ⇓ n

〈x := e, q〉 ⇓ q[x := n]

〈b, q〉 ⇓ true 〈s1, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′
〈b, q〉 ⇓ false 〈s2, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

〈b, q〉 ⇓ false

〈while b do s, q〉 ⇓ q 〈havoc x , q〉 ⇓ q[x := n]

〈b, q〉 ⇓ true 〈s ; while b do s, q〉 ⇓ q′

〈while b do s, q〉 ⇓ q′

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 4 / 16

Symbolic States and Path Conditions

A symbolic state (or symbolic environment) q is a map from
program variables to symbolic expressions

A path condition is a formula over symbolic expressions

A judgment in symbolic execution has a form

〈s, q, pc〉 ⇓ q′, pc ′

where s is a statement, q and q′ are the input and output
symbolic environments, respectively, and pc and pc ′ are input
and output path conditions, respectively

A path condition pc ′ is satisfiable iff there is a concrete input state c
and concrete output state c ′ such that s started in state c reaches
state c ′, i.e., 〈s, c〉 ⇓ c ′

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 5 / 16

Symbolic Semantics: Expressions

〈n, q〉 ⇓ n
n ∈ Z

〈v , q〉 ⇓ q(v)
v ∈ L

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 + a2, q〉 ⇓ Plus(n1, n2)

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 × a2, q〉 ⇓ Times(n1, n2)

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 < a2, q〉 ⇓ Lt(n1, n2)

〈a1, q〉 ⇓ n1 〈a2, q〉 ⇓ n2

〈a1 > a2, q〉 ⇓ Gt(n1, n2)

〈b1, q〉 ⇓ r1 〈b2, q〉 ⇓ r2

〈b1 ∧ b2, q〉 ⇓ And(r1, r2)

〈b1, q〉 ⇓ r1 〈b2, q〉 ⇓ r2

〈b1 ∨ b2, q〉 ⇓ Or(r1, r2)

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 6 / 16

Symbolic Semantics: Statements (1/2)

〈skip, q, pc〉 ⇓ q, pc

〈print state, q, pc〉 ⇓ q, pc

〈s1, q, pc〉 ⇓ q′′, pc ′′ 〈s2, q
′′, pc ′′〉 ⇓ q′, pc ′

〈s1 ; s2, q, pc〉 ⇓ q′, pc ′

〈e, q〉 ⇓ r

〈x := e, q, pc〉 ⇓ q[x := r], pc

R is a fresh symbolic constant

〈havoc x , q, pc〉 ⇓ q[x := R], pc

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 7 / 16

Symbolic Semantics: Statements (2/2)

〈b, q〉 ⇓ r pc ∧ r is SAT 〈s1, q, pc ∧ r〉 ⇓ q′, pc ′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc ′

〈b, q〉 ⇓ r pc ∧ ¬r is SAT 〈s2, q, pc ∧ ¬r〉 ⇓ q′, pc ′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc ′

〈b, q〉 ⇓ r pc ∧ ¬r is SAT

〈while b do s, q, pc〉 ⇓ q, pc ∧ ¬r

〈b, q〉 ⇓ r
pc ∧ r is SAT 〈s ; while b do s, q, pc ∧ r〉 ⇓ q′, pc ′

〈while b do s, q, pc〉 ⇓ q′, pc ′

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 8 / 16

Concolic Semantics: Notation

Program variables L are partitioned into symbolic and concrete

Sym(L) = symbolic Con(L) = concrete

Possibly there are no symbolic (or concrete) variables

Sym(a) and Con(a) indicates whether a given variable a is
symbolic or concrete, respectively.

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 9 / 16

Concolic States

A concolic state is a triple

q = 〈c , s, pc〉

where c is concrete, s is symbolic, and pc is a path condition

con(q) = c sym(q) = s pc(q) = pc

every variable v in sym(q) has a concrete shadow con(q)(v).
That is, concrete state can evaluate all variables

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 10 / 16

Equivalence and containment

Equivalence of concrete states

Two concrete states c1 and c2 are equivalent, c1 ≡con c2, whenever
they agree on concrete variables:

c1 ≡con c2 ⇐⇒ ∀a ∈ Con(L) · c1(a) = c2(a)

Containment of concrete states

c |= 〈s, pc〉 means that concrete c is contained in symbolic 〈s, pc〉

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 11 / 16

Concolic Semantics of Expressions

The semantics of expressions is as usual with variables evaluated
based on their kind: concrete variables are evaluated over con(q) and
symbolic over sym(q):

con(a) 〈a, con(q)〉 ⇓ v

〈a, q〉 ⇓ v

sym(a) 〈a, sym(q)〉 ⇓ v

〈a, q〉 ⇓ v

Expressions that do not depend on symbolic variables are evaluated
concretely
Expressions that depend on symbolic variables are evaluated
symbolically (i.e., their value is some AST)

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 12 / 16

Concolic Semantics: Simple Statements

For most statements, the semantics is extended by applying both
symbolic and concrete operational semantics in parallel:

〈s, con(q)〉 ⇓ c 〈s, sym(q), pc(q)〉 ⇓ s ′, pc ′ c |= 〈s ′, pc ′〉
〈s, q〉 ⇓ 〈c , s ′, pc ′〉

The last pre-condition ensures that the concrete and symbolic states
are chosen consistently.

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 13 / 16

Concolic Semantics: Assignment

Assignment of values to concrete variables is limited to concrete
values only:

〈e, q〉 ⇓ n con(x) n ∈ Z
〈x := e, q〉 ⇓ q[x := n]

It is not possible to assign symbolic variables (or symbolic
expressions) to concrete variables!
To assign a symbolic value to a concrete variable either

make concrete variable symbolic (always easy to do), or
make symbolic value concrete (described later on)

Assignment to symbolic variables also assigns to their concrete
shadows.

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 14 / 16

Concolic Semantics: If-statement

At if-statement, concolic execution can chose to switch to the branch
that is not consistent with current concrete state, as long as the
concrete state can be adjusted. We only show one of the cases:

〈b, con(q)〉 ⇓ true
〈b, q〉 ⇓ r pc(q) ∧ ¬r is SAT c |= 〈sym(q), pc(q) ∧ ¬r〉

c ≡con con(q) 〈s2, 〈c , sym(q), pc(q) ∧ ¬r〉〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 15 / 16

Concolic Semantics: Concretization

Concretization turns symbolic variables (or values) into the values of
their concrete shadows. The choice of concretization is captured in a
concretization constraints in the path condition:

sym(x) 〈x , con(q)〉 ⇓ n 〈x , sym(q)〉 ⇓ r
〈s, 〈con(q), sym(q)[x := n], pc(q) ∧ r = n〉〉 ⇓ q′

〈s, q〉 ⇓ q′

That is, if x is a symbolic variable with symbolic value r and it is
currently shadowed concretely by a concrete value n, then its value
can be concretized to n as long as the path condition is updated with
r = n to reflect the concretization

Arie Gurfinkel Semantics of Symbolic Execution February 8, 2018 16 / 16

