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Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a 
model
• if F is propositional, a model is a truth assignment to Boolean variables
• if F is first-order formula, a model assigns values to variables and 

interpretation to all the function and predicate symbols

SAT Solvers
• check satisfiability of propositional formulas

SMT Solvers
• check satisfiability of formulas in a decidable first-order theory (e.g., linear 

arithmetic, uninterpreted functions, array theory, bit-vectors)
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(Optional) Background Reading: SMT

September 2011
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SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories
SMT-LIB syntax
• based on s-expressions (LISP-like)
– https://en.wikipedia.org/wiki/S-expression

• common syntax for interpreted functions of different theories
– e.g. (and (= x y) (<= (* 2 x) z))

• commands to interact with the solver
– (declare-fun …) declares a constant/function symbol
– (assert p) conjoins formula p to the curent context
– (check-sat) checks satisfiability of the current context
– (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3

http://rise4fun.com/z3
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SMT-LIB Syntax

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)
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SMT Example

http://rise4fun.com/z3

http://rise4fun.com/z3
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z3 python package

create constants

SMT solver

create constraints 
and add to solver

run solver. can 
take long time.

result is: sat, 
unsat, unknown
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Useful Z3Py Functions

All these functions are under python package z3
Create constants and values
• Int(name) – an integer constant with a given name
• FreshInt(name) – unique constant starting with name
• IntVal(v), BoolVal(v) – integer and boolean values

Arithmetic functions and predicates
• +,-,/,<,<=,>,>=,==, etc.
• Distinct(a, b, …) – the arugments are distinct (expands to many disequalities)

Propositional operators
• And, Or, Not

Methods of the z3.Solver class
• add(fml) – add formula fml to the solver
• check() – returns z3.sat, z3.unsat, or z3.unknown (on failure to solve)
• model() – model if the result is sat

Methods of z3.Model class
• eval(fml) – returns the value of fml in the model
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Dog, Cat, Mouse

Spend exactly 100 dollars and buy exactly 100 animals.
• Dogs cost 15 dollars, 
• cats cost 1 dollar, 
• and mice cost 25 cents each. 

You have to buy at least one of each. 

How many of each should you buy?
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Bit Tricks

Let x, y be a 32 bit machine integers (a bit-vector)

Show that x!=0 && !(x & (x-1)) is true iff x is a power 
of 2

Show that x and y have different signs iff x^y < 0
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Job Shop Scheduling

Machines

Jobs
P = NP? Laundry ! " = 0 ⇒ " = 1

2 + )*

Tasks
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Constraints:
Precedence: between two tasks of the same job

Resource:  Machines execute at most one job at a time

4
13 2

!"#$"%,%. . ()*%,% ∩ !"#$",,%. . ()*,,% = ∅

Job Shop Scheduling
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Constraints: Encoding:
Precedence: !",$ - start	time	of	

job	2	on	mach 3
7",$ - duration	of

job	2	on	mach 3
!",$ + 7",$ ≤ !",<

Resource:

4
13 2

=!>?!",". . AB7"," ∩ =!>?!<,". . AB7<," = ∅
!"," + 7"," ≤ !<,"

∨
!<," + d<," ≤ !","

Not convex

Job Shop Scheduling
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Job Shop Scheduling
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Eight Queens Problem

Place 8 queens on an 8x8 chess board so that no 
two queen attacks one another
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Incremental Interface

Z3 provides two interfaces for incremental solving that allow for adding 
and removing constraints
• push/pop, and assumptions

Constraints can be added at any time. This is not called incremental J

Push/Pop Interface
• Store current solver state by a call to push
– s.push () in Python, and (push) in SMT-LIB

• Restore previous state by a call to pop
– s.pop () in Python and (pop) in SMT-LIB
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Incremental Interface: Assumptions

Requires two steps, but much more flexible than push/pop
1. tag constraints by fresh Boolean constants
– e.g., use (assert (=> p phi)) instead of (assert phi)

2. during check-sat, enable constraints by forcing tags to be true
– e.g., use (check-sat p)

For example,
(assert (=> a0 c0))
(assert (=> a1 c1))
(assert (=> a2 c2))
(check-sat a0)          ; check whether c0 is sat
(check-sat a0 a2)       ; check whether c0 and c2 are sat
(check-set a1 a2)       ; check whether c1 and c3 are sat
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Assumptions in Python Interface

Methods of z3.Solver class
• check(self, *assumptions) – check with assumptions
• unsat_core(self) – if the last call to check was unsat, returns the subset 

of assumptions that were actually used to show unsat


