
Foundations: Syntax, Semantics, and
Graphs

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel

based on slides by Ruzica Pizkac, Claire Le Goues, Lin Tan, Marsha Chechik,
and others

2 2

Foundations

Syntax
• Syntax and BNF Grammar
• Abstract Syntax Trees (AST)

Semantics
• Natural Operational Semantics (a.k.a. big step)
• Structural Operational Semantics (a.k.a. small step)
• Judgements and derivations

Graphs
• Graph, cyclic, acyclic
• Nodes, edges, paths
• Trees, sub-graphs, sub-paths, …
• Control Flow Graph (CFG)

3 3

SYNTAX

4 4

WHILE: A Simple Imperative Language

We will use a simple imperative language called WHILE
• the language is also sometimes called IMP

An example WHILE program:

{ p := 0; x := 1; n := 2 };
while x ≤ n do {

x := x + 1;
p := p + m

} ;
print_state

‘;’ is a connective, not
terminator as in C!

5 5

WHILE: Syntactic Entities

n ∈ Z – integers
true,false ∈ B – Booleans
x,y ∈ L – locations (program variables)

e ∈ Aexp – arithmetic expressions
b ∈ Bexp – Boolean expressions
c ∈ Stmt – statements

Terminals are atomic entities that are completely defined by their tokens
• integers, Booleans, and locations are terminals

Non-Terminals are composed of of one or more terminals
• determined by rules of the grammar
• Aexp, Bexp, and Stmt are non-terminals

Terminal

Non-
terminal

6 6

WHILE: Syntax of Arithmetic Expressions

Arithmetic expressions (Aexp)
e ::= n for n ∈ Z

| -n for n ∈ Z
| x for x ∈ L
| e1 aop e2

| ‘(‘ e ‘)’

aop := ‘*’ | ‘/’ | ‘-’ | ‘+’

Notes:
• Variables are not declared before use
• All variables have integer type
• Expressions have no side-effects

BNF
grammar

rules

BNF: https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

7 7

WHILE: Syntax of Boolean Expressions

Boolean expressions (Bexp)
b ::= ‘true’

| ‘false’
| ‘not’ b
| e1 rop e2 for e1, e2 ∈ Aexp
| e1 bop b2 for e1, e2 ∈ Bexp
| ‘(‘ b ‘)’

rop ::= ‘<’ | ‘<=‘ | ‘=‘ | ’>=‘ | ‘>’
bop ::= ‘and’ | ‘or’

8 8

Syntax of Statements

Statements
s ::= skip

| x := e
| if b then s [else s]
| while b do s
| ‘{‘ slist ‘}’
| print_state
| assert b | assume b | havoc v1, …, vN

slist ::= s (‘;’ s)*
prog ::= slist
Notes:
• Semi-colon ‘;’ is a statement composition, not statement terminator!!!
• Statements contain all the side-effects in the language
• Many usual features of a PL are missing: references, function calls, …

– the language is very very simple yet hard to analyze

9 9

Abstract Syntax Tree (AST)

AST is an abstract tree representation of the source code
• each node represents a syntactic construct occurring in the code

– statement, variable, operator, statement list
• called “abstract” because some details of concrete syntax are omitted

– AST normalizes (provides common representation) of irrelevant
differences in syntax (e.g., white space, comments, order of operations)

• example AST: (x + 3) * (y - 5)

*

+ -

x 3 y 5

10 10

Parser generator
• input: BNF grammar; output: parser (program)

Parser
• input: program source code; output: AST or error

BNF grammar

Language Parsing in a Nutshell

Parser
Generator

ParserSource Code AST

11 11

WHILE AST in Python

One class per
syntactic entity

One field per child

Class hierarchy
corresponds to the
semantic one

12 12

Behavior Pattern: Visitor

Applicability
• Object hierarchy with many classes
• Operations depend on classes
• Set of classes is stable
• Want to define new operations

Consequences
• Simplifies adding new operations
• Groups related behavior in one class
• Extending class hierarchy is difficult
• Visitor can maintain state
• Element must expose interface

