
First Order Logic (FOL)

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

based on slides by Prof. Ruzica Piskac, Nikolaj
Bjorner, and others

2 2

References

• Chpater 2 of Logic for Computer Scientists
http://www.springerlink.com/content/978-0-8176-4762-9/

• Chapters 2 and 3 of Calculus of Computation
https://link.springer.com/book/10.1007/978-3-540-74113-8

http://www.springerlink.com/content/978-0-8176-4762-9/

3 3

Syntax and Semantics (Again)

Syntax
•MW: the way in which linguistic elements (such as words)

are put together to form constituents (such as phrases or
clauses)
•Determines and restricts how things are written

Semantics
•MW: the study of meanings
•Determines how syntax is interpreted to give meaning

4 4

The language of First Order Logic

Functions , Variables, Predicates
• f, g,… x, y, z, … P, Q, =, <, …

Atomic formulas, Literals
• P(x,f(y)), ¬Q(y,z)

Quantifier free formulas
• P(f(a), b) Ù c = g(d)

Formulas, sentences
• "x . "y . [P(x, f(x)) Ú g(y,x) = h(y)]

5 5

Language: Signatures

A signature S is a finite set of:
• Function symbols:

SF = { f, g, +, … }
• Predicate symbols:

SP = { P, Q,=, true, false, … }
• And an arity function:

S ® N

Function symbols with arity 0 are constants
• notation: f/2 means a symbol with arity 2

A countable set V of variables
• disjoint from S

6 6

Language: Terms

The set of terms T(SF ,V) is the smallest set
formed by the syntax rules:

• t Î T ::= v v Î V
| f(t1, …, tn) f Î SF , t1, …, tn Î T

Ground terms are given by T(SF ,Æ)
•a term is ground if it contains no variables

7 7

Language: Atomic Formulas

a Î Atoms ::= P(t1, …, tn)
P Î SP t1, …, tn Î T

An atom is ground if t1, …, tn Î T(SF ,Æ)
• ground atom contains no variables

Literals are atoms and negation of atoms:
l Î Literals ::= a | ¬ a a Î Atoms

8 8

Language: Quantifier free formulas

The set QFF(S,V) of quantifier free formulas is the
smallest set such that:

j ÎQFF ::= a Î Atoms atoms
| ¬ j negations
| j « j’ bi-implications
| j Ù j’ conjunction
| j Ú j’ disjunction
| j ® j’ implication

9 9

Language: Formulas
The set of first-order formulas are obtained by adding
the formation rules:

j ::= …
| " x . j universal quant.
| $ x . j existential quant.

Free (occurrences) of variables in a formula are theose
not bound by a quantifier.

A sentence is a first-order formula with no free
variables.

10 10

Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt
Agatha. Agatha, the Butler and Charles were the only
people who lived in Dreadbury Mansion. A killer always
hates his victim, and is never richer than his victim. Charles
hates no one that aunt Agatha hates. Agatha hates
everyone except the butler. The butler hates everyone not
richer than Aunt Agatha. The butler also hates everyone
Agatha hates. No one hates everyone. Agatha is not the
butler.

Who killed Aunt Agatha?

11 11

Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt
Agatha. Agatha, the Butler and Charles were the only
people who lived in Dreadbury Mansion. A killer always
hates his victim, and is never richer than his victim. Charles
hates no one that aunt Agatha hates. Agatha hates
everyone except the Butler. The Butler hates everyone not
richer than Aunt Agatha. The Butler also hates everyone
Agatha hates. No one hates everyone. Agatha is not the
Butler.

