Propositional Logic

Testing, Quality Assurance, and Maintenance
Winter 2018
Prof. Arie Gurfinkel

References

- Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

Logic for

Computer Scientists

What is Logic

According to Merriam-Webster dictionary logic is:
a (1) : a science that deals with the principles and criteria of validity of inference and demonstration
d :the arrangement of circuit elements (as in a computer) needed for computation; also: the circuits themselves

What is Formal Logic

Formal Logic consists of

- syntax - what is a legal sentence in the logic
- semantics - what is the meaning of a sentence in the logic
- proof theory - formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as and, or, and not between simplest "atomic sentences"

$$
\begin{aligned}
& A=\text { "Paris is the capital of France" } \\
& B=\text { "mice chase elephants" }
\end{aligned}
$$

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

A and B
A or B
if A then B

Syntax and Semantics

Syntax

- MW: the way in which linguistic elements (such as words) are put together to form constituents (such as phrases or clauses)
- Determines and restricts how things are written
- MW: the study of meanings
- Determines how syntax is interpreted to give meaning

Syntax of Propositional Logic

An atomic formula has a form A_{i}, where $\mathrm{i}=1,2,3 \ldots$

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula $F, \neg F$ (called not F) is a formula
- For all formulas F and $G, F \wedge G$ (called and) and $F \vee G$ (called or) are formulas

Abbreviations

- use A, B, C, \ldots instead of A_{1}, A_{2}, \ldots
- use $F_{1} \rightarrow F_{2}$ instead of $\neg F_{1} \vee F_{2}$
(implication)
- use $F_{1} \leftrightarrow F_{2}$ instead of $\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)$

Syntax of Propositional Logic (PL)

$$
\begin{aligned}
\text { truth_symbol }::= & \top(\text { true }) \mid \perp(\text { false }) \\
\text { variable }::= & p, q, r, \ldots \\
\text { atom }::= & \text { truth_symbol } \mid \text { variable } \\
\text { literal }::= & \text { atom } \mid \neg \text { atom } \\
\text { formula }::= & \text { literal } \mid \\
& \neg \text { formula } \mid \\
& \text { formula } \wedge \text { formula } \mid \\
& \text { formula } \vee \text { formula } \mid \\
& \text { formula } \rightarrow \text { formula } \mid \\
& \text { formula } \leftrightarrow \text { formula }
\end{aligned}
$$

Example

$$
F=\neg\left(\left(A_{5} \wedge A_{6}\right) \vee \neg A_{3}\right)
$$

Sub-formulas are

$$
\begin{array}{r}
F,\left(\left(A_{5} \wedge A_{6}\right) \vee \neg A_{3}\right), \\
A_{5} \wedge A_{6}, \neg A_{3}, \\
A_{5}, A_{6}, A_{3}
\end{array}
$$

Semantics of propositional logic

For an atomic formula A_{i} in $\mathbf{D}: \quad \mathbf{A}^{\prime}\left(A_{i}\right)=\mathbf{A}\left(A_{i}\right)$

$$
\begin{array}{lll}
A^{\prime}((F \wedge G)) & =1 & \text { if } A^{\prime}(F)=1 \text { and } A^{\prime}(G)=1 \\
& =0 & \\
\text { otherwise }
\end{array}
$$

$$
\mathbf{A}^{\prime}((F \vee G)) \quad=1 \quad \text { if } \mathbf{A}^{\prime}(F)=1 \text { or } A^{\prime}(G)=1
$$

$$
=0 \quad \text { otherwise }
$$

$$
A^{\prime}(\neg F) \quad=1 \quad \text { if } A^{\prime}(F)=0
$$

$$
=0 \quad \text { otherwise }
$$

Example

$$
\begin{aligned}
& F=\neg(A \wedge B) \vee C \\
& \mathcal{A}(A)=1 \\
& \mathcal{A}(B)=1 \\
& \mathcal{A}(C)=0
\end{aligned}
$$

Truth Tables for Basic Operators

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \wedge G))$		$\mathcal{A}(F)$
0	0	0	$\mathcal{A}(\neg F)$	
0	1	0	0	1
1	0	0	1	0
1	1	1		

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \vee G))$
0	0	0
0	1	1
1	0	1
1	1	1

$$
\begin{aligned}
& F=\neg(A \wedge B) \vee C \\
& \mathcal{A}(A)=1 \\
& \mathcal{A}(B)=1 \\
& \mathcal{A}(C)=0
\end{aligned}
$$

Propositional Logic: Semantics

An assignment A is suitable for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a model for F, written $A F F$, iff

- A is suitable for F
- $\mathrm{A}(\mathrm{F})=1$, i.e., F holds under A

A formula F is satisfiable iff F has a model, otherwise F is unsatisfiable (or contradictory)

A formula F is valid (or a tautology), written $F F$, iff every suitable assignment for F is a model for F

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2^{n} suitable assignments Build a truth table enumerating all assignments
F is satisfiable iff there is at least one entry with 1 in the output

	A_{1}	A_{2}	\cdots	A_{n-1}	A_{n}	F
$\mathcal{A}_{1}:$	0	0		0	0	$\mathcal{A}_{1}(F)$
$\mathcal{A}_{2}:$	0	0		0	1	$\mathcal{A}_{2}(F)$
\vdots			\ddots			\vdots
$\mathcal{A}_{2^{n}}:$	1	1		1	1	$\mathcal{A}_{2^{n}}(F)$

