
Dynamic Symbolic Execution

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

based on slides by Prof. Johannes Kinder and others

2 2

Problems with Scaling Symbolic Execution

Code that is hard to analyze

Path explosion
• Complex control flow
• Loops
• Procedures

Environment (what are the inputs to the program under
test?)
• pointers, data structures, …
• files, data bases, …
• threads, thread schedules, …
• sockets, …

3 3

Code that is hard to analyze

Sources of complexity:
• Virtual functions (function pointers)
• Cryptographic functions
• Non-linear integer or floating point arithmetic
• Calls to kernel mode
• …

int obscure(int x, int y) {
if (x==complex(y))

error();
return 0;

}

May be very hard to statically
generate values for x and y

that satisfy “x==complex(y)” !

4 4

Directed Automated Random Testing
[PLDI 2005]

int obscure(int x, int y) {

if (x==complex(y)) error();

return 0;

}

- start with (random) x=33, y=42
Run 1 :

- solve: x==567 à solution: x=567

- execute concretely and symbolically:
if (33 == 567) | if (x == complex(y))

constraint too complex
à simplify it: x = 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
All program paths are now covered !

Also known as concolic execution (concrete + symbolic)
Referred to here as dynamic symbolic execution

5 5

Flavors of Symbolic Execution Algorithms

Static symbolic execution
• Simulate execution on program source code
• Computes strongest post-conditions from entry point

Dynamic symbolic execution (DSE)
• Run / interpret the program with concrete state
• Symbolic state computed in parallel (“concolic”)
• Solver generates new concrete state

DSE-Flavors
• EXE-style [Cadar et al. ‘06] vs. DART [Godefroid et al. ‘05]

Many successful tools
• EXE = KLEE (Imperial), SPF (NASA), Cloud9, S2E (EPFL)
• DART = SAGE, PEX (Microsoft), CUTE (UIUC), CREST (Berkeley)

6 6

EXE Algortihm

Program state is a tuple (ConcreteState, SymbolicState)
Initially all input variables are symbolic

At each execution step
• update the concrete state by executing a program instruction

concretely
• update symbolic state executing symbolically
• if the last instruction was a branch
– if PC and negation of branch condition is SAT

• fork execution state
• compute new concrete to match the new path condition

7 7

EXE

1 int proc(int x) {
2

3 int r = 0
5

6 if (x > 8) {
7 r = x - 7
8 }
9

10 if (x < 5) {
11 r = x – 2
12 }
13

14 return r;
15 }

Symbolic
program state

Concrete state

✓

Satisfying assignments:
X = 9 X = 1 X = 6

Test cases:
proc(9) proc(1) proc(6)

✓

8 8

Implementing EXE

Execution states can be switched arbitrarily

Works best with virtualization or emulation
• Symbolic expressions are maintained in parallel to concrete values
• KLEE uses LLVM bitcode interpreter to maintain and update state
• S2E uses QEMU virtual machine to fork and restore the entire machine state,

including OS

9 9

Formula F := False
Loop

Find program input i in solve(negate(F)) // stop if no such i can
be found

Execute P(i); record path condition C // in particular, C(i) holds
F := F \/ C

End

DART: Algorithm

10 10

DART

1 int proc(int x) {
2

3 int r = 0
5

6 if (x > 8) {
7 r = x - 7
8 }
9

10 if (x < 5) {
11 r = x – 2
12 }
13

14 return r;
15 } ✓

New path condition:

Test cases:
proc(1) proc(6)proc(9)

✓

11 11

DART

Code to generate inputs for:
Constraints to solve

a!=null

a!=null &&

a.Length>0

a!=null &&

a.Length>0 &&

a[0]==1234567890

void CoverMe(int[] a)
{
if (a == null) return;
if (a.Length > 0)
if (a[0] == 1234567890)
throw new Exception("bug");

}

Observed constraints
a==null
a!=null &&

!(a.Length>0)

a!=null &&

a.Length>0 &&

a[0]!=1234567890

a!=null &&

a.Length>0 &&

a[0]==1234567890

Data
null

{}

{0}

{123…}a==null

a.Length>0

a[0]==123…
T

TF

T

F

F

Execute&MonitorSolve
Choose next path

Done: There is no path left.