In Python
• Method name is used instead of

polymorphism, e.g., visit_Stmt()
• Visitor’s visit() method dispatches calls

based on reflection. No need for accept()

13 13

Example Visitor in Python

14 14

Exercise: Implement a state counting visitor

Write a visitor that counts the number of statements in a program
• (a) Implementation 1:

– the visitor should be stateless and return the number of statements

• (b) Implementation 2:
– uses an internal state (field) to keep track of the number of statements

15 15

Stateless Visitor

16 16

Statefull Visitor

17 17

Tutorial Friday @ 5:30pm in E7 5353

Friday at 5:30pm in E7 5353

Topics
•Docker
•Python
•AST
•Visitors

18 18

Non-determinism vs. Randomness

A deterministic function always returns the same result on the same
input
• e.g., F(5) = 10

A non-deterministic function may return different values on the same
input
• e.g., G(5) in [0, 10] “G(5) returns a non-deterministic value between 0 and 10”

A random function may choose a different value with a probability
distribution
• e.g., H(5) = (3 with prob. 0.3, 4 with prob. 0.2, and 5 with prob. 0.5)

Non-deterministic choice cannot be implemented!
• used to model the worst possible adversary/environment

19 19

SEMANTICS

20 20

Reference for Semantics

Nielson2. Semantics with Applications: An
Appetizer

Available FREE at SpringerLink
https://link.springer.com/book/10.1007/978-1-84628-692-6

Chapter 1 and Chapter 2

Link on course web page

https://link.springer.com/book/10.1007/978-1-84628-692-6

21 21

Syntax and Semantics

Syntax
• MW: the way in which linguistic elements (such as words)

are put together to form constituents (such as phrases or
clauses)

• Determines and restricts how things are written

Semantics
• MW: the study of meanings
• Determines how syntax is interpreted to give meaning

22 22

Meaning of WHILE Programs

Questions to answer:
• What is the “meaning” of a given WHILE
expression/statement?

• How would we evaluate WHILE expressions and
statements?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?

23 23

Semantics of Programming Languages

Denotational Semantics
• Meaning of a program is defined as the mathematical object it computes

(e.g., partial functions).
• example: Abstract Interpretation

Axiomatic Semantics
• Meaning of a program is defined in terms of its effect on the truth of logical

assertions.
• example: Hoare Logic

Operational Semantics
• Meaning of a program is defined by formalizing the individual computation

steps of the program.
• example: Natural (Big-Step) Semantics, Structural (Small-Step) Semantics

24 24

Semantics of WHILE

The meaning of WHILE expressions depends on
the values of variables, i.e. the current state.

A state s is a function from L to Z
• assigns a value for every location/variable
• notation: s(x) is the value of variable x in state s

The set of all states is Q = L → Z

We use q to range over Q

25 25

Judgement: Natural Semantics

Expression e in state q has a value n

<e, q> ⇓ n
Program

expression
Program

state Number

26 26

Natural Semantics in the Book

The book uses a slightly different notation

<e, q> ⇒ n

<e, q> ⇓ n
Versus notation in the slides

27 27

Judgments

We write <e, q> ⇓ n to mean that expression e evaluates to
n in state q.
• The formula <e, q> ⇓ n is called a judgment

(a judgement is a relation between an expression e, a state q and a
number n)

• We can view ⇓ as a function of two arguments e and q

This formulation is called natural operational semantics
• also known as big-step operational semantics
• the judgment relates the expression and its “meaning”

How to define <e1 + e2, q> ⇓ … ?

28 28

Notation: Inference Rule

F1 ... Fn

G
H

Conclusion

Premise
Side-condition

29 29

Notation: Axiom

An axiom states that the conclusion G is true
independently of any premises or side-conditions

G

30 30

Inference Rules

We express the evaluation rules as inference rules for our
judgments.
The rules are also called evaluation rules.

An inference rule

defines a relation between judgments F1,...,Fn and G.
• The judgments F1,...,Fn are the premises of the rule;
• The judgments G is the conclusion of the rule;
• The formula H is called the side condition of the rule.
If n=0 the rule is called an axiom. In this case, the line
separating premises and conclusion may be omitted.

