Last Lecture

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

% WATERLOO

Syntax versus Semantics

TESTING AND VERIFICATION

IIIIIIIIIIII

Testing and Verification / Quality Assurance

Testing: Software validation the “old-fashioned” way
e create a test suite (a set of test cases)
e run and identify failures
* fix to address failures and repeat
e done when the test suite passes and achieves a desired criteria

Verification: formally prove that a computing system
satisfies its specifications
e Rigor: well established mathematical foundations

e Exhaustiveness: considers all possible behaviors of the system, i.e.,
finds all errors

e Automation: uses computers to build reliable computers

“Program testing can be a very effective way to show the

presence of bugs, but is hopelessly inadequate for showing
their absence.”

Edsger W. Dijkstra

Very hard to test the portion inside the “if" statement!

input x
if (hash(x) == 10) {

B WATERLSS

“Beware of bugs in the above code; | have only proved it correct, not
tried it.”

Donald Knuth

You can only verify what you have specified.

Testing is still important, but can we make it less impromptu?

%) WATERLOO 5

(User) Effort vs (Verification) Assurance

A

o Deductive
o2 Verification
O

3 Automated

% Verification

@)

E Symbolic

= Execution

(7))

< Testing

T iERLSo Effort

Undecidability

A problem is undecidable if there does not exists a Turing machine that
can solve it
e i.e., not solvable by a computer program
The halting problem
e does a program P terminates on input |
e proved undecidable by Alan Turing in 1936
 https://en.wikipedia.org/wiki/Halting problem

Rice’s Theorem

o for any non-trivial property of partial functions, no general and effective
method can decide whether an algorithm computes a partial function with that
property

e in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial
property

 https://en.wikipedia.org/wiki/Rice%27s_theorem

UNIVERSITY OF

WATERLOO

https://en.wikipedia.org/wiki/Halting_problem

Topics Covered in the Course

Foundations

e syntax, semantics, abstract syntax trees, visitors, control flow graphs
Testing

e coverage: structural, dataflow, and logic
Symbolic Execution

e using SMT solvers, constraints, path conditions, exploration strategies
 building a (toy) symbolic execution engine

Deductive Verification

» Hoare Logic, weakest pre-condition calculus, verification condition generation
o verifying algorithm using Dafny, building a small verification engine

At tod Verificat

basics of) sof ol chacki

UNIVERSITY OF

WATERLOO

Verification Tools in Practice

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

% WATERLOO

Turing, 1949

Alan M. Turing. “Checking a large routine”, 1949

How can one check a routine in the sense of making sure that it is right?

l.xould muke a number of definite assertions which éan ﬁc-éhc;;kod
nd : , and from which the correctness of the whole programae easily
follows,
|
r<n r<n s<r<n s<sr<n
“' u=r! u=r! 0 210E u=sr! u=(s+ 1)
o<n I** : v=rl |% v=rl v=r!
T I ! | |
: Ak : = : =1 : =u+v : s:=s+1
u=1 < Vi=Uu r—n E S = - u:=u g

]
1
I
Y—1sr<n
ri=r+1K

1 u=sr!
|
|

r<n
5 u=(r+1)r
%9)’ hhhhhh 1

Verification Competition

http://www.pm.inf.ethz.ch/research/verifythis.html

IIIIIIIIIIII

11

Microsoft Visual Studio Products

Code Contracts

e https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftw
areEngineering.CodeContractsforNET

e https://qgithub.com/Microsoft/CodeContracts

e statically and dynamically checked method pre- and post-conditions

IntelliTest

e https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-
manual/introduction

e automated test generation by dynamic symbolic execution

UNIVERSITY OF

WATERLOO 12

https://marketplace.visualstudio.com/items?itemName=RiSEResearchinSoftwareEngineering.CodeContractsforNET
https://github.com/Microsoft/CodeContracts
https://www.visualstudio.com/en-us/docs/test/developer-testing/intellitest-manual/introduction

WHY3

http://why3.Iri.fr/

VeriFast

IIIIIIIIIIII

https://github.com/verifast/verifast

14

Viper

http://www.pm.inf.ethz.ch/research/viper.html

IIIIIIIIIIII

15

Open JML

http://www.openjml.org/

IIIIIIIIIIII

16

The KeY Project

https://www.key-project.org/

IIIIIIIIIIII

17

Proving that Android’s, Java’'s and
Python’s sorting algorithm is broken (and
showing how to fix it)

(@ February 24,2015 @ Envisage Written by Stijn de Gouw. & Ss

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina-
tion of ideas from merge sort and insertion sort, and designed to perform well on real
world data. TimSort was first developed for Python, but later ported to Java (where it ap-
pears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer
of Java Collections who also pointed out that most binary search algorithms were broken).
TimSort is today used as the default sorting algorithm for Android SDK, Sun's JDK and
OpenJDK. Given the popularity of these platforms this means that the number of comput-
ers, cloud services and mobile phones that use TimSort for sorting is well into the billions.

