Hoare Logic

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel

based on slides by Prof. Ruzica Piskac and others

2 WATERLOO

%) WATERLOO

>

History

Program verification is almost as old as computer science
e e.g., Checking A Large Routine by Alan Turing, 1949

In late 60s, Floyd proposed rules for flow-charts and Hoare
for structured languages

Since then, there has been many axiomatic semantics for
many substantial languages and many applications /
automation

« ESC/Java, SLAM, PCC, SPARK/Ada, KeY, Dafny, Viper, SeaHorn, ...

IIIIIIIIIIII

WATERLOO

Tony Hoare said...

“Thus the practice of proving programs would
seem to lead to solution of three of the most
pressing problems in software and
programming, namely, reliability,
documentation, and compatibility. However,
program proving, certainly at present, will be
difficult even for programmers of high caliber;
and may be applicable only to quite simple
program designs.”

-- C.A.R Hoare, An Axiomatic Basis for Computer Programming,1969

%) WATERLOO 4

Tony Hoare also said...

“It has been found a serious problem to define these
languages [ALGOL, FORTRAN, COBOL] with sufficient
rigor to ensure compatibility among all implementations. ...
one way to achieve this would be to insist that all
implementations of the language shall satisfy the axioms
and rules of inference which underlie proofs of properties of
programs expressed in the language. |n effect, this is
equivalent to accepting the axioms and rules of inference as
the ultimately definitive specification of the meaning of the
language.”

IIIIIIIIIIII

Axiomatic Semantics

An axiomatic semantics consists of:

e a language for stating assertions about programs;
e rules for establishing the truth of assertions.

Some typical kinds of assertions:
e This program terminates.

e |f this program terminates, the variables x and y have the same value
throughout the execution of the program.

e The array accesses are within the array bounds.

Some typical languages of assertions
 First-order logic
e Other logics (temporal, linear, separation)
e Special-purpose specification languages (Z, Larch, JML)

UNIVERSITY OF

WATERLOO

Assertions for WHILE

The assertions we make about WHILE programs
are of the form:

{A} ¢ {B}
with the meaning that:
e If Aholdsinstate gand g — q’

e then B holds in @’
A Is the precondition and B is the post-condition

For example:
{ysx}z=xz=z+1{y<z}
IS a valid assertion

These are called Hoare triples or Hoare assertions

IIIIIIIIIIII

Assertions for WHILE

{A} c {B} is a partial correctness assertion. It
does not imply termination of c.

e If A holds in state g and there exists q’
such thatg — g’

e then B holds in state g’

[A] c [B] Is a total correctness assertion
meaning that

e [f A holds in state g
e then there exists g’ such thatg — q’

and B holds in state g’

IIIIIIIIIIII

Now let’s be more formal

Formalize the language of assertions, A and B

Define when an assertion holds in a state

Define rules for deriving valid Hoare triples

IIIIIIIIIIII

The Assertion Language

We use first-order predicate logic with WHILE expressions

A =true|false|e;=e,|e;26ey
|A1/\A2|A1VA2|A1$A2|VXA|3XA

We are somewhat sloppy and mix the logical variables and
the program variables.

Implicitly, all WHILE variables range over integers.

All WHILE Boolean expressions are also assertions.

IIIIIIIIIIII

10

Semantics of Assertions

Notation g = A says that assertion A holds in a
given state g.

e This is well-defined when q is defined on all variables occurring
In A.

The = judgment is defined inductively on the
structure of assertions.

It relies on the semantics of arithmetic
expressions from WHILE.

IIIIIIIIIIII

%) WATERLOO 11

Semantics of Assertions

q E true
qFE€1 =6
qEe e
qgEA NA,
qgEA VA,
qgEA = A,
q = VX.A
q = Ix.A

IIIIIIIIIIII

always

iff <e,q>l = <e,,g>!

iff <e,q>l = <e,,qg>l
iff g =A,and q E A,
iffg=A,0orqgEA,

iff g = A, implies g E A,
Iff VheZz. g[x:=n] E A

Iff dnez. q[x:=n] E A

12

Semantics of Hoare Triples

Now we can define formally the meaning of a partial
correctness assertion:

= {A} c {B} iff
VgeQ. Vg eqQ. q|=A/\q%q = q'EB

and the meaning of a total correctness assertion:

=[A] ¢ [B]iff VgcQ. g A= 39€Q. g 2 g'Aq =B

IIIIIIIIIIII

13

Examples of Hoare Triples

{true }x :=5{ }

{ }x 1= x + 3 {x=y+3}

{ }x 1= x*¥2 + 3 {x>1}
{x=a}if x < @ then x := -x { }
{false } x := 3 { }

{x>0}while x !'= 0 do x := x - 1{

{x<0}while x !'= 0 do x := x - 1{

IIIIIIIIIIII

}
}

14

Inferring Validity of Assertions

We now have the formal mechanism to decide when
{A} c {B}
e But it is not satisfactory,

e because = {A} c {B} is defined in terms of the operational
semantics.

» \We practically have to run the program to verify an assertion.

e Thus, it is impossible to effectively verify the truth of a
vx. A assertion (by using the definition of validity)

We need to define a symbolic technique for deriving
valid assertions from others that are known to be valid

o We start with validity of first-order formulas

15

Inference Rules (First Order Logic)

We write = A when A can be inferred from basic axioms
The inference rules for - A are the usual ones from first-order logic with

arithmetic
Natural deduction style rules:

- A -B - A - B FA=B FA
-FAAB -AVB -AVB - B
- Ale/x] -V Xx. A - Ala/x] .
~3x A ~ Ale/x] ~vx A 2isfresh
- Ala/x]
F3dx. A -B .
“A=B B a is fresh

Inference Rules for Hoare Triples

We write - {A} c {B} when we can derive the triple using
inference rules

There is one inference rule for each command in the
language

Plus, the rule of consequence
e e.g., strengthen pre-condition, weaken post-condition

A — A {A}e¢{B}) FB — B
{A"} ¢ {B'}

CONSEQ

IIIIIIIIIIII

17

Inference Rules for WHILE language

One rule for each syntactic construct:

—{A}s, {B} +{B}s,{C}
= {A} s4; $2 {C}

= {A} skip {A}

~{AADb}s, {B} F{AAb}s,{B}

— {Ale/x]} x:=e {A} - {A} if b then s, else s, {B}

- {I A b} s {I}
- {I}while b do s{I A —b}

IIIIIIIIIIII

%) WATERLOO 18

Example: Conditional

D1 F{trueAny=<0}x := 1{x>0}
D2 : | {tueny>0}x := y{x>0}

- {true} if y < @ then x := 1 else x :=y {x>0}

D1 is obtained by the rules of consequence and assignment
Ftrue Ay<0=1>0 F{1>0}x := 1 {x>0}

- {true Ay<0}x := 1 {x>0}

D2 is obtained by the rules of consequence and assignment
Htrue Ay>0=y>0 F{y>0}x :=y {x>0}

F{true Ny>0}x :=y {x>0}

IIIIIIIIIIII

19

R1

Complete proof on one slide

FtrueAy<0 = 1>0 F{1>0}x:=1{x>0}

{true ANy <0} x:=1 {x > 0}

FtrueA-(y<0) = y>0 F{y>0}x:=y{x>0}

{trueA—-(y <0)} x:=y {x > 0}

{true} if y <0 then x:=1else x:=y {x > 0}

UNIVERSITY OF

WATERLOO

20

Exercise: Hoare Rules

|s the following alternative rule for assignment still correct?

- {true} x:=e {x = €}

No. The rule is not correct. For example, this is wrong!

- {true} x:=x+1{x=x+1} Fx=x+1 = false
{true} x:=x + 1 {false}

IIIIIIIIIIII

%) WATERLOO 21

>

Hoare Rules

For some constructs, multiple rules are possible

alternative “forward axiom” for assignment:

F{A} x:=e {dxg-x = e|xg/x| N Alzo/x]|}

alternative rule for while loops:

FIND = C ={C} c{l} FIN-b = B

- {I} while b do c {B}

These alternative rules are derivable from the previous rules, plus the
rule of consequence.