Who killed Aunt Agatha?
Constants are blue
Predicates are purple

12 12

Dreadbury Mansion Mystery
killed/2, hates/2, richer/2, a/0, b/0, c/0

9x · killed(x, a) (1)

8x · 8y · killed(x, y) =) (hates(x, y) ^ ¬richer(x, y)) (2)

8x · hates(a, x) =) ¬hates(c, x) (3)

hates(a, a) ^ hates(a, c) (4)

8x · ¬richer(x, a) =) hates(b, x) (5)

8x · hates(a, x) =) hates(b, x) (6)

8x · 9y · ¬hates(x, y) (7)

a 6= b (8)

13 13

Solving Dreadbury Mansion in SMT
(declare-datatypes () ((Mansion (Agatha) (Butler) (Charles))))
(declare-fun killed (Mansion Mansion) Bool)
(declare-fun hates (Mansion Mansion) Bool)
(declare-fun richer (Mansion Mansion) Bool)
(assert (exists ((x Mansion)) (killed x Agatha)))
(assert (forall ((x Mansion) (y Mansion))

(=> (killed x y) (hates x y))))
(assert (forall ((x Mansion) (y Mansion))

(=> (killed x y) (not (richer x y)))))
(assert (forall ((x Mansion))

(=> (hates Agatha x) (not (hates Charles x)))))
(assert (hates Agatha Agatha))
(assert (hates Agatha Charles))
(assert (forall ((x Mansion))

(=> (not (richer x Agatha)) (hates Butler x))))
(assert (forall ((x Mansion))

(=> (hates Agatha x) (hates Butler x))))
(assert (forall ((x Mansion)) (

exists ((y Mansion)) (not (hates x y)))))

(check-sat)
(get-model)

14 14

Models (Semantics)

A model M is defined as:
• Domain S; non-empty set of elements; often called the universe
• Interpretation, fM : Sn ®S for each f Î SF with arity(f) = n
• Interpretation PM Í Sn for each P Î SP with arity(P) = n
• Assignment xM Î S for every variable x Î V

A formula j is true in a model M if it evaluates to true under the
given interpretations over the domain S.

M is a model for a set of sentences T if all sentences of T are
true in M.

15 15

Models (Semantics)

A term t in a model M is interpreted as:
• Variable x Î V is interpreted as xM

• f(t1, …, tn) is interpreted as fM(a1, …, an),
–where ai is the current interpretation of ti

P(t1, …, tn) atom is true in a model M if and only if
• (a1, …, an) Î PM, where
•ai is the current interpretation of ti

16 16

Models (Semantics)
A formula j is true in a model M if:

• M ⊨¬ j iff M ⊭ j (i.e., M is not a model for j)
• M ⊨ j « j’ iff M ⊨ j is equivalent to M ⊨ j’
• M ⊨ j Ù j’ iff M ⊨ j and M ⊨ j’
• M ⊨ j Ú j’ iff M ⊨ j or M ⊨ j’
• M ⊨ j ® j’ iff if M ⊨ j then M ⊨ j’
• M ⊨"x.j iff for all s Î S, M[x:=s] ⊨ j
• M ⊨ $x.j iff exists s Î S, M[x:=s] ⊨ j

17 17

18 18

19 19

Dreadbury Mansion Mystery
killed/2, hates/2, richer/2, a/0, b/0, c/0

9x · killed(x, a) (1)

8x · 8y · killed(x, y) =) (hates(x, y) ^ ¬richer(x, y)) (2)

8x · hates(a, x) =) ¬hates(c, x) (3)

hates(a, a) ^ hates(a, c) (4)

8x · ¬richer(x, a) =) hates(b, x) (5)

8x · hates(a, x) =) hates(b, x) (6)

8x · 9y · ¬hates(x, y) (7)

a 6= b (8)

20 20

Dreadbury Mansion Mystery: Model
killed/2, hates/2, richer/2, a/0, b/0, c/0

M(hates) = {(a, a), (a, c)(b, a), (b, c)}

S = {a, b, c}
M(a) = a M(b) = b

M(c) = c M(killed) = {(a, a)}
M(richer) = {(b, a)}

21 21

Semantics: Exercise

Drinker’s paradox:
There is someone in the pub such that, if he is drinking, everyone in the pub is
drinking.
• $x. (D(x) ® "y. D(y))

Is this logical formula valid?
Or unsatisfiable?
Or satisfiable but not valid?

