
Automated Test-Case Generation:
Address Sanitizer

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

based on
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

2 2

Automated Test Case Generation

Test cases can be generated automatically, but…

How to generate interesting test inputs
• Black box – truly random, common / interesting test patterns
• Grey box – guided by coverage, new inputs should cover new code paths
• White box – symbolic reasoning about program code, new inputs are

guaranteed to cover new code paths

How to generate automatic / generic test oracles
• do not crash! (easy to check, but often not informative / soon enough)
• do not misuse memory (buffer overflow, use-after-free, …)
• no data races
• user written assertions!
• domain specific specifications and oracles

3 3

How to detect bad memory accesses

Will this program crash?
• depends on the implementation of the memory allocator (malloc())
• If memory for x and y is allocated next to one another, then *(x+12) is

the same as *(y+2) which is well defined
• otherwise, it might crash

Unpredictable behavior makes it difficult to test and diagnose the
problem. Big issue for automatic testing!

void foo() {
int *x = malloc(10*sizeof(int));
int *y = malloc(5*sizeof(int));

*y = *(x + 12);
}

4 4

An instrumentation framework for dynamic
analysis tools

Interprets a program on “synthetic” CPU

Analysis tools inspect CPU instructions and insert
additional checks at very low level

Execution of every instruction is interpreted in a
sandbox and error report is produced when
suspicious behavior is detected

Pros: very detailed analysis
Cons: 10x or more slowdown in performance

5 5

Address Sanitizer

Compile-time instrumentation

Supported by Clang and GCC

Run-time library (~ 5 KLOC)

Supports {x86, x86_64} x {Linux, Mac, Windows}

Found hundreds of bugs since 2011
• often used in production code
• major part of any automated test-case generation validation

6 6

Key Idea: Instrument all Memory Accesses

The compiler instruments each store and load instruction with a check
whether the memory being accessed is accessible (not poisoned)
• instrumentation must be very very efficient!
• meta-information about memory (poison/non-poison/etc) must be stored

somewhere

*addr = e
if (IsPoisoned(addr))

ReportError(addr, sz, true);
*addr = e;

e = *addr
if (IsPoisoned(addr))

ReportError(addr, sz, false);
e = *addr;

Original Instrumented

7 7

Memory Mapping

Virtual memory is divided into two disjoint classes: Mem and Shadow
• Mem is the normal application memory
• Shadow is memory that keeps track of meta-data (information) about main

memory. For each byte addr of Mem, Shadow contains a descriptor
Shadow[addr]

Poisoning a byte addr of Mem means writing a special value to
corresponding place in Shadow

Mem and Shadow must be organized in such a way that mapping Mem
address to Shadow is super fast

shadow_addr = MemToShadow(addr);
if (ShadowIsPoisoned(shadow_addr)) {

ReportError(addr, sz, kIsWrite);
}

8 8

Memory Alignment

Process memory is divided into 8 byte words, called QWORDs

Heap and stack allocation (malloc(), alloca(), local variables) are
allocated at a qword boundary
• i.e., address of an allocated memory is always divisible by 8
• this is called alignment (of 8 bytes)
• actual alignment depends on the architecture (4, 8, 16, 128 are possible)
• For simplicity, we fix all alignments at 8 bytes

Depending on the architecture (ARM, Intel, …) unaligned memory
accesses are expensive / impossible
• Compilers and runtime allocators optimize the code so that most accesses

are aligned

9 9

State of an allocated QWORD

AddressSanitizer maps each QWORD of Mem into one byte of Shadow

Each QWORD can be in one of 9 states

• All 8 bytes are accessible (not poisoned). Shadow value is 0

• All 8 bytes are inaccessible (poisoned). Shadow value is negative (< 0)

• First k bytes are accessible, the rest 8-k byes are not, 0 < k < 8. Shadow is k

No other cases are possible because allocation is aligned at QWORD

boundary

• e.g., malloc(12) allocated 2 QWORDS

– all 8 bytes of the first qword are accessible

– only 4 bytes of the second qword are accessible

10 10

New Instrumentation

byte *shadow_addr = MemToShadow(addr);
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr + sz - 1) % 8;
return (last_accessed_byte >= shadow_value);

}

11 11

New Instrumentation (with some bit magic)

byte *shadow_addr = MemToShadow(addr);
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr & 7) + sz - 1;
return (last_accessed_byte >= shadow_value);

}

12 12

MemToShadow: The big trick

MemToShadow(addr) must map each QWORD of
application memory Mem to a byte of the shadow
memory Shadow