F1 ... Fn

G
where H

31 31

Inference Rules for Aexp

In general, we have one rule per language construct:

This is called structural operational semantics of expressions.
• rules are defined based on the structure of the expressions.

<e1 + e2, q> ⇓ (n1 + n2)
<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 - e2, q> ⇓ (n1 - n2)
<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 * n2)
<e1, q> ⇓ n1 <e2, q> ⇓ n2

<n, q> ⇓ n <x, q> ⇓ q(x)

32 32

Inference Rules for Bexp

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 ≤ e2, q> ⇓ (n1 ≤ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 ^ b2, q> ⇓ (t1 ^ t2)
<b1, q> ⇓ t1 <e2, q> ⇓ t2

<true, q> ⇓ true <false, q> ⇓ false

33 33

Derivation

A well-formed application of inference rules is called a derivation
Derivation infers new facts from existing ones

<5 + (7*2), q> ⇓ 19
<5, q> ⇓ 5 <7*2, q> ⇓ 14

<7, q> ⇓ 7 <2, q> ⇓ 2

derivation

34 34

Semantics of Statements

Statement s executed in state q results in
state q’

<s, q> ⇓ q’
Program

Statement
Input

Program
state

Output
Program

State

35 35

Notation: state and state change

A state s is an assignment of values to memory
locations (often called variables)

Notation:
• empty state []
• state [x := 10, y:=15, z:=5]
• substitution s[x:=10]

– a state like s, BUT, the value of x is 10

36 36

Aside: Notation for Substitution

We need a concise notation for “Find-Replace”
• Replace every occurrence of variable (string, value, …) X with variable

(string, value, …) Y in a formula (string, object, state) F, and return the new
formula (string, object, state) without changing F in place.

In Python, this looks like
• string.replace(old, new [, count])
• F.replace(X, Y)

In books, logic, slides, this course
• F[X := Y] --- implies that F is a state, X a state variable, Y a value
• F[X / Y] – “F with X replaced by Y”
• F[X / Y] --- ”F with X replacing Y”
• F[X à Y] – “F with X replacing Y”
• F[X ß Y] – “F with X replaced by Y”

• s/X/Y/g – sed syntax

37 37

Evaluation of Statements

Evaluation of a statement produces a side-effect
• The result of evaluation of a statement is a new state

We write <s, q> ⇓ q’ to mean that evaluation of statement s in state q
results in a new state q’

<skip, q> ⇓ q <print_state, q> ⇓ q

<s1 ; s2, q> ⇓ q’
<s1, q> ⇓ q’’ <s2, q’’> ⇓ q’

<if b then s1 else s2, q> ⇓ q’
<b, q> ⇓ true <s1, q> ⇓ q’

<if b then s1 else s2, q> ⇓ q’
<b, q> ⇓ false <s2, q> ⇓ q’

<x := e, q> ⇓ q[x:=n]

<e, q> ⇓ n

39 39

Derivation and Execution

Derivation of statement facts corresponds to execution / interpretation
For example
• Show that <p:=0; x:=1; n:=2, []> ⇓ [p:=0,x:=1,n:=2]

<p:=0; x:=1; n:=2, []> ⇓ [p:=0,x:=1,n:=2]

<p:=0,x:=1, []> ⇓ [p:=0,x:=1] <n:=2, [p:=0,x:=1]> ⇓ [p:=0,x:=1,n:=2]

<p:=0, []> ⇓ [p:=0] <x:=1, [p:=0]> ⇓ [p:=0,x:=1]

<0, []> ⇓ 0 <1, [p:=0]> ⇓ 1

40 40

Semantics of Loops

What about infinite execution?
• Can introduce a special state ⊤, called top, that represents divergence
• Infinite loop enters divergent state

• Any statement in divergent state is treated like ‘skip’

Need structural (or small step) semantics to deal with reactive execution
• execution that does not terminate, but produces useful result

