
Symbolic Execution Semantics for WHILE

Language

Arie Gurfinkel

January 23, 2018

1 Operational Semantics

Let L be the set of program variables. A concrete state q (also called an environ-
ment) is a map from program variables L to integers. We write [] for an empty
state, i.e., a state in which no variables are defined. We write [x := u, y := v] for
a state in which x has value u and y has value v. Given a state q, a variable
x and a value n, we write q(x) for the value of x in q, and q[x := n] for a state
obtained from q by replacing the value of x by n. Formally,

q[x := v](w) =

{
v if x = w

q(v) otherwise
(1)

Operational semantics for the WHILE language is shown in Fig. 1. The
judgement has the form 〈s, q〉 ⇓ q′, where s is a statement, q and q′ are the input
and output states, respectively. All inference rules in Fig. 1 are deterministic –
each input state has only one legal output state. The only exception is the rule
for the havoc statement.

2 Symbolic Execution Semantics

A symbolic state (or symbolic environment) q is a map from program variables
to symbolic expressions. A path condition is a formula over symbolic expres-
sions. Symbolic execution semantics of the WHILE language are shown in
Fig. 2. A judgement in symbolic execution has a form 〈s, q, pc〉 ⇓ q′, pc′, where
s is a statement, q and q′ are the input and output symbolic environments,
respectively, and pc and pc′ are input and output path conditions, respectively.
Note that since WHILE language does not have inputs, symbolic expressions
are introduced into the state by the havoc statement.

Unlike the concrete operational semantics in Fig. 1, the rules of symbolic se-
mantics are non-deterministic. A statement might have several legal executions
in a given symbolic state q. For example, both branches of an if-statement can
be executed if both the condition b and its negation ¬b are consistent with the
current path condition pc.

1

〈skip, q〉 ⇓ q 〈print state, q〉 ⇓ q

〈s1, q〉 ⇓ q′′ 〈s2, q′′〉 ⇓ q′

〈s1 ; s2, q〉 ⇓ q′
〈e, q〉 ⇓ n

〈x := e, q〉 ⇓ q[x := n]

〈b, q〉 ⇓ true 〈s1, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′
〈b, q〉 ⇓ false 〈s2, q〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

〈b, q〉 ⇓ false

〈while b do s, q〉 ⇓ q

〈b, q〉 ⇓ true 〈s ; while b do s, q〉 ⇓ q′

〈while b do s, q〉 ⇓ q′

〈havoc x, q〉 ⇓ q[x := n]

Figure 1: Operational semantics for the statements of the WHILE language.

3 Operational Semantics of Concolic Execution

In concolic execution, the set of program variables L is partitioned into symbolic,
Sym(L), and concrete, Con(L), variables. It is possible that all variables are
symbolic, i.e., Con(L) = ∅ or that all variables are concrete. For a given variable
a, we write Sym(a) and Con(a) to indicate that a is symbolic or concrete,
respectively.

A state of concolic execution is a triple q = 〈c, s, pc〉, where c is a concrete
state, s a symbolic environment, and pc is a formula called the path condition.
Given a state q = 〈c, s, pc〉, we write con(q) for c, sym(q) for s, and pc(q) for pc.
Symbolic environment, path condition, and concrete state are as in symbolic
and concrete execution, respectively. However, concrete state also has a value
for every symbolic variable. We call those concrete variables concrete shadows.
That is, if b is a symbolic variable and q a concolic state, then sym(q)(b) is
the symbolic value of b, and con(q)(b) is the value of the concrete shadow of b.
Given two concrete states c1 and c2, we write c1 ≡con c2 to indicate that that
they are identical on the concrete variables:

c1 ≡con c2 ⇐⇒ ∀a ∈ Con(L) · c1(a) = c2(a)

Given a concrete state c and a symbolic state 〈s, pc〉, we write c |= 〈s, pc〉 to
indicate that the concrete state c is contained in the symbolic state.

