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Automated Test Case Generation

Test cases can be generated automatically, but…

How to generate interesting test inputs
• Black box – truly random, common / interesting test patterns
• Grey box – guided by coverage, new inputs should cover new code paths
• White box – symbolic reasoning about program code, new inputs are 

guaranteed to cover new code paths

How to generate automatic / generic test oracles
• do not crash! (easy to check, but often not informative / soon enough)
• do not misuse memory (buffer overflow, use-after-free, …)
• no data races
• user written assertions!
• domain specific specifications and oracles
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How to detect bad memory accesses

Will this program crash?
• depends on the implementation of the memory allocator (malloc())
• If memory for x and y is allocated next to one another, then *(x+12) is 

the same as *(y+2) which is well defined
• otherwise, it might crash

Unpredictable behavior makes it difficult to test and diagnose the 
problem. Big issue for automatic testing!

void foo() {
int *x = malloc(10*sizeof(int));
int *y = malloc(5*sizeof(int));

*y = *(x + 12);
}
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An instrumentation framework for dynamic 
analysis tools

Interprets a program on “synthetic” CPU

Analysis tools inspect CPU instructions and insert 
additional checks at very low level

Execution of every instruction is interpreted in a 
sandbox and error report is produced when 
suspicious behavior is detected

Pros: very detailed analysis
Cons: 10x or more slowdown in performance
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Address Sanitizer

Compile-time instrumentation

Supported by Clang and GCC

Run-time library (~ 5 KLOC)

Supports {x86, x86_64} x {Linux, Mac, Windows}

Found hundreds of bugs since 2011
• often used in production code
• major part of any automated test-case generation validation
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Key Idea: Instrument all Memory Accesses

The compiler instruments each store and load instruction with a check 
whether the memory being accessed is accessible (not poisoned)
• instrumentation must be very very efficient!
• meta-information about memory (poison/non-poison/etc) must be stored 

somewhere

*addr = e
if (IsPoisoned(addr)) 

ReportError(addr, sz, true); 
*addr = e; 

e = *addr
if (IsPoisoned(addr)) 

ReportError(addr, sz, false); 
e = *addr; 

Original Instrumented
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Memory Mapping

Virtual memory is divided into two disjoint classes: Mem and Shadow
• Mem is the normal application memory
• Shadow is memory that keeps track of meta-data (information) about main 

memory. For each byte addr of Mem, Shadow contains a descriptor 
Shadow[addr]

Poisoning a byte addr of Mem means writing a special value to 
corresponding place in Shadow

Mem and Shadow must be organized in such a way that mapping Mem
address to Shadow is super fast

shadow_addr = MemToShadow(addr); 
if (ShadowIsPoisoned(shadow_addr)) { 

ReportError(addr, sz, kIsWrite); 
}
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Memory Alignment

Process memory is divided into 8 byte words, called QWORDs

Heap and stack allocation (malloc(), alloca(), local variables) are 
allocated at a qword boundary
• i.e., address of an allocated memory is always divisible by 8
• this is called alignment (of 8 bytes)
• actual alignment depends on the architecture (4, 8, 16, 128 are possible)
• For simplicity, we fix all alignments at 8 bytes

Depending on the architecture (ARM, Intel, …) unaligned memory 
accesses are expensive / impossible
• Compilers and runtime allocators optimize the code so that most accesses 

are aligned
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State of an allocated QWORD

AddressSanitizer maps each QWORD of Mem into one byte of Shadow

Each QWORD can be in one of 9 states

• All 8 bytes are accessible (not poisoned). Shadow value is 0

• All 8 bytes are inaccessible (poisoned). Shadow value is negative (< 0)

• First k bytes are accessible, the rest 8-k byes are not, 0 < k < 8. Shadow is k

No other cases are possible because allocation is aligned at QWORD 

boundary

• e.g., malloc(12) allocated 2 QWORDS

– all 8 bytes of the first qword are accessible

– only 4 bytes of the second qword are accessible
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New Instrumentation

byte *shadow_addr = MemToShadow(addr);
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr + sz - 1) % 8;
return (last_accessed_byte >= shadow_value);

}
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New Instrumentation (with some bit magic)

byte *shadow_addr = MemToShadow(addr);
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr & 7) + sz - 1; 
return (last_accessed_byte >= shadow_value);

}
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MemToShadow: The big trick

MemToShadow(addr) must map each QWORD of 
application memory Mem to a byte of the shadow 
memory Shadow