<while b do s, q> ⇓ q
<b, q> ⇓ false

<while b do s, q> ⇓ q’
<b, q> ⇓ true <s ; while b do s, q> ⇓ q’

<s, ⊤ > ⇓ ⊤

<while true do s, q> ⇓ ⊤

41 41

Properties of Semantics

A semantics is deterministic if every program statement has exactly one
possible derivation in any state
• If <s, q> ⇓ q1 and <s, q> ⇓ q2 then q1 = q2

Two statements are semantically equivalent if for every input state they
derive the same output state
• s1 and s2 are sem. equiv. if <s1, q> ⇓ q1 and <s2, q> ⇓ q2 imply q1 = q2

• e.g., (while b do s) and if b then (s ; while b do s) else skip are sem. equiv.

Structural induction: To prove a property P on a derivation tree
• Base case: prove P for all of the axioms
• Inductive Hypothesis: assume P holds before every rule
• Induction: prove that P holds at the end of every rule

Use structural induction to prove that our semantics are deterministic

42 42

Structural Operational Semantics (Small-Step)

The meaning of executing ONE statement of a program

For the final statement, the output is only a state

<s, q> ⇒ <t, q’>

<s, q> ⇒ q’

Program to
execute

Program
state

The REST of
the program Output state

43 43

Small-step semantics for WHILE

<s1 ; s2, q> ⇒ <s3 ; s2, q’>

<s1, q> ⇒ <s3, q’>

<if b then s1 else s2, q> ⇒ <s1, q>

<b, q> ⇓ true
<if b then s1 else s2, q> ⇒ <s2, q>

<b, q> ⇓ false

<while b do s, q> ⇒ <if b then (s ; while b do s) else skip, q>

<s1 ; s2, q> ⇒ <s2, q’>

<s1, q> ⇒ q’

<skip, q> ⇒ q

44 44

Properties of Small Step Semantics

Small step semantics can be viewed as a transition system TS=(S, R)
• S is a set of states; Each configuration <s, q> is a state.
• R is a transition relation on pair of states

– (x, y) in R iff (x ⇒ y) is a true judgement in small-step semantics

A path x1, x2, x3, … in this TS is called a derivation sequence

A derivation sequence in TS corresponds to a program execution

Properties of small-step semantics are established by induction on the
length of the derivation

Small step semantics is deterministic if there is only one derivation for
every configuration

48 48

From Programming to Modeling

Extend a programming language with 3 modeling features

Assertions
• assert e – aborts an execution when e is false, no-op otherwise

Non-determinism
• havoc x – assigns variable x a non-deterministic value

Assumptions
• assume e – blocks execution if e is false, noop otherwise

void assert (bool b) { if (!b) error(); }

void havoc(int &x) { int y; x = y; }

void assume (bool e) { while (!e) ; }

49 49

Safety Specifications as Assertions

A program is correct if all executions that satisfy all assumptions also
satisfy all assertions

A program is incorrect if there exists an execution that satisfies all of the
assumptions AND violates at least one an assertion

Assumptions express pre-conditions on which the program behavior
relies

Assertions express desired properties that the program must maintain

50 50

Writing Specifications with Assert and Assume

int x, y;

void main (void)
{
havoc (x);
assume (x > 10);
assume (x <= 100);

y = x + 1;

assert (y > x);
assert (y < 200);

}

51 51

Order of Assumptions is IMPORTANT!!!

int x, y;

void main (void)
{
havoc (x);

y = x + 1;

assume (x > 10);
assume (x <= 100);

assert (y > x);
assert (y < 200);

}

int x, y;

void main (void)
{

havoc (x);

y = x + 1;

assert (y > x);
assert (y < 200);

assume (x > 10);
assume (x <= 100);

}

53 53

GRAPHS

54 54

Graphs

A graph, G = (N, E), is an ordered pair consisting of
• a node set, N, and
• an edge set, E = {(ni, nj)}

If the pairs in E are ordered, then G is called a directed graph and is
depicted with arrowheads on its edges

