SAT Solving

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel

based on slides by Prof. Ruzica Piskac, Nikolaj
Bjorner, and others

%) WATERLOO

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals
e e.g., (v1 || ~v2 || v3)
A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses

e e.g., (V1 || ~v2) && (v3 || v2)
An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in ¢ to true

An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (CNF-SAT):

o determine whether a given CNF C is satisfiable

IIIIIIIIIIIIIIII

Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)

e smart enumeration of all possible SAT assignments
e worst-case EXPTIME

 alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
e conflict-driven clause learning
e extends DPLL with

— smart data structures, backjumping, clause learning, heuristics, restarts...
e scales to millions of variables

e N. Een and N. Sorensson, “An Extensible SAT-solver”, in SAT 2013.

UNIVERSITY

@ WATERLOO

Background Reading: SAT
G‘C I,C http://cacm.acm.org/magazines/

8/34498-boolean-satisfiability-from-theoretical-h Jo R 2N ¢] ” C Boolean Satisfiability: From ... l I

X Find: I currency Previous Next | Options + |
TRUSTED INSIGHTS FOR COMPUTING’S LEADING PROFESSIONALS ACM.org Join ACM About Communications ACM Resources Alerts & Feeds E
SIGN IN

COMMUNICATIONS Search »

OF THE

A C M HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE | CAREERS MAGAZINE ARCHIVE

Home / Magazine Archive / August 2009 (Vol. 52, No. 8) / Boolean Satisfiability: From Theoretical Hardness... / Full Text

REVIEW ARTICLES

Boolean Satisfiability: From Theoretical Hardness to Practical
Success

By Sharad Malik, Lintao Zhang
Communications of the ACM, Vol. 52 No. 8, Pages 76-82
10.1145/1536616.1536637

Comments User Name

SIGN IN for Full Access

VIEWAS: | Bl & 7 SHARE: =2 & @ &+ (& B Password

» Forgot Password?
» Create an ACM Web Account

There are many practical situations where we need to satisfy
several potentially conflicting constraints. Simple examples of this
abound in daily life, for example, determining a schedule for a
series of games that resolves the availability of players and venues,
or finding a seating assignment at dinner consistent with various

SIGN IN

rules the host would like to impose. This also applies to WLHEEEL HIE
applications in computing, for example, ensuring that a Introduction
hardware/software system functions correctly with its overall Boolean Satisfiability

behavior constrained by the behavior of its components and their Theoretical hardness: SAT and

PR 1IN . . [Y A, EgE N SR, I, L R BT T ey BB S

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

1,000

100

10

Speed-up (log scale)

—t

o o S S M S ® N N
& P ¢ & & ¢ & & & & & &
R & o O 4 - N @ > B N N
2 G \ \) N 2> A & & V V
N o & & & & & & © & 3 '3
o N g 2 & 2 & & & &
S R I P
< & ’\ & o) o)
@ ® ©
&
Solver

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

%) WATERLOO c

SAT - Milestones

Problems impossible 10 years ago are trivial today

year | Milestone ________

1960 Davis-Putnam procedure Con Cept
1962 Davis-Logeman-Loveland 2002 20 O
1984 Binary Decision Diagrams

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1992 DIMACS SAT challenge & | Q | AR
*r:m]n\() 2] *
o o o} Forklift 03 P v .
1994 SATO: clause indexing oo * S0 LaERN S ° |
Minisal 2006 5" LY & ¢
1997 GRASP: conflict clause s Poomo 5. 7 Lo Lo
learning sol T pumaLos § o om PR
_ Glucose 09 = r] = °ewPE o
é N Clavsp09' - & g o & ©
1998 Search Restarts o Ligingio e . ?&9
'75 600 [inisat 2.2 @ P “x/ b (i
2001 zChaff: 2-watch literal, VSIDS E & ; @f
2005 Preprocessing techniques " ® |
2007 Phase caching
2008 Cache optimized indexing w0 I
. [Le Berre'l0]
2009 In-processing, clause |
management M.II. Of(] 20 -1-0 60 . bSEO - {().01. , 120 140 160 180
I Ions o umber of problems solve
2010 Blocked clause elimination variables from
@ HW designs 6

Courtesy Daniel le Berre

Davis Putnam Logemann Loveland

DPLL PROCEDURE

5

{_gf-‘{l UNIVERSITY OF
/AA WATERLOO

Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given
propositional logic (PL) formula F is satisfiable

 NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naive approach
 Enumerate models (i.e., truth tables)
e Enumerate resolution proofs

Modern SAT solvers
e DPLL algorithm
— Davis-Putnam-Logemann-Loveland
e Combines model- and proof-based search
» Operates on Conjunctive Normal Form (CNF)

UNIVERSITY

N WATERLOO

Propositional Resolution [Pivot

Cvp DV p
CvD

\/L Resolvent }

Given two clauses (C, p) and (D, !p) that contain a literal p
of different polarity, create a new clause by taking the union
of literals in C and D

Res({C, p}, {D, Ip}) = {C, D}

5

{_gf-‘{l UNIVERSITY OF
/AA WATERLOO

SAT solving by resolution (DP)

Assume that input formula F is in CNF

1. Pick two clauses C, and C, in F that can be
resolved

2. If the resolvent C is an empty clause, return
UNSAT

3. Otherwise, add C to F and go to step 1
4. |If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses

5

{_gf-‘{l UNIVERSITY OF
/AA WATERLOO

10

DPLL: David Putham Logemann Loveland

Combines pure resolution-based search with case splitting on decisions

Proof search is restricted to unit resolution
e can be done very efficiently (polynomial time)
Case split restores completeness

DPLL can be described by the following two rules
e F is the input formula in CNF

Fp | For split pand —parenotinF

F, Cv{,~?
F,C,—?

nit

Davis, Martin; Logemann, George; Loveland, Donald (1962).
o univemsiTy o "A Machine Program for Theorem Proving".
'3/4\{ WATERLOO C. ACM. 5 (7). 394-397. doi:10.1145/368273.368557

The original DPLL procedure

Incrementally builds a satisfying truth assignment
M for the input CNF formula F

M is grown by
e deducing the truth value of a literal from M and F, or
e guessing a truth value

If a wrong guess for a literal leads to an
iInconsistency, the procedure backtracks and tries
the opposite value

B”{'I uuuuuuuuuuuu
%A\\ WATERLOO 12

DPLL: lllustration

IIIIIIIIIIII

WATERLOO

13

DPLL: lllustration

Guessing

pl pvag —qvr

v

p,—q|lpvag —-qvr

IIIIIIIIIIII

14

DPLL: lllustration

Deducing

Pl pvag —pvVvs

v

p,s|pvag,—pvVvs

IIIIIIIIIIII

15

DPLL: lllustration

Backtracking

p,—s, q | pva,svqg,—pv-Q

v

p,s|pva,svaq,—pv-qQ

IIIIIIIIIIII

WATERLOO

16

Pure Literals

A literal is pure if only occurs positively or negatively.

Example :
p=(=x1 Vxo)A(x3 V-x2)A(xaV—x5)A(X5V —xa)
—x1 and x3 are pure literals

Pure literal rule :
Clauses containing pure literals can be removed from the
formula (i.e. just satisfy those pure literals)

Pxiz = (X4 V 7x5) A (x5 V xa)

Preserve satisfiability, not logical equivalency !

IIIIIIIIIIII

WATERLOO

17

DPLL (as a procedure)

» Standard backtrack search

» DPLL(F) :

Apply unit propagation

If conflict identified, return UNSAT
Apply the pure literal rule

If F is satisfied (empty), return SAT
Select decision variable x

» |f DPLL(F A x)=SAT return SAT
» return DPLL(F A —x)