Must be very very very efficient
• as few CPU instructions as possible

Exploits the physical layout of process memory
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Process Address Space Layout

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
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Mapping: Shadow = (Mem >> 3) + 0x20000000
0xffffffff

0x40000000
0x3fffffff 
0x28000000

0x27ffffff 
0x24000000

0x23ffffff 
0x20000000

0x1fffffff

0x00000000

0xffffffff

0x40000000
0x3fffffff 
0x28000000

0x27ffffff 
0x24000000

0x23ffffff 
0x20000000

0x1fffffff

0x00000000

HighMem

HShadow

Unused

LShadow

LowMem
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Final Instrumentation (with all the magic)

byte *shadow_addr = addr >> 3 + 0x20000000;
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr & 7) + sz - 1; 
return (last_accessed_byte >= shadow_value);

}
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But does this work for our original example?

Will this program crash?
• depends on the implementation of the memory allocator (malloc())
• If memory for x and y is allocated next to one another, then *(x+12) is 

the same as *(y+2) which is well defined
• otherwise, it might crash

Unpredictable behavior makes it difficult to test and diagnose the 
problem. Big issue for automatic testing!

void foo() {
int *x = malloc(10*sizeof(int));
int *y = malloc(5*sizeof(int));

*y = *(x + 12);
}
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Marking Allocation boundaries with redzones

Change heap allocator to mark boundaries of allocated segments
• The markers are called redzones
• All calls to malloc() are replaced with calls to __asan_malloc()

void *__asan_malloc(size_t sz) {
void *rz = malloc(RED_SZ);
Poison(rz, RED_SZ);

void *addr = malloc(sz);
UnPoison(addr, sz);

rz = malloc(RED_SZ);
Poison(rz, RED_SZ);
return addr;

}
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What about the Stack

No explicit allocation
Need to ensure proper alignment
Need to insert redzones

void foo() {
char a[8];

...

return;
}
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Instrumented Stack Example

void foo() {
char redzone1[32];  // 32-byte aligned
char a[8];          // 32-byte aligned
char redzone2[24];
char redzone3[32];  // 32-byte aligned
int *shadow_base = MemToShadow(redzone1);
shadow_base[0] = 0xffffffff;  // poison redzone1
shadow_base[1] = 0xffffff00;  // poison redzone2, unpoison 'a'
shadow_base[2] = 0xffffffff;  // poison redzone3

...

shadow_base[0] = shadow_base[1] = shadow_base[2] = 0; // unpoison all
return;

}
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Instrumentation in X86 ASM

# long load8(long *a) { return *a; }

0000000000000030 <load8>:

30: 48 89 f8             mov %rdi,%rax

33: 48 c1 e8 03          shr $0x3,%rax

37: 80 b8 00 80 ff 7f 00 cmpb $0x0,0x7fff8000(%rax)

3e: 75 04                jne 44 <load8+0x14>

40: 48 8b 07             mov (%rdi),%rax <<<<<< original load
43: c3                   retq

44: 52                   push   %rdx

45: e8 00 00 00 00       callq __asan_report_load8
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Instrumentation in X86 ASM
# int load4(int *a)  { return *a; }

0000000000000000 <load4>:
0: 48 89 f8             mov %rdi,%rax
3: 48 89 fa             mov %rdi,%rdx
6: 48 c1 e8 03          shr $0x3,%rax
a: 83 e2 07             and    $0x7,%edx
d: 0f b6 80 00 80 ff 7f movzbl 0x7fff8000(%rax),%eax
14: 83 c2 03             add    $0x3,%edx
17: 38 c2                cmp %al,%dl
19: 7d 03                jge 1e <load4+0x1e>
1b: 8b 07                mov (%rdi),%eax <<<<<< original load
1d: c3                   retq
1e: 84 c0                test   %al,%al
20: 74 f9                je 1b <load4+0x1b>
22: 50                   push   %rax
23: e8 00 00 00 00       callq __asan_report_load4
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Other Available Sanitizers (in Clang)

ThreadSafetySanitizers

• race conditions. Is a variable being modified/accessed by two threads without 

being protected by a lock

MemorySanitizer

• uninitialized reads. 3x slow-down

• requires ALL code to be instrumented

Undefined Behavior Sanitizer (ubsan)

• many checks for undefined behaviors such as integer overflow, nullptr, etc.

DataFlowSanitizer

• a framework to write data-flow dynamic sanitizers

• CREATE YOUR OWN!

Leak Sanitizer

• detects memory leaks

• no performance overhead