If not, the graph is called an undirected graph

Graphs are suggestive devices that help in the visualization of relations
• The set of edges in the graph are visual representations of the ordered pairs

that compose relations

Graphs provide a mathematical basis for reasoning about programs

55 55

Paths

a path, P, through a directed graph G = (N, E) is a sequence of edges,
((u1, v1), (u2, v2), ... (ut, vt) such that
• vk-1 = uk for all 1 < k ≤ t
• u1 is called the start node and vt is called the end node

The length of a path is the number of edges (or nodes-1 J) in the path

Paths are also frequently represented by a sequence of nodes
• (u1,u2,u3,…,ut)

56 56

Cycles

A cycle in a graph G is a path whose start node and end node are the
same

A simple cycle in a graph G is a cycle such that all of its nodes are
different (except for the start and end nodes)

If a graph G has no path through it that is a cycle, then the graph is
called acyclic

57 57

Example of Cycles

1

3

5

2

4

Cycle:1,3,2,4,3,1

Simple cycle:3,2,4,3

58 58

Trees

An acyclic, undirected graph is called a tree

If the undirected version of a directed graph is acyclic, then the graph is
called a directed tree

If the undirected version of a directed graph has cycles, but the directed
graph itself has no cycles, then the graph is called a Directed Acyclic
Graph (DAG)

Every tree is isomorphic to a prefix-closed subset of N* for some natural
number N

59 59

Examples

tree directed tree

cyclic undirected
graph

directed acyclic
graph (DAG)

𝝴

0 1

1.0 1.1

60 60

GRAPHS AS MODELS OF
COMPUTATION

61 61

Computation tree

A tree model of all the possible executions of a system

At each node represents a state of the system
• valuation of all variables

Can have infinite number of paths

Can have infinite paths

62 62

Example Computation Tree
<total, val, count, max>

<0,J,1,2>

<0,J,1,J>

<0,J,1,1> <0,J,1,max pos>...

<0,1,1,2> <0, max pos,1,2>...

<1,1,1,2>

...

<0,J,J,J>

Is this tree infinite?

total := 0;
count := 1;
max := input();
while (count <= max)
do {
val := input();
total := total+val;
count := count+1};

print (total)

63 63

Disadvantages of Computation Trees

Represent the space that we want to reason about

For anything interesting, they are too large to create or reason about

Other models of executable behavior are providing abstractions of the
computation tree model
• Abstract values
• Abstract flow of control
• Specialize abstraction depending on focus of analysis

64 64

Control Flow Graph (CFG)

Represents the flow of execution in the program
G = (N, E, S, T) where
• the nodes N represent executable instructions (statement, statement

fragments, or basic blocks);
• the edges E represent the potential transfer of control;
• S is a designated start node;
• T is a designated final node
• E = { (ni, nj) | syntactically, the execution of nj follows the execution of ni}

Nodes may correspond to single statements, parts of statements, or
several statements (i.e., basic blocks)

Execution of a node means that the instructions associated with a node
are executed in order from the first instruction to the last

65 65

Example of a Control Flow Graph

total := 0;
count := 1;
max := input();
while (count <= max)
do {
val := input();
total := total+val;
count := count+1};

print (total)

total :=0;
count := 1
max := input()

val := read()
total := total + val
count := count + 1

print (total)

count <= max

T

F

1

2

3

4

66 66

Deriving a Control Flow Graph

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

67 67

Control Flow Graph

A CFG is a graph of basic blocks
• edges represent different control flow

A CFG corresponds to a program syntax
• where statements are restricted to the form