vy v v v v

IIIIIIIIIIII

18

IIIIIIIIIIIIIIII

The Original DPLL Procedure — Example

assign

Deduce 1

1
Deduce —2

1,2
Guess 3
1,2,3
Deduce 4

1, 2, 3,
4

Conflict

1v2,2v-3vd —1v—2,
—|1V—|3V—|4,1

1v2,2v-3vdd -1v-2,

—|1\/—|3\/—|4,1

1v2,2v-3vd —-1v—-2,
—|1V—|3V—|4,1

1v2,|2v-3vd —-1v—-2
—|1V—|3V—|4,1

1v2,2v-3vid —-1v—2,
—|1\/—|3\/—|4,1

19

IIIIIIIIIIIIIIII

The Original DPLL Procedure — Example

assign

Deduce 1

1
Deduce —2

1,2
Guess 3
1,2,3
Deduce 4

1, 2, 3,
4

Undo 3

1v2,2v-3vd —1v—2,
—|1V—|3V—|4,1

1v2,2v-3vdd -1v-2,

—|1\/—|3\/—|4,1

1v2,2v-3vd —-1v—-2,
—|1V—|3V—|4,1

1v2,|2v-3vd —-1v—-2
—|1V—|3V—|4,1

1v2,2v-3vid —-1v—2,
—|1\/—|3\/—|4,1

20

The Original DPLL Procedure — Example

assign 1v2,2v-3vd —-1v—-2,
Deduce 1 —~1v-3v-4,1
1 1v2,2v-3vd —1v-2,
Deduce —2 —1v—=3v-4,1
1, 2 1v2,2v-3vd, —-1v-—-2
Guess —3 —1Tv—=3v-41
1,2, 3 1v2,2v-3vd —-1v—-2,
Model —1Tv—-3v-41
Found

B WATERLGO

An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-
style calculi

Such calculi, however, cannot model meta-logical features such as
backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of
conditional transition rules

GF UNIVERSITY OF

%) WATERLOO 29

An Abstract Framework for DPLL

State

o failorM | F
e where
— F is a CNF formula, a set of clauses, and
— M is a sequence of annotated literals denoting a partial truth assignment

Initial State

* @ | F, where F is to be checked for satisfiability
Expected final states:

e fail if F is unsatisfiable
M| G
where
— M is a model of G
— G is logically equivalent to F

IIIIIIIIIIII

23

Transition Rules for DPLL

Extending the assignment:

M|F,Cvl>MI|F,C |<[M= =G
UnitP ,Cvi— ,Cv
HTop | is undefined in M

MIF.C >MHE|F.C { | or —l occur in C
Decid ’ ’
eclae | is undefined in M

Notation: 19 is a decision literal

IIIIIIIIIIIII

%) WATERLOO 24

Transition Rules for DPLL

Repairing the assignment:

_ ME -C
Fail M| F, C— fail
M does not contain

decision literals

MIdN E -C
Backtrack MEN | F,C>M-l | F,C . .
| is the last decision

literal

IIIIIIIIIIIII

%) WATERLOO o5

Transition Rules DPLL — Example

IIIIIIIIIIIIIIII

dl1v2,2v-83v4, -1v-2 -1
\/—|3\/—|4,1

111v2,2v-3v4 -1v-2,-1Tva3v
— 4,1

1,2"1\/2,2V—|3\/4,—|1\/ﬁ2,ﬁ1v
—|3V—|4,1

1,2,39|1v2,2v-383v4 -1v-2,-1v
—|3V—|4,1

1,2,394|1v2,2v-3v4 —=1v—
2,—|1\/ﬁ3\/ﬁ4,1

UnitProp
1

UnitProp
—2

Decide 3

UnitProp
4

Backtrack
3

26

Transition Rules DPLL — Example

dl1v2,2v-83v4, -1v-2 -1

vadva4, UnitProp
111v2,2v=3vd -1va2 —-1v=3v 1
—4, UnitProp
1,211v2,2v=383v4 —1v—2—1v —2
—3va4d, Decide 3
1,2,39|1v2,2v-383v4 -1v-2,-1v
—3va4] UnitProp
1,2,3|1v2,2v-3v4, -1v—-2,-1v)
3v—ad 1 Backtrack
3

% WATERLGO 27

Transition Rules for DPLL (on one slide)

M|F,CvlI->MI|F,C |{ Mt
U 'tP y V —> ’ Vv
NItFrop | is undefined in M

M F.C—sMI [F,C {IorﬁloccurinC
. ’ _) ,
Decide | is undefined in M

_ ME-C
Fail M| F, C — fail
M does not contain
decision literals
MIEN E -C
Backtrack MINJ[F, C—o>M-I| . L
F.C | is the last decision literal

IIIIIIIIIIIII

28

The DPLL System — Correctness

Some terminology
e Irreducible state: state to which no transition rule applies.

e Execution: sequence of transitions allowed by the rules and starting with
states of the form @ Il F.

o Exhausted execution: execution ending in an irreducible state
Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with
@ llFandendinginMIIF, MEF

Proposition (Completeness) If F is unsatisfiable, every exhausted
execution starting with @ I| F ends with fail

Maintained in more general rules + theories

UNIVERSITY

E WATERLOO

29

Modern DPLL: CDCL

Conflict Driven Clause Learning

e two watched literals — efficient index to find clauses that can be
used in unit resolution

e periodically restart backtrack search
e activity-based decision heuristic to choose decision variable
» conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in

e Chapter 2 of Decision Procedures book
e http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf

IIIIIIIIIIII

30

Conflict Directed Clause Learning
Lemma learning

—t,p,q,s |tv—=pvag —qvVvs,—apv—s

—t,p,q,s|tv=pvag, —qvVvs,—pv-—=s |—=pv—s

—t,p,q,s|tv=apvag, —qVvs,—pv—s|—pv—q

—t,p,q,s|tv—=pvag —qvVvs,—pv—-s|—pvt

IIIIIIIIIIII

WATERLOO

31

Learned Clause by Resolution

A new clause is learned by resolving the conflicting clause with clauses
deduced from the last decision

tV - pVq —qV S

tV-pVs —pV S

=V

s

‘_gfr‘?l UNIVERSITY OF
% WATERLOO

32

Modern CDCL: Abstract Rules

Initialize €| F F is a set of clauses

/ Decide M|F =M+{ | F ? is unassigned
Propagate M | F.Cve = M, ¢Vt | F,Cv? C is false under M

\ Sat M|F =M F true under M

4 Conflict M|F,C =M | F,C|C C is false under M I
Learn M|F|C=M]| F,C|C

. Unsat M| F |@ = Unsat .
Backiump ~ MM'|F|Cv+¢= M{V¢| F CcM—~teM %f/
Resolve M|F|CV—~¢=M|F|CVC Ve M
Forget M|F,C = M| F C is a learned clause
Restart M|F= €| F [Nieuwenhuis, Oliveras, Tinelli J ACM 06] customized

": il UNIVER

SR SITY OF
% WATERLOO

33

Conjuctive Normal Form

p Y =CNF @ > YNANY =
p — Y = CONF VY
=(p V) = CNF - A\ =)
—(p A) = CNF i V =)
2 — CNF ©

(e AY)VE =conr (PVE) AW VE)

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula

(@58 UNIVERSITY OF

% WATERLOO

34

Tseitin Transformation — Main Ildea

Introduce a fresh variable e, for every subformula G;
of F

e intuitively, e, represents the truth value of G,
Assert that every e; and G; pair are equivalent
* e G

e and express the assertion as CNF

Conjoin all such assertions in the end

IIIIIIIIIIIIIIII

35

Formula to CNF Conversion

mk_fresh _var() returns a fresh

def cnf (¢): variable not used anywhere before

p, F = cnf_rec (¢)

return p A F

def cnf_rec (¢):
if is_atomic (¢): return (¢, True)
elif ¢ == Y A &:
q, F, = cnf_rec (V)
r, F, = cnf_rec (§)

p = mk_fresh_var ()
C 1s CNF for p<»(gAr)
C = (-pvq)A(=pVr)A(pV-qV-r)
return (p, F;AF,AC)
elif ¢ == PVv&:

Exercise: Complete cases for

9 i ¢ == WV, 0==—Y, ¢ == Y

Tseitin Transformation: Example

B WATERLGO

@

. €9/ (€0 < (P=€9)) N (€14 (g—))

e1 < (q—1)

(e1 = (gq—=71)AN((g—=1) — €1)

(me1 VagVr)A((—qgVr)—er)

(me1 VogVr)A(—qg—e) A(r—ep)
(me1 V=gV r)A(gVer)AN(—rVer)

38

Tseitin Transformation: Example

G:pe(@-or)

@ G:epN(eg+ (breq)) N (e (g—))

Q Q eg <> (p <> e1)

eo —> (prer)) A((prer)) — eg)
eg — (p—e1)) A(eg — (e1 — p)) A

(
(
E((p Ae1)V (mpA—er)) — eo)
(

—egV-pVer)A(megV e Vp)A
—pV —e1 Vey) A(pVerVeg)

IIIIIIIIIIII

%) WATERLOO 39

Tseitin Transformation: Example

G:pe(@-or)

€0

»)

IIIIIIIIIIII

G:ep/(ey< (prey)) A (e, (g—1))

G:ep/N(—ey)vV—pVve,) N (—evpV—e,) /(e
vpve,) A (eV—pV—e,) /
(—e;v-qvr) A (e, Vg)A (e V)

40

Tseitin Transformation [1968]

Used in practice
* No exponential blow-up
e CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:
e F’is equisatisfiable to F

e Every model of F’ can be translated (i.e., projected) to a model of F
e Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion

UNIVERSITY

%7 WATERLOO

41

