Propositional Logic

Testing, Quality Assurance, and Maintenance Winter 2019

Prof. Arie Gurfinkel

References

Chpater 1 of Logic for Computer Scientists
 <u>http://www.springerlink.com/content/978-0-8176-4762-9/</u>

Chapter 1 of Calculus of Computation
 https://link.springer.com/book/10.1007/978-3-540-74113-8

Modern Birkhäuser Classics

Logic for Computer Scientists

Uwe Schöning

Aaron R. Bradley

The Calculus of Computation

Decision Procedures with Applications to Verification

Springer

What is Logic

According to Merriam-Webster dictionary logic is: **a** (1) : a science that deals with the principles and criteria of validity of <u>inference</u> and demonstration

d :the arrangement of circuit elements (as in a computer) needed for computation; *also*: the circuits themselves

What is Formal Logic

Formal Logic consists of

- syntax what is a legal sentence in the logic
- semantics what is the meaning of a sentence in the logic
- proof theory formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as *and*, *or*, and *not* between simplest "atomic sentences"

- A = "Paris is the capital of France"
- B = "mice chase elephants"

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

A and B A or B if A then B

Syntax and Semantics

Syntax

- MW: the way in which linguistic elements (such as words) are put together to form constituents (such as phrases or clauses)
- Determines and restricts how things are written

Semantics

- MW: the study of meanings
- Determines how syntax is interpreted to give meaning

Syntax of Propositional Logic

An *atomic formula* has a form A_i , where i = 1, 2, 3 ...

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula F, ¬F (called not F) is a formula
- For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are formulas

Abbreviations

- use A, B, C, ... instead of A₁, A₂, ...
- use $F_1 \rightarrow F_2$ instead of $\neg F_1 \lor F_2$
- use $F_1 \leftrightarrow F_2$ instead of $(F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$

(implication) (iff)

Syntax of Propositional Logic (PL)

```
truth_symbol ::= \top(true) | \perp(false)
      variable ::= p, q, r, \ldots
          atom ::= truth_symbol | variable
         literal ::= atom \neg atom
      formula ::= literal |
                     ¬formula |
                     formula \wedge formula
                     formula \vee formula |
                     formula \rightarrow formula |
                     formula \leftrightarrow formula
```


Example

$$F = \neg((A_5 \land A_6) \lor \neg A_3)$$

Sub-formulas are

$$F, ((A_5 \land A_6) \lor \neg A_3),$$
$$A_5 \land A_6, \neg A_3,$$
$$A_5, A_6, A_3$$

Semantics of propositional logic

For an atomic formula A_i in **D**: $A'(A_i) = A(A_i)$

- **A'**((F ∨ G))

= 1 if A'(F) = 1 or A'(G) = 1
= 0 otherwise

A'(\neg F) = 1 if **A'**(F) = 0

= 0 otherwise

 $F = \neg (A \land B) \lor C$ $\mathcal{A}(A) = 1$ $\mathcal{A}(B) = 1$ $\mathcal{A}(C) = 0$

Truth Tables for Basic Operators

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\int \mathcal{A}((F \wedge G))$		$\mathcal{A}(F)$	$\mathcal{A}(\neg F)$
0	0	0	_	0	1
0	1	0		1	0
1	0	0		_	U U
1	1	1			
$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \lor G))$			
0	0	0			
0	1	1			
1	0	1			
	U				

Propositional Logic: Semantics

An assignment A is *suitable* for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a *model* for F, written A⊧ F, iff

- A is suitable for F
- A(F) = 1, i.e., F holds under A

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable* (or contradictory)

A formula F is *valid* (or a tautology), written \models F, iff every suitable assignment for F is a model for F

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2ⁿ suitable assignments Build a truth table enumerating all assignments F is satisfiable iff there is at least one entry with 1 in the output

An example

$$F = (\neg A \to (A \to B))$$

Validity and Unsatisfiability

Theorem:

A formula F is valid if and only if ¬F is unsatifsiable

Proof:

F is valid \Leftrightarrow every suitable assignment for F is a model for F

- \Leftrightarrow every suitable assignment for F is not a model for \neg F
- ⇔ ¬ F does not have a model
- ⇔ ¬ F is unsatisfiable

Normal Forms: CNF and DNF

A *literal* is either an atomic proposition v or its negation ~v

A *clause* is a disjunction of literals

• e.g., (v1 || ~v2 || v3)

A formula is in *Conjunctive Normal Form* (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

• e.g., (v1 || ~v2) && (v3 || v2)
$$\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})$$

A formula is in *Disjunctive Normal Form* (DNF) if it is a disjuction of conjunctions of literals

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} L_{i,j}\right)$$

From Truth Table to CNF and DNF

$$(\neg A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$$

$$(A \lor B \lor \neg C) \land$$
$$(A \lor \neg B \lor C) \land$$
$$(A \lor \neg B \lor \neg C) \land$$
$$(\neg A \lor \neg B \lor C) \land$$
$$(\neg A \lor \neg B \lor C) \land$$

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F_1 in CNF and F_2 in DNF

Proof: (by induction on the structure of the formula F)

ENCODING PROBLEMS INTO CNF-SAT

Graph k-Coloring

Given a graph G = (V, E), and a natural number k > 0 is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.

Formally:

- does there exists a function $f: V \rightarrow [0..k)$ such that
- for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF

 construct CNF C such that C is SAT iff G is kcolorable

https://en.wikipedia.org/wiki/Graph_coloring

k-coloring as CNF

Let a Boolean variable $f_{v,i}$ denote that vertex v has color i

• if $f_{v,i}$ is true if and only if f(v) = i

Every vertex has at least one color

$$\bigvee_{0 \le i < k} f_{v,i} \qquad (v \in V)$$

No vertex is assigned two colors

$$\bigwedge_{0 \le i < j < k} (\neg f_{v,i} \lor \neg f_{v,j}) \qquad (v \in V)$$

No two adjacent vertices have the same color

$$\bigwedge_{0 \le i < k} (\neg f_{v,i} \lor \neg f_{u,i}) \qquad ((v,u) \in E)$$

PROPOSITIONAL REASONING

 $Res(\{C, p\}, \{D, !p\}) = \{C, D\}$

Given two clauses (C, p) and (D, !p) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup \{R\}$ is equivalent to F

Proof System

$P_1, \ldots, P_n \vdash C$

- An inference rule is a tuple ($P_1, ..., P_n, C$)
 - where, P_1 , ..., P_n , C are formulas
 - P_i are called premises and C is called a conclusion
 - intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

Сvр Dv¬р СvD

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule

Example of a resolution proof

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c)$$

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$

Soundness and Completeness

A proof system P is sound iff

$$(F \vdash_P G) \implies (F \models G)$$

A proof system P is complete iff

$$(F\models G)\implies (F\vdash_P G)$$

Completeness of Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic

Proof by resolution

Notation: positive numbers mean variables, negative mean negation Let $\varphi = (1 \ 3) \land (-1 \ 2 \ 5) \land (-1 \ 4) \land (-1 \ -4)$ We'll try to prove $\varphi \rightarrow (3 \ 5)$

Resolution

Resolution is a sound and complete inference system for CNF If the input formula is unsatisfiable, there exists a proof of the empty clause

Example: UNSAT Derivation

Notation: positive numbers mean variables, negative mean negation Let $\varphi = (1 \ 3) \land (-1 \ 2) \land (1 \ -2) \land (-1 \ 4) \land (-1 \ -4) \land (-3)$

Logic for Computer Scientists: Ex. 33

Using resolution show that

$A \wedge B \wedge C$

is a consequence of

 $\neg A \lor B$ $\neg B \lor C$ $A \lor \neg C$ $A \lor B \lor C$

Logic for Computer Scientists: Ex. 34

Show using resolution that F is valid

 $F = (\neg B \land \neg C \land D) \lor (\neg B \land \neg D) \lor (C \land D) \lor B$

 $\neg F = (B \lor C \lor \neg D) \land (B \lor D) \land (\neg C \lor \neg D) \land \neg B$

