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Problems with Scaling Symbolic Execution

Code that is hard to analyze

Path explosion
• Complex control flow
• Loops
• Procedures

Environment (what are the inputs to the program under 
test?)
• pointers, data structures, … 
• files, data bases, …
• threads, thread schedules, …
• sockets, …
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Code that is hard to analyze

Sources of complexity:
• Virtual functions (function pointers)
• Cryptographic functions
• Non-linear integer or floating point arithmetic
• Calls to kernel mode
• …

int obscure(int x, int y) {
if (x==complex(y))                     

error();
return 0;

}

May be very hard to statically 
generate values for x and y

that satisfy “x==complex(y)” !
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Directed Automated Random Testing 
[PLDI 2005]

int obscure(int x, int y) {

if (x==complex(y)) error();

return 0;

}

- start with (random) x=33, y=42
Run 1 :

- solve: x==567  à solution: x=567

- execute concretely and symbolically:
if (33 == 567)   |    if (x == complex(y))

constraint too complex
à simplify it: x = 567

- new test input: x=567, y=42

Run 2 : the other branch is executed
All program paths are now covered !

Also known as concolic execution (concrete + symbolic)
Referred to here as dynamic symbolic execution
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Flavors of Symbolic Execution Algorithms

Static symbolic execution
• Simulate execution on program source code
• Computes strongest post-conditions from entry point

Dynamic symbolic execution (DSE)
• Run / interpret the program with concrete state
• Symbolic state computed in parallel (“concolic”)
• Solver generates new concrete state

DSE-Flavors
• EXE-style [Cadar et al. ‘06] vs. DART [Godefroid et al. ‘05]

Many successful tools
• EXE = KLEE (Imperial), SPF (NASA), Cloud9, S2E (EPFL)
• DART = SAGE, PEX (Microsoft), CUTE (UIUC), CREST (Berkeley)
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EXE Algortihm

Program state is a tuple (ConcreteState, SymbolicState)
Initially all input variables are symbolic

At each execution step
• update the concrete state by executing a program instruction 

concretely
• update symbolic state executing symbolically
• if the last instruction was a branch
– if PC and negation of branch condition is SAT

• fork execution state 
• compute new concrete to match the new path condition
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EXE

1 int proc(int x) {
2

3 int r = 0
5

6 if (x > 8) {
7 r = x - 7  
8 }
9

10 if (x < 5) {
11 r = x – 2
12 }
13

14 return r;
15 }

Symbolic 
program state

Concrete state

✓

Satisfying assignments:
X = 9 X = 1 X = 6

Test cases:
proc(9) proc(1) proc(6)

✓
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Implementing EXE

Execution states can be switched arbitrarily

Works best with virtualization or emulation
• Symbolic expressions are maintained in parallel to concrete values
• KLEE uses LLVM bitcode interpreter to maintain and update state
• S2E uses QEMU virtual machine to fork and restore the entire machine state, 

including OS
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Formula F := False
Loop

Find program input i in solve(negate(F))  // stop if no such i can 
be found

Execute P(i); record path condition C // in particular, C(i) holds
F := F \/ C                                       

End

DART: Algorithm
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DART

1 int proc(int x) {
2

3 int r = 0
5

6 if (x > 8) {
7 r = x - 7  
8 }
9

10 if (x < 5) {
11 r = x – 2
12 }
13

14 return r;
15 } ✓

New path condition:

Test cases:
proc(1) proc(6)proc(9)

✓
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DART

Code to generate inputs for:
Constraints to solve

a!=null

a!=null &&

a.Length>0

a!=null &&

a.Length>0 &&

a[0]==1234567890

void CoverMe(int[] a)
{
if (a == null) return;
if (a.Length > 0)
if (a[0] == 1234567890)
throw new Exception("bug");

}

Observed constraints
a==null
a!=null &&

!(a.Length>0)

a!=null &&

a.Length>0 &&

a[0]!=1234567890

a!=null &&

a.Length>0 &&

a[0]==1234567890

Data
null

{}

{0}

{123…}a==null

a.Length>0

a[0]==123…
T

TF

T

F

F

Execute&MonitorSolve
Choose next path

Done: There is no path left.
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 0 – seed file
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 00 00 00 00 00 00 00 00 ; RIFF............
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 1
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 00 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF....*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 2
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 3
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 00 00 00 00 ; ....strh........
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 4
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 5
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 00 00 00 00 ; ....strf........
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 6
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ; ....strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 7
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ; ....strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 C9 9D E4 4E ; ............É�äN

00000060h: 00 00 00 00                                     ; ....