22 22

Inference Rules for First Order Logic

We write ` A when A can be inferred from basic axioms
We write B ` A when A can be inferred from B
Natural deduction style rules
Notation: A[a/x] means A with variable x replaced by term a

A ^ B
A B

A _ B
A

A _ B
B

8 x. A
A[a/x] a is fresh8 x. A

A[e/x]
A[e/x]
9 x. A

B
A) B A

` B
` 9 x. A A[a/x] ` B

a is freshA) B
A ` B

23 23

Theories
A (first-order) theory T (over signature S) is a set of (deductively
closed) sentences (over S and V) - axioms

Let DC(G) be the deductive closure of a set of sentences G.
• For every theory T, DC(T) = T

A theory T is constistent if false Ï T

A theory captures the intendent interpretation of the functions and
predicates in the signature
• e.g., ‘+’ is a plus, ‘0’ is number 0, etc.

We can view a (first-order) theory T as the class of all models of T
(due to completeness of first-order logic).

24 24

Theory of Equality TE

Signature: ΣE = { =, a, b, c, …, f, g, h, …, P, Q, R, …. }
=, a binary predicate, interpreted by axioms
all constant, function, and predicate symbols.
Axioms:
1. "x . x = x (reflexivity)
2. "x, y . x = y ® y = x (symmetry)
3. "x, y, z . x = y Ù y = z ® x = z (transitivity)

25 25

Theory of Equality TE

Signature: ΣE = { =, a, b, c, …, f, g, h, …, P, Q, R, …. }
=, a binary predicate, interpreted by axioms
all constant, function, and predicate symbols.

Axioms:

4. for each positive integer n and n-ary function symbol f,
"x1,…, xn, y1,…, yn . Ùi xi = yi ® f(x1,…, xn) = f(y1,…, yn) (congruence)

5. for each positive integer n and n-ary predicate symbol P
" x1,…, xn, y1,…, yn . Ùi xi = yi ® (P(x1,…, xn) « P(y1,…, yn)) (equivalence)

26 26

Theory of Peano Arithmetic (Natural Number)

Signature: ΣPA = { 0, 1, + , *, = }
Axioms of TPA : axioms for theory of equality, TE , plus:
1. ∀x. ¬ (x+ 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F[0] ∧ (∀x.F[x] → F[x+ 1]) → ∀x.F[x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
6. ∀x. x * 0 = 0 (times zero)
7. ∀x, y. x * (y + 1) = x * y + x (times successor)

Note that induction (#3) is an axiom schema
• one such axiom is added for each predicate F in the signature

Peano arithmetic is undecidable!

27 27

Theory of Presburger Arithmetic

Signature: ΣPA = { 0, 1, + , = }
Axioms of TPA : axioms for theory of equality, TE , plus:
1. ∀x. ¬ (x+ 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1 → x = y (successor)
3. F[0] ∧ (∀x.F[x] → F[x+ 1]) → ∀x.F[x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)

Note that induction (#3) is an axiom schema
• one such axiom is added for each predicate F in the signature

Can extend the signature to allow multiplication by a numeric constant
Presburger arithmetic is decidable
• linear integer programming (ILP)

28 28

McCarthy theory of Arrays TA

Signature: ΣA = { read, write, = }
read(a, i) is a binary function:
• reads an array a at the index i
• alternative notations:
–(select a i), and a[i]

write(a, i, v) is a ternary function:
•writes a value v to the index i of array a
• alternative notations:
–(store a i v) , a[i:=v]

• side-effect free – results in new array, does not modify a

29 29

Axioms of TA

Array congruence
•"a , i, j . i = j ® read (a, i) = read (a, j)

Read-Over-Write 1
•"a , v, i, j. i = j ® read (write (a, i, v), j) = v

Read-Over-Write 2
•"a,v, i, j. i≠j ®read (write (a, i, v), j) = read (a, j)

Extensionality
•a=b « "i . read(a, i) = read(b, i)

30 30

T-Satisfiability

A formula j(x) is T-satisfiable in a theory T if
there is a model of DC(T È $x.j(x)).
That is, there is a model M for T in which j(x)
evaluates to true.