Must be very very very efficient
• as few CPU instructions as possible

Exploits the physical layout of process memory

13 13

Process Address Space Layout

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

14 14

Mapping: Shadow = (Mem >> 3) + 0x20000000
0xffffffff

0x40000000
0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff

0x00000000

0xffffffff

0x40000000
0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff

0x00000000

HighMem

HShadow

Unused

LShadow

LowMem

15 15

Final Instrumentation (with all the magic)

byte *shadow_addr = addr >> 3 + 0x20000000;
byte shadow_value = *shadow_addr;

if (shadow_value < 0) ReportError(addr, sz, kIsWrite);
else if (shadow_value) {
if (SlowPathCheck(shadow_value, addr, sz)) {

ReportError(addr, sz, kIsWrite);
}

}

bool SlowPathCheck(shadow_value, addr, sz) {
last_accessed_byte = (addr & 7) + sz - 1;
return (last_accessed_byte >= shadow_value);

}

16 16

But does this work for our original example?

Will this program crash?
• depends on the implementation of the memory allocator (malloc())
• If memory for x and y is allocated next to one another, then *(x+12) is

the same as *(y+2) which is well defined
• otherwise, it might crash

Unpredictable behavior makes it difficult to test and diagnose the
problem. Big issue for automatic testing!

void foo() {
int *x = malloc(10*sizeof(int));
int *y = malloc(5*sizeof(int));

*y = *(x + 12);
}

17 17

Marking Allocation boundaries with redzones

Change heap allocator to mark boundaries of allocated segments
• The markers are called redzones
• All calls to malloc() are replaced with calls to __asan_malloc()

void *__asan_malloc(size_t sz) {
void *rz = malloc(RED_SZ);
Poison(rz, RED_SZ);

void *addr = malloc(sz);
UnPoison(addr, sz);

rz = malloc(RED_SZ);
Poison(rz, RED_SZ);
return addr;

}

18 18

What about the Stack

No explicit allocation
Need to ensure proper alignment
Need to insert redzones

void foo() {
char a[8];

...

return;
}

19 19

Instrumented Stack Example

void foo() {
char redzone1[32]; // 32-byte aligned
char a[8]; // 32-byte aligned
char redzone2[24];
char redzone3[32]; // 32-byte aligned
int *shadow_base = MemToShadow(redzone1);
shadow_base[0] = 0xffffffff; // poison redzone1
shadow_base[1] = 0xffffff00; // poison redzone2, unpoison 'a'
shadow_base[2] = 0xffffffff; // poison redzone3

...

shadow_base[0] = shadow_base[1] = shadow_base[2] = 0; // unpoison all
return;

}

20 20

Instrumentation in X86 ASM

long load8(long *a) { return *a; }

0000000000000030 <load8>:

30: 48 89 f8 mov %rdi,%rax

33: 48 c1 e8 03 shr $0x3,%rax

37: 80 b8 00 80 ff 7f 00 cmpb $0x0,0x7fff8000(%rax)

3e: 75 04 jne 44 <load8+0x14>

40: 48 8b 07 mov (%rdi),%rax <<<<<< original load
43: c3 retq

44: 52 push %rdx

45: e8 00 00 00 00 callq __asan_report_load8

21 21

Instrumentation in X86 ASM
int load4(int *a) { return *a; }

0000000000000000 <load4>:
0: 48 89 f8 mov %rdi,%rax
3: 48 89 fa mov %rdi,%rdx
6: 48 c1 e8 03 shr $0x3,%rax
a: 83 e2 07 and $0x7,%edx
d: 0f b6 80 00 80 ff 7f movzbl 0x7fff8000(%rax),%eax
14: 83 c2 03 add $0x3,%edx
17: 38 c2 cmp %al,%dl
19: 7d 03 jge 1e <load4+0x1e>
1b: 8b 07 mov (%rdi),%eax <<<<<< original load
1d: c3 retq
1e: 84 c0 test %al,%al
20: 74 f9 je 1b <load4+0x1b>
22: 50 push %rax
23: e8 00 00 00 00 callq __asan_report_load4

22 22

Other Available Sanitizers (in Clang)

ThreadSafetySanitizers

• race conditions. Is a variable being modified/accessed by two threads without

being protected by a lock

MemorySanitizer

• uninitialized reads. 3x slow-down

• requires ALL code to be instrumented

Undefined Behavior Sanitizer (ubsan)

• many checks for undefined behaviors such as integer overflow, nullptr, etc.

DataFlowSanitizer

• a framework to write data-flow dynamic sanitizers

• CREATE YOUR OWN!

Leak Sanitizer

• detects memory leaks

• no performance overhead

