
Fault, Error, and Failure

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel

based on slides by Prof. Lin Tan and others

2 2

Terminology, IEEE 610.12-1990

Fault -- often referred to as Bug [Avizienis’00]
–A static defect in software (incorrect lines of code)

Error
–An incorrect internal state (unobserved)

Failure
–External, incorrect behaviour with respect to the

expected behaviour (observed)

Not used consistently in literature!

3 3

What is this?

A failure?

An error?

A fault?

We need to describe specified
and desired behaviour first!

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

4 4

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

5 5

Design Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

6 6

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

7 7

Example: Fault, Error, Failure
public static int numZero (int[] x) {
//Effects: if x==null throw NullPointerException
// else return the number of occurrences of 0 in x

int count = 0;
for (int i = 1; i <x.length; i++) {

if (x[i]==0) {
count++;

}
}
return count;

x = [2,7,0], fault executed, error, no failure
x = [0,7,2], fault executed, error, failure
State of the program: x, i, count, PC

Error State:
x = [2,7,0]
i =1
count =0
PC=first iteration for

Expected State:
x = [2,7,0]
i =0
count =0
PC=first iteration for

Fix: for(int i=0; i<x.length; i++)

8 8

Exercise: The Program

/* Effect: if x==null throw NullPointerException.
Otherwise, return the index of the last element
in the array ‘x’ that equals integer ’y’.
Return -1 if no such element exists. */

public int findLast (int[] x, int y) {
for (int i=x.length-1; i>0; i--) {

if (x[i] == y) { return i; }
}
return -1;

}

/* test 1: x=[2,3,5], y=2;
expect: findLast(x,y) == 0
test 2: x=[2,3,5,2], y=2;
expect: findLast(x,y) == 3 */

9 9

Exercise: The Problem

Read this faulty program, which includes a test case that
results in failure. Answer the following questions.
• (a) Identify the fault, and fix the fault.
• (b) If possible, identify a test case that does not execute the fault.
• (c) If possible, identify a test case that executes the fault, but does not

result in an error state.
• (d) If possible identify a test case that results in an error, but not a

failure. Hint: Don't forget about the program counter.
• (e) For the given test case ‘test1’, identify the first error state. Be sure

to describe the complete state.

10 10

States
State 0:
• x = [2,3,5]
• y = 2
• i = undefined
• PC = findLast(...)

11 11

States

12 12

States
Incorrect Program

Correct Program

13 13

Exercise: Solutions (1/2)

(a) The for-loop should include the 0 index:
• for (int i=x.length-1; i >= 0; i--)

(b) The null value for x will result in a NullPointerException before the loop test is
evaluated, hence no execution of the fault.
• Input: x = null; y = 3
• Expected Output: NullPointerException
• Actual Output: NullPointerException

(c) For any input where y appears in a position that is not position 0, there is no
error. Also, if x is empty, there is no error.
• Input: x = [2, 3, 5]; y = 3;
• Expected Output: 1
• Actual Output: 1

14 14

Exercise: Solutions (2/2)

(d) For an input where y is not in x, the missing path (i.e. an incorrect PC on the final
loop that is not taken, normally i = 2, 1, 0, but this one has only i = 2, 1,) is an error,
but there is no failure.
• Input: x = [2, 3, 5]; y = 7;
• Expected Output: -1
• Actual Output: -1

(e) Note that the key aspect of the error state is that the PC is outside the loop
(following the false evaluation of the 0>0 test. In a correct program, the PC should
be at the if-test, with index i==0.
• Input: x = [2, 3, 5]; y = 2;
• Expected Output: 0
• Actual Output: -1
• First Error State:
– x = [2, 3, 5]
– y = 2;
– i = 0 (or undefined);
– PC = return -1;

15 15

RIP Model

Three conditions must be present for an error to
be observed (i.e., failure to happen):
•Reachability: the location or locations in the program
that contain the fault must be reached.
• Infection: After executing the location, the state of the
program must be incorrect.
•Propagation: The infected state must propagate to
cause some output of the program to be incorrect.

16 16

HOW DO WE DEAL WITH
FAULTS, ERRORS, AND
FAILURES?

17 17

Addressing Faults at Different Stages

Fault
Avoidance

Fault
Tolerance

Fault
Detection

Better Design,
Better PL, ...

Testing,
Debugging, ...

Redundancy,
Isolation, ...

18 18

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

19 19

Modular Redundancy: Fault Tolerance

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

20 20

Patching: Fixing the Fault

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

21 21

Testing: Fault Detection

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

22 22

Testing vs. Debugging

Testing: Evaluating software by observing its
execution
Debugging: The process of finding a fault given a
failure

Testing is hard:
•Often, only specific inputs will trigger the fault into creating a

failure.
Debugging is hard:
•Given a failure, it is often difficult to know the fault.

23 23

Testing is hard

Only input x=100 & y=100 triggers the crash
If x and y are 32-bit integers, what is the
probability of a crash?
•1 / 264

if (x - 100 <= 0)
if (y - 100 <= 0)

if (x + y - 200 == 0)
crash();

24 24

Exercise: The Problem

a) What is the fault in this program
b) Identify a test case that does not execute the fault
c) Identify a test case that results in an error but does not cause failure
d) Identify a test case that causes a failure but no error
e) For the test case x = [-10, -9, 0, 99, 100] the expected

output is 1. Identify the first error state

25 25

Exercise: Solution

a) Fault is at line 7. Negative numbers are not considered. Fixed by
if x[i] > 0 and x[i] % 2 == 1

b) Any input that does not execute line 7. For example, x = 7 (not a list of
numbers), x=[] (empty list), etc.

c) Any list that contains numbers and not-numbers. At a non-number, an
exception is thrown (which is expected and is not a failure) even though
an error has occurred before. For example, x = [-1, ‘hey’]

d) This situation is impossible. Fault is required for error, error is required for
failure. It is possible to have fault without an error, and error without a
failure, but not the other way around

e) The first error state is:
x = [-10, -9, 0, 99, 100] i = 1
cnt = 0 pc = at line 8

process counter