Generation 8
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 73 74 72 66 00 00 00 00 28 00 00 00 ; ....strf....(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 9
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Zero to Crash in 10 Generations

Starting with 100 zero bytes …
SAGE generates a crashing test for Media1 parser:

00000000h: 52 49 46 46 3D 00 00 00 ** ** ** 20 00 00 00 00 ; RIFF=...*** ....
00000010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000020h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; ................
00000030h: 00 00 00 00 73 74 72 68 00 00 00 00 76 69 64 73 ; ....strh....vids
00000040h: 00 00 00 00 73 74 72 66 B2 75 76 3A 28 00 00 00 ; ....strf²uv:(...
00000050h: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 ; ................

00000060h: 00 00 00 00                                     ; ....

Generation 10
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Example

void top(char input[4]) 

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >3) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Negate each constraint in path 
constraint

Solve new constraint à new input

Path constraint:

good

goo!

bood

gaod

godd

à I0=‘b’

à I1=‘a’

à I2=‘d’

à I3=‘!’

Gen 1
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Whitebox File Fuzzing

SAGE @ Microsoft: 

• 1st whitebox fuzzer for security testing

• 400+ machine years (since 2008) à

• 3.4+ Billion constraints

• 100s of apps, 100s of security bugs

• Example: Win7 file fuzzing

~1/3 of all fuzzing bugs found by SAGE à

(missed by everything else…)

• Bug fixes shipped (quietly) to 1 Billion+ PCs

• Millions of dollars saved

– for Microsoft + time/energy for the world

Blackbox
Fuzzing

+ 
Regression

All 
Others

SAGE

How fuzzing bugs were found
(Win7, 2006-2009) :
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Implementing DART

Instructions are instrumented or recorded
• Concrete program execution proceeds normally

Path condition and expressions computed following the concrete 
execution
• SAGE separates tracing and symbolic execution
• CUTE/CREST instruments the program to compute expressions on the fly

Generational search 
• Generates as many test cases as possible per trace
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EXE vs. DART

Complete execution from 
first step
Deep exploration
•One query per run

Offline SE possible
• Execute along recorded 

trace

• Fine-grained control of 
execution

• Shallow exploration
• Many queries early on

• Online SE
• SE and interpretation 

in lockstep
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Loops

Symbolic execution dynamically unrolls loops
• Small-step semantics of strongest post-conditions
• No loop invariants required
• Can take a long (infinite!) time

Types of loops
• Input independent – unrolled as long as necessary
• Input dependent – different possibilities
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Input-dependent Loops

Unrolling in EXE – online SE
• Every iteration of the loop forks execution
• Search algorithm decides whether to continue unrolling loop or to break out

Unrolling in DART – offline SE
• Concrete input determines iterations / unrollings
• Search algorithm can flip one of the loop branches to change the number of 

iterations
Naïve search algorithms can get stuck in loops
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Concretization

Parts of input space can be kept concrete
•Reduces complexity
• Focuses search

Expressions can be concretized at runtime
• Avoid expressions outside of SMT solver theories (non-

linear etc.)
Sound but incomplete
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Concretization in EXE (Example)

if (m*m > size) {
…

if (m < 5) {
…

Solution diverges from 
expected path! (e.g., X = 2)

Concretization constraint
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Implementing Concretization

Input
• concrete and symbolic states C and S
•a symbolic expression E to evaluate

Algorithm
•pick variables x1, …, xk in E to concretize
• replace xi by C(xi) in E
• v:=S.eval(E); CC := x1=C(x1) ∧ … ∧ xk=C(xk)
•add concretization constraint CC to the path condition
• return v
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Soundness & Completeness

Conceptually, each path is exact
• Strongest postcondition in predicate transformer semantics
• No over-approximation, no under-approximation

Globally, SE under-approximates
• Explores only subset of paths 

in finite time
• “Eventual” completeness

Explored 
symbolically

State Space
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Soundness & Completeness

Symbolic Execution = Underapproximates
• Soundness = does not include infeasible behavior
• Completeness = explores all behavior

Concretization restricts state covered by path
• Remains sound
• Loses (eventual) completeness

Explored 
symbolically

State Space
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Concretization

Key strength of dynamic symbolic execution
Enables external calls
• Concretize call arguments
• Callee executes concretely

Concretization constraints can be omitted
• Sacrifices soundness (original DART)
• Deal with divergences by random restarts
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Challenges for Symbolic Execution 

Expensive to create representations

Expensive to reason about expressions
• Although modern SAT/SMT solvers help!

Problems with function calls – need to keep track of calling contexts 
• Called interprocedural analysis

Problem with handling loops 
• often unroll them up to a certain depth rather than dealing with termination or 

loop invariants

Aliasing – leads to a massive blow-up in the number of paths