Notation:
M ⊨T j(x)

where, DC(V) stands for deductive closure of V

31 31

T-Validity

A formula j(x) is T-valid in a theory T if
"x.j(x) Î T

That is, "x.j(x) evaluates to true in every
model M of T

T-validity:
⊨T j(x)

32 32

Fragment of a Theory

Fragment of a theory T is a syntactically restricted subset of
formulae of the theory
Example:
•Quantifier-free fragment of theory T is the set of formulae

without quantifiers that are valid in T

Often decidable fragments for undecidable theories

Theory T is decidable if T-validity is decidable for every
formula F of T
• There is an algorithm that always terminates with “yes” if F is T-

valid, and “no” if F is T-unsatisfiable

33 33

Exercises (1/2)

Find a model for P(f(x,y)) ⇒ P(g(x,y,x))

Write an axiom that will restrict that every model has to have exactly
three different elements.

Write a FOL formula stating that i is the position of the minimal element
of an integer array A

Write a FOL formula stating that v is the minimal element of an integer
array A

34 34

Exercises (1/2)

Find a model for P(f(x,y)) ⇒ P(g(x,y,x))

Write an axiom that will restrict that every model has to have exactly
three different elements.

Write a FOL formula stating that i is the position of the minimal element
of an integer array A

Write a FOL formula stating that v is the minimal element of an integer
array A isIntArray(A) ^ isInt(v)

9i · 0  i < len(A) ^A[i] = v

8i · 0  i < len(A) =) A[i]  v

isIntArray(A) ^ isInt(i) ^ 0  i < len(A)

8j · 0  j < len(A) ^ i 6= j =) A[i]  A[j]

(9x, y, z · x 6= y ^ x 6= z ^ y 6= z) ^ (8a0, a1, a2, a3 ·
_

0i<j3

ai = aj)

35 35

Exercises (2/2)

Show whether the following sentence is valid or not

Show whether the following FOL sentence is valid or not

(9x · P (x) _Q(x)) () (9x · P (x)) _ (9x ·Q(x))

(9x · P (x) ^Q(x)) () (9x · P (x)) ^ (9x ·Q(x))

36 36

Exercises (2/2)

Show whether the following sentence is valid or not

• Valid. Prove by contradiction that every model M of the LHS is a model of the
RHS and vice versa.

Show whether the following FOL sentence is valid or not

• Not valid. Prove by constructing a model M of the RHS that is not a model of
the LHS. For example, S = {0,1}, M(P) = { 0 }, and M(Q) = { 1 }

(9x · P (x) _Q(x)) () (9x · P (x)) _ (9x ·Q(x))

(9x · P (x) ^Q(x)) () (9x · P (x)) ^ (9x ·Q(x))

37 37

Completeness, Compactness, Incompleteness

Gödel Completeness Theorem of FOL
• any (first-order) formula that is true in all models of a theory, must be logically

deducible from that theory, and vice versa (every formula that is deducible
from a theory is true in all models of that theory)

Corollary: Compactness Theorem
• A FOL theory G is SAT iff every finite subset G’ of G is SAT
• A set G of FOL sentences is UNSAT iff exists a finite subset G’ of G that is

UNSAT

Incompleteness of FOL Theories
• A theory is consistent if it is impossible to prove both p and ~p for any

sentence p in the signature of the theory
• A theory is complete if for every sentence p it includes either p or ~p
• There are FOL theories that are consistent but incomplete

https://terrytao.wordpress.com/2009/04/10/the-completeness-and-compactness-theorems-of-first-order-logic/

https://plato.stanford.edu/entries/goedel-incompleteness/