12 12

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 0 – seed file

13 13

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 1

14 14

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF....***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 2

15 15

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 3

16 16

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 00 00 00 ;strh........
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 4

17 17

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 5

18 18

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 00 00 00 ;strf........
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 6

19 19

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 7

20 20

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9D E4 4E ;É�äN

00000060h: 00 00 00 00 ;

Generation 8

21 21

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ;strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 9

22 22

Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...***
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ;
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ;strh....vids
00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ;strf²uv:(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ;

00000060h: 00 00 00 00 ;

Generation 10

23 23

Example

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >3) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Negate each constraint in path
constraint

Solve new constraint à new input

Path constraint:

good

goo!

bood

gaod

godd

à I0=‘b’

à I1=‘a’

à I2=‘d’

à I3=‘!’

Gen 1

24 24

Whitebox File Fuzzing

SAGE @ Microsoft:

• 1st whitebox fuzzer for security testing

• 400+ machine years (since 2008) à

• 3.4+ Billion constraints

• 100s of apps, 100s of security bugs

• Example: Win7 file fuzzing

~1/3 of all fuzzing bugs found by SAGE à

(missed by everything else…)

• Bug fixes shipped (quietly) to 1 Billion+ PCs

• Millions of dollars saved

– for Microsoft + time/energy for the world

Blackbox
Fuzzing

+
Regression

All
Others

SAGE

How fuzzing bugs were found
(Win7, 2006-2009) :

25 25

Implementing DART

Instructions are instrumented or recorded
• Concrete program execution proceeds normally

Path condition and expressions computed following the concrete
execution
• SAGE separates tracing and symbolic execution
• CUTE/CREST instruments the program to compute expressions on the fly

Generational search
• Generates as many test cases as possible per trace

26 26

EXE vs. DART

Complete execution from
first step
Deep exploration
•One query per run

Offline SE possible
• Execute along recorded

trace

• Fine-grained control of
execution

• Shallow exploration
• Many queries early on

• Online SE
• SE and interpretation

in lockstep

27 27

Loops

Symbolic execution dynamically unrolls loops
• Small-step semantics of strongest post-conditions
• No loop invariants required
• Can take a long (infinite!) time

Types of loops
• Input independent – unrolled as long as necessary
• Input dependent – different possibilities

28 28

Input-dependent Loops

Unrolling in EXE – online SE
• Every iteration of the loop forks execution
• Search algorithm decides whether to continue unrolling loop or to break out

Unrolling in DART – offline SE
• Concrete input determines iterations / unrollings
• Search algorithm can flip one of the loop branches to change the number of

iterations
Naïve search algorithms can get stuck in loops

29 29

Concretization

Parts of input space can be kept concrete
•Reduces complexity
• Focuses search

Expressions can be concretized at runtime
• Avoid expressions outside of SMT solver theories (non-

linear etc.)
Sound but incomplete

30 30

Concretization in EXE (Example)

if (m*m > size) {
…

if (m < 5) {
…

Solution diverges from
expected path! (e.g., X = 2)

Concretization constraint

31 31

Implementing Concretization

Input
• concrete and symbolic states C and S
•a symbolic expression E to evaluate

Algorithm
•pick variables x1, …, xk in E to concretize
• replace xi by C(xi) in E
• v:=S.eval(E); CC := x1=C(x1) ∧ … ∧ xk=C(xk)
•add concretization constraint CC to the path condition
• return v

32 32

Soundness & Completeness

Conceptually, each path is exact
• Strongest postcondition in predicate transformer semantics
• No over-approximation, no under-approximation

Globally, SE under-approximates
• Explores only subset of paths

in finite time
• “Eventual” completeness

Explored
symbolically

State Space

33 33

Soundness & Completeness

Symbolic Execution = Underapproximates
• Soundness = does not include infeasible behavior
• Completeness = explores all behavior

Concretization restricts state covered by path
• Remains sound
• Loses (eventual) completeness

Explored
symbolically

State Space

34 34

Concretization

Key strength of dynamic symbolic execution
Enables external calls
• Concretize call arguments
• Callee executes concretely

Concretization constraints can be omitted
• Sacrifices soundness (original DART)
• Deal with divergences by random restarts

35 35

Challenges for Symbolic Execution

Expensive to create representations

Expensive to reason about expressions
• Although modern SAT/SMT solvers help!

Problems with function calls – need to keep track of calling contexts
• Called interprocedural analysis

Problem with handling loops
• often unroll them up to a certain depth rather than dealing with termination or

loop invariants

Aliasing – leads to a massive blow-up in the number of paths