The semantics of expressions is as usual with variables evaluated based
on their kind: concrete variables are evaluated over con(q) and symbolic over
sym(q):

con(a) 〈a, con(q)〉 ⇓ v

〈a, q〉 ⇓ v

sym(a) 〈a, sym(q)〉 ⇓ v

〈a, q〉 ⇓ v

2

〈skip, q, pc〉 ⇓ q, pc

〈print state, q, pc〉 ⇓ q, pc

〈s1, q, pc〉 ⇓ q′′, pc′′ 〈s2, q′′, pc′′〉 ⇓ q′, pc′

〈s1 ; s2, q, pc〉 ⇓ q′, pc′

〈e, q〉 ⇓ v

〈x := e, q, pc〉 ⇓ q[x := v], pc

〈b, q〉 ⇓ v pc ∧ v is SAT 〈s1, q, pc ∧ v〉 ⇓ q′, pc′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc′

〈b, q〉 ⇓ v pc ∧ ¬v is SAT 〈s2, q, pc ∧ ¬v〉 ⇓ q′, pc′

〈if b then s1 else s2, q, pc〉 ⇓ q′, pc′

〈b, q〉 ⇓ v pc ∧ ¬v is SAT

〈while b do s, q, pc〉 ⇓ q, pc ∧ ¬v

〈b, q〉 ⇓ v pc ∧ v is SAT 〈s ; while b do s, q, pc ∧ v〉 ⇓ q′, pc′

〈while b do s, q, pc〉 ⇓ q′, pc′

V is a fresh symbolic constant

〈havoc x, q, pc〉 ⇓ q[x := V]

Figure 2: Symbolic Execution Semantics of the WHILE language.

For most statements, the semantics is extended by applying both symbolic
and concrete operational semantics in parallel. The last pre-condition ensures
that the concrete and symbolic states are chosen consistently.

〈s, con(q)〉 ⇓ c 〈s, sym(q), pc(q)〉 ⇓ s′, pc′ c |= 〈s′, pc′〉
〈s, q〉 ⇓ 〈c, s′, pc′〉

Assignment of values to concrete variables is limited to concrete values only.

〈e, q〉 ⇓ n con(x) n ∈ Z
〈x := e, q〉 ⇓ q[x := n]

Thus, it is not possible to assign symbolic variables (or symbolic expressions) to
concrete variables. If necessary, assigning symbolic values to concrete variables

3

can be done either by treating all variables as symbolic (i.e., Con(L) = ∅), or
concretizing symbolic state before assignment (which we describe later on).

Assignment to symbolic variables also assigns to their concrete shadows.
At if-statement, concolic execution can chose to switch to the branch that is

not consistent with current concrete state, as long as the concrete state can be
adjusted. We only show one of the cases:

〈b, con(q)〉 ⇓ true
〈b, q〉 ⇓ v pc(q) ∧ ¬v is SAT c |= 〈sym(q), pc(q) ∧ ¬v〉

c ≡con con(q) 〈s2, 〈c, sym(q), pc(q) ∧ ¬v〉〉 ⇓ q′

〈if b then s1 else s2, q〉 ⇓ q′

In this case, according to the concrete state the branch condition b is true. At
the same time, according to symbolic state, the negation of the branch condition
¬b and the current path condition are satisfiable. The concolic execution can
proceed according to the else-branch, but the concolic state needs to be first
updated such that:

1. the concrete portion is updated to be consistent with the negation of the
branch condition

2. the path condition is extended with the negation of the path condition.

Note that it is only possible to take the else-branch if the condition value can
be controlled by the symbolic part of the state. Branch conditions that do not
depend on the input (such as iterations of the loops) can only be resolved one
way (i.e., either true or false).

Finally, concolic execution semantics provide concretization step that allows
to turn symbolic variables (or values) to their concrete values in the current
concrete state. The effect of concretization is captured by the so called con-
cretization constraints in the path condition:

sym(x) 〈x, con(q)〉 ⇓ n
〈x, sym(q)〉 ⇓ v 〈s, 〈con(q), sym(q)[x := n], pc(q) ∧ v = n〉〉 ⇓ q′

〈s, q〉 ⇓ q′

The rule says that if x is a symbolic variable with symbolic value v and it is
currently shadowed concretely by a concrete value n, then we can update the
symbolic value of x to n as long as we also update the path condition with v = n
to reflect the concretization step.

4

	Operational Semantics
	Symbolic Execution Semantics
	Operational Semantics of Concolic Execution