IIIIIIIIIIII

WATERLOO

22

—{I A b} s {I}

—{I} whilebdos {I A b}

IIIIIIIIIIII

23

Example: a simple loop

We want to infer that

F{x<0}whilex<5dox:=x+1{x=06}
Use the rule for while with invariant I = x <6
FXSO6AXSS5=x+1<6 F{x+1<6}x:=x+1{x=<6}

F{x<6AXx<5}x:=x+1{x=<6}
F{x<6}whilex<5dox:=x+1{x<6AXx>5}

Then finish-off with the rule of consequence
FX<0=x<6 Fx<6AXx>5=x=6 F{x<6}while...{x<6 A x>5}

- {x<0}while ... {x =6}

UNIVERSITY OF

WATERLOO

24

Complete proof on one slide

Fx<6Ax<5 = x+1<6 F{x+1<6}x:=x+1{x<6}

{x<6Ax<5}x:=x+1{x <6}

R1
Fx<0 = x<6 {x <6} whilex <5dox:=x+1{-(x<5)Ax <6}

F-x<5Ax<6 — x=6

{x <0} whilex <5dox:=x+1{x =6}

%) WATERLOO

25

Inductive Loop Invariants

FPre = Inv F{InvAb}s{Inv} FInvA-b = Post

{Pre }while b do s {Post}

Inv is an inductive loop invariant if the following three conditions hold:

e (Initiation) Inv holds initially whenever the loop is reached. That is, it is true
of the pre-condition Pre

» (Consecution) Inv is preserved: executing the loop body c from any state
satisfying Inv and loop condition b ends in a state satisfying Inv

» (Safety) Inv is strong enough: Inv and the negation of loop condition b imply
the desired post-condition Post

%) WATERLOO 26

Proving simple loop using only one rule

We want to infer that
F{x<0}whilex<5dox:=x+1{x=0}

Using inductive invariant x<6

FX S 0=x<6 F {XxS6AX<5 } x:=x+1 {x<6} FX>5A\X <06 = X=6
{x=<0}while x<=5 do x:=x+1 {x=6}

IIIIIIIIIIII

%) WATERLOO 27

Example: a more interesting program

We want to derive that

{n > 0}
p := 0;
X 1= 0;

while x < n do

X 1= X + 1;
p :=p +m
{p=n"mj

IIIIIIIIIIII

Example: a more interesting program

Only applicable rule (except for rule of consequence):
= {A} c{C} F{C}cp{B}
= {A} ¢q; C2 {B}

= {n > 0} p:=0; x:=0 {C} H{C} while x < n do (x:=x+1; p:=p+m) {p =n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
L J \) \)\ J

Y Y ! I

A C1 Co B

IIIIIIIIIIII

29

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
= {I A b} c {I}
- {I}while bdoc{I A —b}

We can match {I} with {C} but we cannot match {I A —b} and

{p = n * m} directly. Need to apply the rule of consequence
first!

~{n > 0} p:=0; x:=0 {C} H{C} while x <ndo (x:=x+1; p:=p+m) {p = n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
L L)) \)

J
Y Y

Y i
A C1 C2 B

UNIVERSITY OF

WATERLOO

30

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
= {I A b} c {I}
- {I}while bdoc{I A —b}

A c’ B Rule of consequence:
FA=A F{A}lc’'{B} FB=DPB
I=A=A=C - {A’} ¢’ {B’}

A c’ B’
A A
={n = 0} p:=0; x:=0 {C} ﬁ{%}{while x < n do (x:=x+1; p:=p+m) {p = n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

Example: a more interesting program

What is I? Let’'s keep it as a placeholder for now!

Next applicable rule:
F{A}c{C} F{C}cy{B}
= {A} c1; c2 {B}

A o 9 B
I—{{I A x<ﬁ} X = x+1 , 'p:=p+rr'1 {1}
H{I} while x < n do (x:=x+1; p:=p+m) {I A x > n}
FIAX>Nn=p=n*m
= {n > 0} p:=0; x:=0 {I} H{I} while x < n do (x:=x+1; p:=p+m) {p =n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

32

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!
Only applicable rule (except for rule of consequence):
- {Ale/x]} x:=e {A}

A C c; B
HIT A x<m)X = x+1 {C} H{C} pr=p+m (1}
H{I A x<n} X :=x+1; p:=p+m {I}
H{I} while x < n do (x:=x+1; p:=p+m) {I A x > n}
FIAX>Nn=p=n*m
= {n > 0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+m) {p =n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