An example

$$
F=(\neg A \rightarrow(A \rightarrow B))
$$

A	B	$\neg A$	$(A \rightarrow B)$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

Validity and Unsatisfiability

Theorem:

A formula F is valid if and only if $\neg F$ is unsatifsiable

Proof:
F is valid \Leftrightarrow every suitable assignment for F is a model for F
\Leftrightarrow every suitable assignment for $\neg F$ is not a model for $\neg F$
$\Leftrightarrow \neg F$ does not have a model
$\Leftrightarrow \neg F$ is unsatisfiable

Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation $\sim v$
A clause is a disjunction of literals

- e.g., (v1 || ~v2 || v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

- e.g., (v1 || ~v2) \&\& (v3 || v2)

$$
\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i, j}\right)
$$

A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of conjunctions of literals

$$
\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i, j}\right)
$$

From Truth Table to CNF and DNF

$$
\begin{gathered}
(\neg A \wedge \neg B \wedge \neg C) \vee \\
(A \wedge \neg B \wedge \neg C) \vee \\
(A \wedge \neg B \wedge C) \\
\\
(A \vee B \vee \neg C) \wedge \\
(A \vee \neg B \vee C) \wedge \\
(A \vee \neg B \vee \neg C) \wedge \\
(\neg A \vee \neg B \vee C) \wedge \\
(\neg A \vee \neg B \vee \neg C)
\end{gathered}
$$

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F_{1} in CNF and F_{2} in DNF

Proof: (by induction on the structure of the formula F)

ENCODING PROBLEMS INTO CNF-SAT

Graph k-Coloring

Given a graph $G=(V, E)$, and a natural number $k>0$ is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.

Formally:

- does there exists a function $\mathrm{f}: \mathrm{V} \rightarrow[0 . . \mathrm{k})$ such that
- for every edge (u, v) in $E, f(u)!=f(v)$

Graph coloring for $\mathrm{k}>2$ is NP-complete

Problem: Encode k-coloring of G into CNF

- construct CNF C such that C is SAT iff G is k colorable

k-coloring as CNF

Let a Boolean variable $\mathrm{f}_{\mathrm{v}, \mathrm{i}}$ denote that vertex v has color i

- if $f_{v, i}$ is true if and only if $f(v)=i$

Every vertex has at least one color

$$
\bigvee_{0 \leq i<k} f_{v, i} \quad(v \in V)
$$

No vertex is assigned two colors

$$
\bigwedge_{0 \leq i<j<k}\left(\neg f_{v, i} \vee \neg f_{v, j}\right) \quad(v \in V)
$$

No two adjacent vertices have the same color

$$
\bigwedge\left(\neg f_{v, i} \vee \neg f_{u, i}\right) \quad((v, u) \in E)
$$

Propositional Resolution

Pivot

CVD

Resolvent

$\operatorname{Res}(\{C, p\},\{D,!p\})=\{C, D\}$

Given two clauses (C, p) and (D, l) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup\{R\}$ is equivalent to F

Proof System

An inference rule is a tuple $\left(P_{1}, \ldots, P_{n}, C\right)$

- where, $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}, \mathrm{C}$ are formulas
- P_{i} are called premises and C is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule

Example of a resolution proof

A refutation of $\neg p \vee \neg q \vee r, p \vee r, q \vee r, \neg r$:

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$
\neg b \wedge(\neg a \vee b \vee \neg c) \wedge a \wedge(\neg a \vee c)
$$

\square

\perp

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$
F \models G
$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$
F \vdash_{P} G
$$

Soundness and Completeness

A proof system P is sound iff

$$
\left(F \vdash_{P} G\right) \Longrightarrow(F \models G)
$$

A proof system P is complete iff

$$
(F \models G) \Longrightarrow\left(F \vdash_{P} G\right)
$$

Completeness of Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic

Proof by resolution

Notation: positive numbers mean variables, negative mean negation Let $\varphi=(13) \wedge(-125) \wedge(-14) \wedge(-1-4)$ We'll try to prove $\varphi \rightarrow(35)$

Resolution

Resolution is a sound and complete inference system for CNF If the input formula is unsatisfiable, there exists a proof of the empty clause

Example: UNSAT Derivation

Notation: positive numbers mean variables, negative mean negation Let $\varphi=(13) \wedge(-12) \wedge(-14) \wedge(-1-4) \wedge(-3)$

Logic for Computer Scientists: Ex. 33

Using resolution show that

$$
A \wedge B \wedge C
$$

is a consequence of

$$
\begin{array}{r}
\neg A \vee B \\
\neg B \vee C \\
A \vee \neg C \\
A \vee B \vee C
\end{array}
$$

Logic for Computer Scientists: Ex. 34

Show using resolution that F is valid

$$
\begin{aligned}
& F=(\neg B \wedge \neg C \wedge D) \vee(\neg B \wedge \neg D) \vee(C \wedge D) \vee B \\
& \neg F=(B \vee C \vee \neg D) \wedge(B \vee D) \wedge(\neg C \vee \neg D) \wedge \neg B
\end{aligned}
$$