Li:S ; goto Lj

and S is control-free (i.e., assignments and
procedure calls)

basic block

total :=0;
count := 1
max := input()

val := read()
total := total + val
count := count + 1

print (total)

count <= max

T

F

1

2

3

4

68 68

Control Flow Graph

1: total:=0; count := 1;
max = input(); goto 2

2: if count <= max
then goto 3 else goto 4

3: val := read();
total := total + val;
count := count + 1; goto 2

4: print(total)

total :=0;
count := 1
max := input()

val := read()
total := total + val
count := count + 1

print (total)

count <= max

T

F

1

2

3

4

69 69

CFG: Sub-path and Complete Path

a sub-path through a CFG is a sequence of nodes (ni, ni+1,...nt), i ≥1
where for each nk, i ≤ k < t, (nk, nk+1) is an edge in the graph
• e.g., 2, 3, 2, 3, 2, 4

a complete path starts at
the start node and ends
at the final node
• e.g., 1, 2, 3, 2, 4

total :=0;
count := 1
max := input()

val := read()
total := total + val
count := count + 1

print (total)

count <= max

T

F

1

2

3

4

70 70

Infeasible Paths

Every executable sequence in the represented component
corresponds to a path in G

Not all paths correspond to executable sequences
• requires additional semantic information
• “infeasible paths” are not an indication of a fault

CFG usually overestimates the executable behavior

71 71

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < = 0, Y = 5

X > 0

X > 0, Y > 0

72 72

Example Paths

Feasible path: 1, 2, 4, 5, 7

Infeasible path: 1, 3, 4, 5, 7

Determining if a path is feasible or not requires
additional semantic information
• In general, undecidable
• In practice, intractable

–Some exceptions are studied in this course

74 74

Benefits of CFG

Probably the most commonly used representation
• Numerous variants

Basis for inter-component analysis
• Collections of CFGs

Basis for various transformations
• Compiler optimizations
• S/W analysis

Basis for automated analysis
• Graphical representations of interesting programs are too complex for direct

human understanding

75 75

Paths

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

• Paths:
– 1, 2, 4, 5, 7
– 1, 2, 4, 6, 7
– 1, 3, 4, 5, 7
– 1, 3, 4, 6, 7

76 76

Paths can be identified by predicate outcomes

• outcomes
– t, t
– t, f
– f, t
– f, f

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

77 77

Paths can be identified by domains

•domains
– { X, Y | X > 0 and X * Y > 0}

– { X, Y | X > 0 and X * Y < = 0 }
– { X, Y | X < = 0 and X * Y > 0}

– { X, Y | X < = 0 and X * Y < = 0}

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

78 78

CFG Abstraction Level?

Loop conditions? (yes)
Individual statements? (no)
Exception handling? (no)

What’s best depends on type of analysis to be conducted

79 79

CFG Exercise (1)

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

Draw a control flow graph with 7 nodes.

80 80

CFG Exercise (2)

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

Draw a control flow graph with 8 nodes.

81 81

CFG Exercise (1) Solution

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

1

2, 3

F
T

8

T
6

F

T

4

F

5

7

Draw a control flow graph with 7 nodes.

82 82

CFG Exercise (2) Solution

int binary_search(int a[], int low, int high,
int target) { /* binary search for target in
the sorted a[low, high] */
1 while (low <= high) {
2 int middle = low + (high - low)/2;
3 if (target < a[middle])
4 high = middle - 1;
5 else if (target > a[middle])
6 low = middle + 1;

else
7 return middle;

}
8 return -1; /* return -1 if target is not

found in a[low, high] */
}

1

2

3

F
T

8

T
6

F

T

4

F

5

7

Draw a control flow graph with 8 nodes.

83 83

/* Function: ReturnAverage Computes the average of all those numbers in the input
array in the positive range [MIN, MAX]. The max size of the array is AS. But, the array
size could be smaller than AS in which case the end of input is designated by -999. */

1 public static double ReturnAverage(int value[], int AS, int MIN, int MAX) {
2 int i, ti, tv, sum;
3 double av;
4 i = 0; ti = 0; tv = 0; sum = 0;
5 while (ti < AS && value[i] != -999) {
6 ti++;
7 if (value[i] >= MIN && value[i] <= MAX) {
8 tv++;
9 sum = sum + value[i];
10 }
11 i++;
12 }
13 if (tv > 0) av = (double)sum/tv;
14 else av = (double) -999;
15 return (av);
16 }

CFG Exercise (3)

84 84

CFG of ReturnAverage