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

% WATERLOO

Frama-C

IIIIIIIIIIII

https://frama-c.com/

19

SPARKPro

http://www.adacore.com/sparkpro/

IIIIIIIIIIII

20

Amazon S2N

(] (] Automated Reasoning and A X Arie

& C 0 [ﬂ Secure https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/ f(] (V) i

i Apps OGetting Started [] Google Bookmark [Addto Wish List [1 + Pocket [Google Bookmark Application Fundam... [] Note in Reader & Next » [J Subscribe... » [EZ Other Bookmarks

Products ~ Solutions Pricing Software Support More ~ My Account ~ Create an AWS Account

AWS Security Blog

Automated Reasoning and Amazon s2n

Announcements | Permalink | @ Comments
Search

In June 2015, AWS Chief Information Security Officer Stephen Schmidt introduced AWS’s new Open Source implementation of the
SSL/TLS network encryption protocols, Amazon s2n. s2n is a library that has been designed to be small and fast, with the goal of
providing you with network encryption that is more easily understood and fully auditable.

New AWS Big Data Blog Post: Analyze
Security, Compliance, and Operational
Activity Using AWS CloudTrail and
Amazon Athena

Now Generally Available - AWS
Organizations: Policy-Based
Management for Multiple AWS
Accounts

s2n Is Now Handling 100 Percent of
SSL Traffic for Amazon S3

In the 14 months since that announcement, development on s2n has continued, and we have merged more than 100 pull requests from

15 contributors on GitHub. Those active contributors include members of the Amazon S3, Amazon CloudFront, Elastic Load Balancing,

AWS Cryptography Engineering, Kernel and OS, and Automated Reasoning teams, as well as 8 external, non-Amazon Open Source

Easily Replace or Attach an IAM Role to
an Existing EC2 Instance by Using the

contributors. EC2 Console

How to Audit Your AWS Resources for
Security Compliance by Using Custom
AWS Config Rules

At the time of the initial s2n announcement, three external security evaluations and penetration tests on s2n had been completed. Those
evaluations were code reviews and testing completed by security-focused experts, and came in addition to the code reviews and testing
that are applied to every code change at Amazon as standard practice. We have continued to perform such evaluations, and we are
pleased to have s2n be the focus of additional analysis from external academic and professional security researchers.

Adding automated reasoning to s2n

Because of s2n’s role as security-critical software, one of our goals is to use s2n as a proving ground for new automated reasoning The Official AWS Blog
testing and assurance techniques that we can refine for broader adoption within Amazon and beyond. Increasingly, the availability of

compute resources on demand such as Amazon EC2 makes it possible to perform extensive security analysis, even on every code Amazon SES

change.

https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/

% WATERLOO 21

IronClad and InronFleet

https://github.com/Microsoft/Ironclad

IIIIIIIIIIII

22

Facebook Infer

Automatically prove correct memory handling (e.g., absence of null
dereferencing)

http://fbinfer.com/

IIIIIIIIIIII

23

KLEE KAk

Symbolic execution for C/C++ based on
LLVM

https://klee.qgithub.io/

IIIIIIIIIIII

24

https://klee.github.io/

Diffblue: Al for Code

https://playground.diffblue.com/?utm source=homepage

Automated test-case generation for Java

IIIIIIIIIIII

25

https://playground.diffblue.com/?utm_source=homepage

Automated reasoning at AWS

https://aws.amazon.com/blogs/security/tag/automated-reasoning/

https://www.youtube.com/watch?v=JfiLKBO27nw

https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-
security-of-aws

% WATERLOO

https://aws.amazon.com/blogs/security/tag/automated-reasoning/
https://www.youtube.com/watch?v=JfjLKBO27nw
https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-security-of-aws

&

&«

=" Apps

SeaHorn | A Verification Fr %
O % 4 =

C fn seahorn.github.io

GJ Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
O,

SeaHorn i Fro
Home About Download Publications People %, .
6‘,;.' \
%, .
%

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

27

Is Verification Enough

Can verified software fail?

Do we need both testing and verification?

IIIIIIIIIIII

29

