
The Logics of Program Verification

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel

2 2

method factorial (n: int) returns (v:int)
requires n >= 0;
ensures v = fact(n);

{
v := 1;
if (n <= 1) { return v; }
var i := 2;
while (i <= n)

invariant i <= n + 1
invariant v = fact(i - 1)

{
v := i * v;
i := i + 1;

}
return v;

}

Specification

Inductive
Invariant

3 3

Program Verification

How can we argue that a given program is correct
• i.e., satisfies its formal specifications?

Such an argument must combine
• Operational Semantics – to understand different programming constructs
• Propositional Reasoning – to break the problem into sub-goals that can be

reasoned individually and combined later
• Mathematical Reasoning – properties of numbers, arithmetic, factorial, etc…
• Formal argument style – to mechanically check the flow of reasoning

All of this requires a LOGIC
• A formal language with well-defined semantics and strict reasoning rules

4 4

Three Logics of Program Verification

Propositional Logic
(logic of Boolean circuits)

First Order Logic
(logic of mathematical theories)

Hoare Logic
(logic of programs)

SAT Solver
(Z3)

SMT Solver
(Z3)

Program Verifier
(Dafny)

5 5

Plan for the next few weeks

Week Monday Friday

Week 7 (Feb 24) Propositional Logic First Order Logic

Week 8 (March 2) SAT/SMT Solving Hoare Logic (part 1)

Week 9 (March 9) NO CLASS Hoare Logic (part 2)

Understanding formal logic can be boring hard.
Don’t ignore suggested reading material!!!

Propositional Logic

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel

7 7

References

• Chpater 1 of Logic for Computer Scientists
https://link.springer.com/book/10.1007/978-0-8176-4763-6

• Chapter 1 of Calculus of Computation
https://link.springer.com/book/10.1007/978-3-540-74113-8

https://link.springer.com/book/10.1007/978-0-8176-4763-6

8 8

What is Logic

According to Merriam-Webster dictionary logic is:
a (1) : a science that deals with the principles and
criteria of validity of inference and demonstration

d :the arrangement of circuit elements (as in a
computer) needed for computation; also: the
circuits themselves

https://www.merriam-webster.com/dictionary/inference

9 9

What is Formal Logic

Formal Logic consists of
• syntax – what is a legal sentence in the logic
• semantics – what is the meaning of a sentence in the logic
• proof theory – formal (syntactic) procedure to construct valid/true

sentences

Formal logic provides
• a language to precisely express knowledge, requirements, facts
• a formal way to reason about consequences of given facts rigorously

10 10

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as and, or, and not
between simplest “atomic sentences”

A = “Paris is the capital of France”
B = “mice chase elephants”

The subject of propositional logic is to declare formally the truth of
complex structures from the truth of individual atomic components

A and B
A or B
if A then B

11 11

Syntax and Semantics

Syntax
•MW: the way in which linguistic elements (such as words)

are put together to form constituents (such as phrases or
clauses)
•Determines and restricts how things are written

Semantics
•MW: the study of meanings
•Determines how syntax is interpreted to give meaning

12 12

Syntax of Propositional Logic

An atomic formula has a form Ai , where i = 1, 2, 3 …

Formulas are defined inductively as follows:
• All atomic formulas are formulas
• For every formula F, ¬F (called not F) is a formula
• For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are

formulas

Abbreviations
• use A, B, C, … instead of A1, A2, …
• use F1 → F2 instead of ¬F1 ∨ F2 (implication)
• use F1 ⟷ F2 instead of (F1 → F2) ∧ (F2 → F1) (iff)

13 13

Syntax of Propositional Logic (PL)

truth symbol ::= >(true) | ?(false)

variable ::= p, q, r, . . .

atom ::= truth symbol | variable
literal ::= atom|¬atom

formula ::= literal |
¬formula |
formula ^ formula |
formula _ formula |
formula ! formula |
formula $ formula

14 14

Example

Sub-formulas are

F = ¬((A5 ^A6) _ ¬A3)

F, ((A5 ^A6) _ ¬A3),

A5 ^A6,¬A3,

A5, A6, A3

15 15

Semantics of propositional logic

For an atomic formula Ai in D: A’(Ai) = A(Ai)

A’((F ⋀ G)) = 1 if A’(F) = 1 and A’(G) = 1
= 0 otherwise

A’((F ⋁ G)) = 1 if A’(F) = 1 or A’(G) = 1
= 0 otherwise

A’(¬F) = 1 if A’(F) = 0
= 0 otherwise

16 16

Example

A(A) = 1

A(B) = 1

A(C) = 0

F = ¬(A ^B) _ C

17 17

Truth Tables for Basic Operators
A(F) A(G) A((F ^G))
0 0 0
0 1 0
1 0 0
1 1 1

A(F) A(G) A((F _G))
0 0 0
0 1 1
1 0 1
1 1 1

A(F) A(¬F)
0 1
1 0

18 18

A(A) = 1

A(B) = 1

A(C) = 0

F = ¬(A ^B) _ C

19 19

Propositional Logic: Semantics

An assignment A is suitable for a formula F if A assigns a truth value to
every atomic proposition of F

An assignment A is a model for F, written A⊧ F, iff
• A is suitable for F
• A(F) = 1, i.e., F holds under A

A formula F is satisfiable iff F has a model, otherwise F is unsatisfiable
(or contradictory)

A formula F is valid (or a tautology), written ⊧ F, iff every suitable
assignment for F is a model for F

20 20

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2n suitable assignments
Build a truth table enumerating all assignments
F is satisfiable iff there is at least one entry with 1 in the output

