Satisfiability Modulo Theory (SMT)

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

% WATERLOO

Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

o if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
 check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)

UNIVERSITY OF

WATERLOO

September 201

>

Background Reading: SMT

Leonardo de Moura
Microsoft Research
One Microsoft Way
Redmond, WA 98052
leonardo@microsoft.com

RACT

hint satisfaction problems arise in many diverse ar-
1ding software and hardware verification, type infer-
atic program analysis, test-case generation, schedul-
inning and graph problems. These areas share a
1 trait, they include a core component using logical
s for describing states and transformations between
"he most well-known constraint satisfaction problem
isitional satisfiability, SAT, where the goal is to de-
ether a formula over Boolean variables, formed using
~onnectives can be made true by choosing true/false
or its variables. Some problems are more naturally
»d using richer languages, such as arithmetic. A sup-
theory (of arithmetic) is then required to capture
ning of these formulas. Solvers for such formulations
hmonly called Satisfiability Modulo Theories (SMT)

e ! A
Wyt 0y

Cmmnmn v

AN Cvaup o
bigmww Tervgy
e e

¥ emam Mg

ARt w Yoy
Ao Maiww

.

SMT solvers have been the focus of increased recent atten-
tion thanks to technological advances and industrial applica-
tions. Yet, they draw on a combination of some of the most
fundamental areas in computer science as well as discover-

1 ies from the past century of symbolic logic. They combine

the problem of Boolean Satisfiability with domains, such as,
those studied in convex optimization and term-manipulating
symbolic systems. They involve the decision problem, com-
pleteness and incompleteness of logical theories, and finally
complexity theory. In this article, we present an overview of
the field of Satisfiability Modulo Theories, and some of its
applications.

UNIVERSITY OF

WATERLOO

el VAN R -y p e =Risfiability Modulo Theories: Introduction & Applications

Nikolaj Bjerner
Microsoft Research
One Microsoft Way

Redmond, WA 98052
nbjorner@microsoft.com

key driving factor [4]. An important ingredient is a common
interchange format for benchmarks, called SMT-LIB [33],
and the classification of benchmarks into various categories
depending on which theories are required. Conversely, a
growing number of applications are able to generate bench-
marks in the SMT-LIB format to further inspire improving
SMT solvers.

There is a relatively long tradition of using SMT solvers in
select and specialized contexts. One prolific case is theorem
proving systems such as ACL2 [26] and PVS [32]. These use
decision procedures to discharge lemmas encountered during
interactive proofs. SMT solvers have also been used for a
long time in the context of program verification and ertended
static checking [21], where verification is focused on assertion
checking. Recent progress in SMT solvers, however, has
enabled their use in a set of diverse applications, including
interactive theorem provers and extended static checkers,
but also in the context of scheduling, planning, test-case
generation, model-based testing and program development,
static program analysis, program synthesis, and run-time
analysis, among several others.

We begin by introducing a motivating application and a
simple instance of it that we will use as a running example.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision prob-
lem. In this problem, there are n jobs, each composed of
m tasks of varying duration that have to be performed con-
secutively on m machines. The start of a new task can be
delayed as long as needed in order to wait for a machine
ahlo hant

tn harnmo aw tacke rannnt ho intorrintod anco

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

SAT/SMT —p.3/50

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Arithmetic

SAT/SMT - p.3/50

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Array theory

SAT/SMT - p.3/50

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

Uninterpreted function

SAT/SMT —p.3/50

IIIIIIII

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)

SAT/SMT —p.3/50

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to

b+ 2 =cA f(read(write(a,b,3),b)) # f(3)

SAT/SMT —p.3/50

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

SAT/SMT —p.3/50

% WATERLOO 10

Example

b+2=cA f(read(write(a,b,3),c—2)) # f(c—b+1)
By arithmetic, this is equivalent to
b+ 2 =cA f(read(write(a,b,3),b)) # f(3)
then, by the array theory axiom: read(write(v,i,x),i) =z

b+2=cA f(3) # f(3)

then, the formula is unsatisfiable

SAT/SMT —p.3/50
IIIIIIIIII

WATERLOO 11

Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y

IIIIIIIIIIII

WATERLOO

SAT/SMT —p. 4550

12

>

Example 2

z>0Af(z) >0Ay>0Afly)>0Az#y

This formula is satisfiable

UNIVERSITY OF

WATERLOO

SAT/SMT —p. 4550

13

Example 2

z>0Af(z) >0Ay>0Af(y) >0Az#y

This formula is satisfiable:

Example model:

SAT/SMT —p. 4550

14

SMT - Milestones

year | Milestone ________|

1977
1979
1979
1982
1992-8

2002
2005
2006
2007
2009

Efficient Equality Reasoning
Theory Combination Foundations
Arithmetic + Functions
Combining Canonizing Solvers

Systems: PVS, Simplify, STeP,
SvC

Theory Clause Learning
SMT competition

Efficient SAT + Simplex
Efficient Equality Matching
Combinatory Array Logic, ...

Includes progress from SAT:

©+ -

15KLOC + 285KLOC =73

7] UNIVERSITY OF

%) WATERLOO

fimeaut+abort

100 -

Z3
(of '07) =
Time
On ‘
Boogie
Regression

=0,

X *

I g X ; KK .
L - L8 K
) { 2Rk, 3& *3(* #\\ A
p - ?4‘; * ¥ ¥
e |
01 01 1 1

o 100 600 sacs

Simplify (of '01) time

M 1sec

1000

. 100
Time

On ,
VCC

Reg reSS|1o;

0.1

"Nov 08

March 09

15

SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT

e iterate as necessary

IIIIIIIIIIII

Problem

encode >

< decode

SAT/SMT
Solver

16

SMT : Basic Architecture

/)

Case

Analysis

IIIIIIIIIIII

e Equality + UF
e Arithmetic
e Bit-vectors

e ...

17

SAT + Theory solvers

Basic Idea

x>0,y=x+

P1, P2, (P3V P4)

IIIIIIIIIIII

1,(y>2vy<1)

@ Abstract (aka “naming” atoms)

p1=(x20), po=(y=x+1),
Ps=(y>2),ps=(y<1)

18

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

P1, P2, (P3V P4)

"4

SAT
Solver

IIIIIIIIIIII

Abstract (aka “naming” atoms)

p1=(x=0), po=(y=x+1),
Ps=(y>2), pa=(y<1)

19

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[SAT } Assignment

Solver P1, P2, —P3; P4

IIIIIIIIIIII

%) WATERLOO 20

SAT + Theory solvers

Basic ldea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

Xx>0,y=x+1,
A) P1 P2 —Pa LY ,

{ SAT J Assignment

IIIIIIIIIIII

%) WATERLOO 21

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

[SAT } Assignment Xx>0,y=x+1,

. 1y Py s,) o e

V

Unsatisfiable <i Theory
............ x>0,y=x+1y<1 Solver

22

SAT + Theory solvers

Basic Idea

x>20,y=x+1,(y>2vy<1)

Abstract (aka “naming” atoms)

P, P2, (P3V Ps) P1=(X20), po=(y=x+1),
Q ps=(y > 2), pa=(y < 1)

SAT ST, X2 0.y =x+ 1
Solver N > —(y>2),y<1
New Lemma @

—P41V—PoV—Py Unsatisfiable Theory
x20y=x+1y=<1 Solver
% WATERLOO 23

SAT + Theory solvers

New

Unsatisfiable

Lemma <j
—|p1\/—|p2\/—|p4 XZO,y=X+1,y<1

N
AKA

Theory

conflict

IIIIIIIIIIII

@

|

Theory
Solver

|

24

