
SMT Solver Z3

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

2 2

Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model
• if F is propositional, a model is a truth assignment to Boolean variables
• if F is first-order formula, a model assigns values to variables and

interpretation to all the function and predicate symbols

SAT Solvers
• check satisfiability of propositional formulas

SMT Solvers
• check satisfiability of formulas in a decidable first-order theory (e.g., linear

arithmetic, uninterpreted functions, array theory, bit-vectors)

3 3

(Optional) Background Reading: SMT

September 2011

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories
SMT-LIB syntax
• based on s-expressions (LISP-like)
– https://en.wikipedia.org/wiki/S-expression

• common syntax for interpreted functions of different theories
– e.g. (and (= x y) (<= (* 2 x) z))

• commands to interact with the solver
– (declare-fun …) declares a constant/function symbol
– (assert p) conjoins formula p to the curent context
– (check-sat) checks satisfiability of the current context
– (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3

http://rise4fun.com/z3

16 16

SMT-LIB Syntax

(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)

17 17

SMT Example

http://rise4fun.com/z3

http://rise4fun.com/z3

18 18

19 19

20 20

21 21

z3 python package

create constants

SMT solver

create constraints
and add to solver

run solver. can
take long time.

result is: sat,
unsat, unknown

22 22

Useful Z3Py Functions

All these functions are under python package z3
Create constants and values
• Int(name) – an integer constant with a given name
• FreshInt(name) – unique constant starting with name
• IntVal(v), BoolVal(v) – integer and boolean values

Arithmetic functions and predicates
• +,-,/,<,<=,>,>=,==, etc.
• Distinct(a, b, …) – the arugments are distinct (expands to many disequalities)

Propositional operators
• And, Or, Not

Methods of the z3.Solver class
• add(fml) – add formula fml to the solver
• check() – returns z3.sat, z3.unsat, or z3.unknown (on failure to solve)
• model() – model if the result is sat

Methods of z3.Model class
• eval(fml) – returns the value of fml in the model

23 23

Dog, Cat, Mouse

Spend exactly 100 dollars and buy exactly 100 animals.
• Dogs cost 15 dollars,
• cats cost 1 dollar,
• and mice cost 25 cents each.

You have to buy at least one of each.

How many of each should you buy?

24 24

Bit Tricks

Let x, y be a 32 bit machine integers (a bit-vector)

Show that x!=0 && !(x & (x-1)) is true iff x is a power
of 2

Show that x and y have different signs iff x^y < 0

25 25

Job Shop Scheduling

Machines

Jobs
P = NP? Laundry ! " = 0 ⇒ " = 1

2 +)*

Tasks

26 26

Constraints:
Precedence: between two tasks of the same job

Resource: Machines execute at most one job at a time

4
13 2

!"#$"%,%. . ()*%,% ∩ !"#$",,%. . ()*,,% = ∅

Job Shop Scheduling

27 27

Constraints: Encoding:
Precedence: !",$ - start	time	of	

job	2	on	mach 3
7",$ - duration	of

job	2	on	mach 3
!",$ + 7",$ ≤ !",<

Resource:

4
13 2

=!>?!",". . AB7"," ∩ =!>?!<,". . AB7<," = ∅
!"," + 7"," ≤ !<,"

∨
!<," + d<," ≤ !","

Not convex

Job Shop Scheduling

28 28

Job Shop Scheduling

29 29

Eight Queens Problem

Place 8 queens on an 8x8 chess board so that no
two queen attacks one another

30 30

Incremental Interface

Z3 provides two interfaces for incremental solving that allow for adding
and removing constraints
• push/pop, and assumptions

Constraints can be added at any time. This is not called incremental J

Push/Pop Interface
• Store current solver state by a call to push
– s.push () in Python, and (push) in SMT-LIB

• Restore previous state by a call to pop
– s.pop () in Python and (pop) in SMT-LIB

31 31

Incremental Interface: Assumptions

Requires two steps, but much more flexible than push/pop
1. tag constraints by fresh Boolean constants
– e.g., use (assert (=> p phi)) instead of (assert phi)

2. during check-sat, enable constraints by forcing tags to be true
– e.g., use (check-sat p)

For example,
(assert (=> a0 c0))
(assert (=> a1 c1))
(assert (=> a2 c2))
(check-sat a0) ; check whether c0 is sat
(check-sat a0 a2) ; check whether c0 and c2 are sat
(check-set a1 a2) ; check whether c1 and c3 are sat

32 32

Assumptions in Python Interface

Methods of z3.Solver class
• check(self, *assumptions) – check with assumptions
• unsat_core(self) – if the last call to check was unsat, returns the subset

of assumptions that were actually used to show unsat