33

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!
Only applicable rule (except for rule of consequence):
- {Ale/x]} x:=e {A}

H{I A x<n} x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x < n do (x:=x+1; p:=p+m) {I A x > n}
FIAX>Nn=p=n*m
= {n > 0} p:=0; x:=0 {I} H{I} while x < n do (x:=x+1; p:=p+m) {p =n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

34

Example: a more interesting program

Only applicable rule (except for rule of consequence):
- {Ale/x]} x:=e {A}
Need rule of consequence to match {I A x<n} and {I[x+1/x, p+m/p]}

I A x<n} x:=x+1 {I[p+m/pl} H{I[p+m/p} p:=p+m {I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x < n do (x:=x+1; p:=p+m) {I A x > n}
FIAX>Nn=p=n*m
- {n > 0} p:=0; x:=0 {I} H{I} while x < n do (x:=x+1; p:=p+m) {p =n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

Example: a more interesting program

Let’s just remember the open proof obligations!

HI[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}
FIAX<n=I[x+1/x, p+m/p]
H{I A x<n} x:=x+1 {I[p+m/p]} —{I[p+m/p} p:=p+m {I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x < n do (x:=x+1; p:=p+m) {I A x > n}
FIAX>nNn=p=n*m
= {n > 0} p:=0; x:=0 {I} H{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

36

Example: a more interesting program

Let’s just remember the open proof obligations!
I AX<n=I[x+1/x, p+tm/p]

FIAX>NnN=p=n*m

Continue with the remaining part of the proof tree, as before.

~n> 0= I[0/p, 0/X] Now we only need to solve the
= {1[0/p, O/x]} p:=0 {I[0/x]} remaining constraints!
= {n > 0} p:=0 {I[0/x]}
= {I[0/x]} x:=0 {I} :
= {n > 0} p:=0; x:=0 {I} H{I}while x <ndo (x:=x+1; p:=p+m) {p =n* m}
- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

UNIVERSITY OF

WATERLOO

37

Example: a more interesting program

Find I such that all constraints are simultaneously valid:
=n > 0= I[0/p, 0/X]
I AX<n=I[x+1/x, p+tm/p]
FIAX>Nn=p=n*m

I=p=xXx"MAXSn

FnN>0=0=0"mMAO=<n
FpEp*rmAXSNAX<n=ptm=(X+1)*mAx+1<n
Fp=EX*MAXSNAX>n=p=n'm

All constraints are valid!

%) WATERLOO

Back to the example: What did we just do™!

{n > 0}
p = 0;
X 1= 0;

while X < n inv p=x*m /A x<n do

= X + 1;
= p +m

o X

p=n"mj

IIIIIIIIIIII

39

Using Hoare Rules

Hoare rules are mostly syntax directed

There are three obstacles to automation of Hoare logic proofs:
* When to apply the rule of consequence?
e What invariant to use for while?
 How do you prove the implications involved in the rule of consequence?

The last one is how theorem proving gets in the picture

e This turns out to be doable!
e The loop invariants turn out to be the hardest problem!

» Should the programmer give them?

UNIVERSITY OF

WATERLOO

40

Hoare Logic: Summary

We have a language for asserting properties of programs.

We know when such an assertion is true.

We also have a symbolic method for deriving assertions.

semantics

/ \,

{A} P {B} soundness = {A} P {B}

theorem prowr};\)
completeness

~{A} P {B}

IIIIIIIIIIII

%) WATERLOO

41

Software Size: Operating System

IIIIIIIIIIII

100
90
80
70
60
50
40
30
20
10

LOC OF AN OPERATING SYSTEM

SLOC

mNT 3.1

mNT 35
NT 4.0

m 2000
XP

m 2003

m OSX

mLinux

42

Software Size: Software Distribution

450
400
350
300
250
200
150
100
50
0

IIIIIIIIIIII

LOC OF A SOFTWARE
DISTRIBUTION

mNT 3.1
mNT 3.5
NT 4.0
m 2000
XP
m 2003
m OSX
mLinux
m Debian

SLOC

Verification must be automated! ‘

43

Software Verification (with Dafny)

correct

annotations
4)

@ theorem /
prover
program)\
n

Prove formulas
automatically!

0]

IIIIIIIIIIII

