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Terminology, IEEE 610.12-1990

Fault -- often referred to as Bug [Avizienis’00]
–A static defect in software (incorrect lines of code)

Error
–An incorrect internal state (unobserved)

Failure
–External, incorrect behaviour with respect to the 

expected behaviour (observed)

Not used consistently in literature!
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What is this?

A failure?

An error?

A fault?

We need to describe specified 
and desired behaviour first!

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Design Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Mechanical Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Example: Fault, Error, Failure
public static int numZero (int[] x) {
//Effects: if x==null throw NullPointerException
//         else return the number of occurrences of 0 in x

int count = 0;
for (int i = 1; i <x.length; i++) {

if (x[i]==0) {
count++;

}
}
return count;

x = [2,7,0], fault executed, error, no failure
x = [0,7,2], fault executed, error, failure
State of the program:  x, i, count, PC

Error State:
x = [2,7,0]
i =1
count =0
PC=first iteration for

Expected State:
x = [2,7,0]
i =0
count =0
PC=first iteration for

Fix: for(int i=0; i<x.length; i++)
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Exercise: The Program

/* Effect: if x==null throw NullPointerException. 
Otherwise, return the index of the last element
in the array ‘x’ that equals integer ’y’.
Return -1 if no such element exists.        */

public int findLast (int[] x, int y) {
for (int i=x.length-1; i>0; i--) {

if (x[i] == y) { return i; }
}
return -1;

}

/* test 1: x=[2,3,5], y=2; 
expect: findLast(x,y) == 0 
test 2: x=[2,3,5,2], y=2;
expect: findLast(x,y) == 3 */
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Exercise: The Problem

Read this faulty program, which includes a test case that 
results in failure. Answer the following questions.
• (a) Identify the fault, and fix the fault.
• (b) If possible, identify a test case that does not execute the fault.
• (c) If possible, identify a test case that executes the fault, but does not 

result in an error state.
• (d) If possible identify a test case that results in an error, but not a 

failure. Hint: Don't forget about the program counter.
• (e) For the given test case ‘test1’, identify the first error state. Be sure 

to describe the complete state.
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States
State 0: 
• x = [2,3,5]
• y =  2
• i = undefined
• PC = findLast(...)
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States
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States
Incorrect Program

Correct Program
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Exercise: Solutions (1/2)

(a) The for-loop should include the 0 index: 
• for (int i=x.length-1; i >= 0; i--) 

(b) The null value for x will result in a NullPointerException before the loop test is 
evaluated, hence no execution of the fault.
• Input: x = null; y = 3
• Expected Output: NullPointerException
• Actual Output: NullPointerException

(c) For any input where y appears in a position that is not position 0, there is no 
error.  Also, if x is empty, there is no error.
• Input: x = [2, 3, 5]; y = 3;
• Expected Output: 1
• Actual Output: 1
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Exercise: Solutions (2/2)

(d) For an input where y is not in x, the missing path (i.e. an incorrect PC on the final 
loop that is not taken, normally i = 2, 1, 0, but this one has only i = 2, 1, ) is an error, 
but there is no failure.
• Input: x = [2, 3, 5]; y = 7;
• Expected Output: -1
• Actual Output: -1

(e) Note that the key aspect of the error state is that the PC is outside the loop 
(following  the false evaluation of the 0>0 test. In a correct program, the PC should 
be at the if-test, with index i==0.
• Input: x = [2, 3, 5]; y = 2;
• Expected Output: 0
• Actual Output: -1
• First Error State:
– x = [2, 3, 5]
– y = 2;
– i = 0 (or undefined);
– PC = return -1;
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RIP Model

Three conditions must be present for an error to 
be observed (i.e., failure to happen):
•Reachability: the location or locations in the program 
that contain the fault must be reached.
• Infection: After executing the location, the state of the 
program must be incorrect.
•Propagation: The infected state must propagate to 
cause some output of the program to be incorrect.



16 16

HOW DO WE DEAL WITH 
FAULTS, ERRORS, AND 
FAILURES?
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Addressing Faults at Different Stages

Fault 
Avoidance

Fault 
Tolerance

Fault 
Detection

Better Design, 
Better PL, ...

Testing, 
Debugging, ...

Redundancy, 
Isolation, ...
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Declaring the Bug 
as a Feature

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Modular Redundancy: Fault Tolerance

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Patching: Fixing the Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java



21 21

Testing: Fault Detection

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java
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Testing vs. Debugging

Testing: Evaluating software by observing its 
execution
Debugging: The process of finding a fault given a 
failure

Testing is hard: 
•Often, only specific inputs will trigger the fault into creating a 

failure.
Debugging is hard:
•Given a failure, it is often difficult to know the fault.
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Testing is hard

Only input x=100 & y=100 triggers the crash
If x and y are 32-bit integers, what is the 
probability of a crash?
•1 / 264

if ( x - 100 <= 0 )
if ( y - 100 <= 0 )

if ( x + y - 200 == 0 )
crash();
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Exercise: The Problem

a) What is the fault in this program
b) Identify a test case that does not execute the fault
c) Identify a test case that results in an error but does not cause failure
d) Identify a test case that causes a failure but no error
e) For the test case x = [-10, -9, 0, 99, 100] the expected 

output is 1. Identify the first error state
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Exercise: Solution

a) Fault is at line 7. Negative numbers are not considered. Fixed by
if x[i] > 0 and x[i] % 2 == 1

b) Any input that does not execute line 7. For example, x = 7 (not a list of 
numbers), x=[] (empty list), etc. 

c) Any list that contains numbers and not-numbers. At a non-number, an 
exception is thrown (which is expected and is not a failure) even though 
an error has occurred before. For example, x = [-1, ‘hey’]

d) This situation is impossible. Fault is required for error, error is required for 
failure. It is possible to have fault without an error, and error without a 
failure, but not the other way around

e) The first error state is:
x = [-10, -9, 0, 99, 100] i = 1
cnt = 0 pc = at line 8

process counter