21 21

An example

F = (¬A ! (A ! B))

A B ¬A (A ! B) F
0 0 1 1 1
0 1 1 1 1
1 0 0 0 1
1 1 0 1 1

22 22

Validity and Unsatisfiability

Theorem:
A formula F is valid if and only if ¬F is unsatifsiable

Proof:
F is valid ó every suitable assignment for F is a model for F

ó every suitable assignment for F is not a model for ¬ F
ó ¬ F does not have a model
ó ¬ F is unsatisfiable

23 23

Normal Forms: CNF and DNF

A literal is either an atomic proposition v or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of
disjunctions of literals (i.e., a conjunction of clauses):
• e.g., (v1 || ~v2) && (v3 || v2)

A formula is in Disjunctive Normal Form (DNF) if it is a disjuction of
conjunctions of literals

n̂

i=1

(
mi_

j=1

Li,j)

n_

i=1

(
mî

j=1

Li,j)

24 24

From Truth Table to CNF and DNF

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(¬A ^ ¬B ^ ¬C) _
(A ^ ¬B ^ ¬C) _
(A ^ ¬B ^ C)

(A _B _ ¬C) ^
(A _ ¬B _ C) ^

(A _ ¬B _ ¬C) ^
(¬A _ ¬B _ C) ^

(¬A _ ¬B _ ¬C)

25 25

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F1 in CNF
and F2 in DNF

Proof: (by induction on the structure of the formula F)

26 26

ENCODING PROBLEMS INTO
CNF-SAT

27 27

Graph k-Coloring

Given a graph G = (V, E), and a natural number
k > 0 is it possible to assign colors to vertices of
G such that no two adjacent vertices have the
same color.

Formally:
• does there exists a function f : V à [0..k) such that
• for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF
• construct CNF C such that C is SAT iff G is k-

colorable

https://en.wikipedia.org/wiki/Graph_coloring

28 28

k-coloring as CNF

Let a Boolean variable fv,i denote that vertex v has color i
• if fv,i is true if and only if f(v) = i

Every vertex has at least one color

No vertex is assigned two colors

No two adjacent vertices have the same color

_

0i<k

fv,i (v 2 V)

^

0i<j<k

(¬fv,i _ ¬fv,j) (v 2 V)

^

0i<k

(¬fv,i _ ¬fu,i) ((v, u) 2 E)

29 29

PROPOSITIONAL REASONING

30 30

Propositional Resolution

Res({C, p}, {D, !p}) = {C, D}

Given two clauses (C, p) and (D, !p) that contain a literal p
of different polarity, create a new clause by taking the union
of literals in C and D

C ∨ p D ∨ ¬p
C ∨ D

Resolvent

Pivot

31 31

Resolution Lemma

Lemma:
Let F be a CNF formula. Let R be a resolvent
of two clauses X and Y in F. Then, F ∪ {R} is
equivalent to F

32 32

Proof System

An inference rule is a tuple (P1, …, Pn, C)
• where, P1, …, Pn, C are formulas
• Pi are called premises and C is called a conclusion
• intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that
• nodes are labeled by formulas
• for each node n, (parents(n), n) is an inference rule in P

P1, . . . , Pn ` C

33 33

Propositional Resolution

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single
propositional resolution rule

C ∨ p D ∨ ¬p
C ∨ D

34 34

Example of a resolution proof

35 35

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

¬a _ b _ ¬c a

b _ ¬c b

¬c
a ¬a _ c

c

?

¬b ^ (¬a _ b _ ¬c) ^ a ^ (¬a _ c)

36 36

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every
model of F and is a model of G

A formula G is derivable from a formula F by a proof system
P if there exists a proof whose leaves are labeled by
formulas in F and the root is labeled by G

F |= G

F `P G

37 37

Soundness and Completeness

A proof system P is sound iff

A proof system P is complete iff

(F |= G) =) (F `P G)

(F `P G) =) (F |= G)

38 38

Completeness of Propositional Resolution

Theorem: Propositional resolution is sound
and complete for propositional logic

39 39

Proof by resolution

Notation: positive numbers mean variables, negative mean negation
Let j = (1 3) ∧ (-1 2 5) ∧ (-1 4) ∧ (-1 -4) ∧ (1 -2)
We’ll try to prove j → (3 5)

(1 3) (-1 2 5)

(2 3 5) (1 -2)

(1 3 5)

(-1 4) (-1 -4)

(-1)

(3 5)

http://www.decision-procedures.org/slides/

40 40

Resolution

Resolution is a sound and complete inference system for CNF
If the input formula is unsatisfiable, there exists a proof of the empty
clause

http://www.decision-procedures.org/slides/

41 41

Example: UNSAT Derivation

Notation: positive numbers mean variables, negative mean negation
Let j = (1 3) ∧ (-1 2) ∧ (1 -2) ∧ (-1 4) ∧ (-1 -4) ∧ (-3)

(1 3) (-1 2)

(2 3) (1 -2)

(1 3)

(-1 4) (-1 -4)

(-1)

(3) (-3)

()

http://www.decision-procedures.org/slides/

42 42

Logic for Computer Scientists: Ex. 33

Using resolution show that

is a consequence of

A ^B ^ C

¬A _B

¬B _ C

A _ ¬C
A _B _ C

43 43

Logic for Computer Scientists: Ex. 34

Show using resolution that F is valid

F = (¬B ^ ¬C ^D) _ (¬B ^ ¬D) _ (C ^D) _B

¬F = (B _ C _ ¬D) ^ (B _D) ^ (¬C _ ¬D) ^ ¬B

