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Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

o if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
 check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)

UNIVERSITY OF

WATERLOO



September 201

>

Background Reading: SMT

Leonardo de Moura
Microsoft Research
One Microsoft Way
Redmond, WA 98052
leonardo@microsoft.com

RACT

hint satisfaction problems arise in many diverse ar-
1ding software and hardware verification, type infer-
atic program analysis, test-case generation, schedul-
inning and graph problems. These areas share a
1 trait, they include a core component using logical
s for describing states and transformations between
"he most well-known constraint satisfaction problem
isitional satisfiability, SAT, where the goal is to de-
ether a formula over Boolean variables, formed using
~onnectives can be made true by choosing true/false
or its variables. Some problems are more naturally
»d using richer languages, such as arithmetic. A sup-
theory (of arithmetic) is then required to capture
ning of these formulas. Solvers for such formulations
hmonly called Satisfiability Modulo Theories (SMT)
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SMT solvers have been the focus of increased recent atten-
tion thanks to technological advances and industrial applica-
tions. Yet, they draw on a combination of some of the most
fundamental areas in computer science as well as discover-

1 ies from the past century of symbolic logic. They combine

the problem of Boolean Satisfiability with domains, such as,
those studied in convex optimization and term-manipulating
symbolic systems. They involve the decision problem, com-
pleteness and incompleteness of logical theories, and finally
complexity theory. In this article, we present an overview of
the field of Satisfiability Modulo Theories, and some of its
applications.
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key driving factor [4]. An important ingredient is a common
interchange format for benchmarks, called SMT-LIB [33],
and the classification of benchmarks into various categories
depending on which theories are required. Conversely, a
growing number of applications are able to generate bench-
marks in the SMT-LIB format to further inspire improving
SMT solvers.

There is a relatively long tradition of using SMT solvers in
select and specialized contexts. One prolific case is theorem
proving systems such as ACL2 [26] and PVS [32]. These use
decision procedures to discharge lemmas encountered during
interactive proofs. SMT solvers have also been used for a
long time in the context of program verification and ertended
static checking [21], where verification is focused on assertion
checking. Recent progress in SMT solvers, however, has
enabled their use in a set of diverse applications, including
interactive theorem provers and extended static checkers,
but also in the context of scheduling, planning, test-case
generation, model-based testing and program development,
static program analysis, program synthesis, and run-time
analysis, among several others.

We begin by introducing a motivating application and a
simple instance of it that we will use as a running example.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision prob-
lem. In this problem, there are n jobs, each composed of
m tasks of varying duration that have to be performed con-
secutively on m machines. The start of a new task can be
delayed as long as needed in order to wait for a machine
ahlo hant
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

SAT/SMT —p.3/50
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Arithmetic

SAT/SMT - p.3/50
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Array theory
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Uninterpreted function
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to

b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

SAT/SMT —p.3/50
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Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

then, the formula is unsatisfiable

SAT/SMT —p.3/50
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Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y
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Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y

This formula is satisfiable
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Example 2

z>0Af(z) >0Ay>0Af(y) >0Az#y

This formula is satisfiable:

Example model:

SAT/SMT —p. 4550
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SMT - Milestones

year | Milestone ________|

1977
1979
1979
1982
1992-8

2002
2005
2006
2007
2009

Efficient Equality Reasoning
Theory Combination Foundations
Arithmetic + Functions
Combining Canonizing Solvers

Systems: PVS, Simplify, STeP,
SvC

Theory Clause Learning
SMT competition

Efficient SAT + Simplex
Efficient Equality Matching
Combinatory Array Logic, ...

Includes progress from SAT:

©+ -

15KLOC + 285KLOC =73
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SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT

e iterate as necessary
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Problem

encode >

< decode

SAT/SMT
Solver
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SMT : Basic Architecture

/)

Case

Analysis
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e Equality + UF
e Arithmetic
e Bit-vectors

e ...
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SAT + Theory solvers

Basic Idea

x>0,y=x+

P1, P2, (P3V P4)
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1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

p1=(x20), po=(y=x+1),
Ps=(y>2),ps=(y<1)
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SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

P1, P2, (P3V P4)

"4

SAT
Solver
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Abstract (aka “naming” atoms)

p1=(x=0), po=(y=x+1),
Ps=(y>2), pa=(y<1)
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SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[ SAT } Assignment

Solver P1, P2, —P3; P4
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SAT + Theory solvers

Basic ldea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

Xx>0,y=x+1,
A ) P1 P2 —Pa LY ,

{ SAT J Assignment
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SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[ SAT } Assignment Xx>0,y=x+1,

. 1y Py s, ) o e

V

Unsatisfiable <i Theory
............ x>0,y=x+1y<1 Solver
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SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

SAT ST, X2 0.y =x+ 1
Solver N > —(y>2),y<1
New Lemma @

—P41V—PoV—Py Unsatisfiable Theory
x20y=x+1y=<1 Solver
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SAT + Theory solvers

New

Unsatisfiable

Lemma <j
—|p1\/—|p2\/—|p4 XZO,y=X+1,y<1
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Solver
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