
Last Lecture

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel



2 2

TESTING AND VERIFICATION
Syntax versus Semantics



3 3

Testing and Verification / Quality Assurance

Testing: Software validation the “old-fashioned” way
• create a test suite (a set of test cases)
• run and identify failures
• fix to address failures and repeat
• done when the test suite passes and achieves a desired criteria

Verification: formally prove that a computing system 
satisfies its specifications
• Rigor: well established mathematical foundations
• Exhaustiveness: considers all possible behaviors of the system, i.e., 

finds all errors
• Automation: uses computers to build reliable computers



4 4

“Program testing can be a very effective way to show the 
presence of bugs, but is hopelessly inadequate for showing 
their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

input x
if (hash(x) == 10) {

...
}



5 5

“Beware of bugs in the above code; I have only proved it correct, not 
tried it.”

Donald Knuth

You can only verify what you have specified.

Testing is still important, but can we make it less impromptu?



6 6

(User) Effort vs (Verification) Assurance
As
su
ra
nc
e/
C
ov
er
ag
e

Effort

Testing

Automated 
Verification

Symbolic 
Execution

Deductive 
Verification



7 7

Undecidability

A problem is undecidable if there does not exists a Turing machine that 
can solve it
• i.e., not solvable by a computer program

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective 

method can decide whether an algorithm computes a partial function with that 
property

• in practice, this means that there is no machine that can always decide 
whether the language of a given Turing machine has a particular nontrivial 
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

https://en.wikipedia.org/wiki/Halting_problem


8 8

Topics Covered in the Course

Foundations
• syntax, semantics, abstract syntax trees, visitors, control flow graphs

Testing
• coverage: structural, dataflow, and logic

Symbolic Execution
• using SMT solvers, constraints, path conditions, exploration strategies
• building a (toy) symbolic execution engine

Deductive Verification
• Hoare Logic, weakest pre-condition calculus, verification condition generation
• verifying algorithm using Dafny, building a small verification engine

Automated Verification
• (basics of) software model checking



Verification Tools in Practice

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel



10 1010

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949 



11 11

Verification Competition

http://www.pm.inf.ethz.ch/research/verifythis.html



12 12

Microsoft Visual Studio Products

Code Contracts
• https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftw

areEngineering.CodeContractsforNET

• https://github.com/Microsoft/CodeContracts

• statically and dynamically checked method pre- and post-conditions

IntelliTest
• https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-

manual/introduction

• automated test generation by dynamic symbolic execution

https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftwareEngineering.CodeContractsforNET
https://github.com/Microsoft/CodeContracts
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction


13 13

WHY3

http://why3.lri.fr/



14 14

VeriFast

https://github.com/verifast/verifast



15 15

Viper

http://www.pm.inf.ethz.ch/research/viper.html



16 16

Open JML

http://www.openjml.org/



17 17

The KeY Project

https://www.key-project.org/



18 18

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/



19 19

Frama-C

https://frama-c.com/



20 20

SPARKPro

http://www.adacore.com/sparkpro/



21 21

Amazon S2N

https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/



22 22

IronClad and InronFleet

https://github.com/Microsoft/Ironclad



23 23

Facebook Infer

Automatically prove correct memory handling (e.g., absence of null 
dereferencing)

http://fbinfer.com/



24 24

KLEE

Symbolic execution for C/C++ based on 
LLVM

https://klee.github.io/

https://klee.github.io/


25 25

Diffblue: AI for Code

https://playground.diffblue.com/?utm_source=homepage

Automated test-case generation for Java

https://playground.diffblue.com/?utm_source=homepage


26 26

Automated reasoning at AWS

https://aws.amazon.com/blogs/security/tag/automated-reasoning/

https://www.youtube.com/watch?v=JfjLKBO27nw

https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-
security-of-aws

https://aws.amazon.com/blogs/security/tag/automated-reasoning/
https://www.youtube.com/watch?v=JfjLKBO27nw
https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-security-of-aws


27 27

http://seahorn.github.io



29 29

Is Verification Enough

Can verified software fail?

Do we need both testing and verification?


