SMT Solver Z3

Testing, Quality Assurance, and Maintenance
Winter 2018

Prof. Arie Gurfinkel
Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining whether a formula F has a model

- if F is *propositional*, a model is a truth assignment to Boolean variables
- if F is *first-order formula*, a model assigns values to variables and interpretation to all the function and predicate symbols

SAT Solvers
- check satisfiability of propositional formulas

SMT Solvers
- check satisfiability of formulas in a *decidable* first-order theory (e.g., linear arithmetic, uninterpreted functions, array theory, bit-vectors)
SAT solvers have been the focus of increased recent attention thanks to technological advances and industrial applications. Yet, they draw on a combination of some of the most fundamental areas in computer science as well as discoveries from the past century of symbolic logic. They combine the problem of Boolean Satisfiability with domains, such as those studied in convex optimization and term-manipulating symbolic systems. They involve the decision problem, completeness and incompleteness of logical theories, and finally complexity theory. In this article, we present an overview of the field of Satisfiability Modulo Theories, and some of its applications.

1.1 An SMT Application - Scheduling

Consider the classical job shop scheduling decision problem. In this problem, there are n jobs, each composed of m tasks of varying duration that have to be performed consecutively on m machines. The start of a new task can be delayed as long as needed in order to wait for a machine to become available, but tasks cannot be interrupted once started.
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

Arithmetic
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

Array theory
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

Uninterpreted function
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

By arithmetic, this is equivalent to

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), b)) \neq f(3) \]
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

By arithmetic, this is equivalent to

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), b)) \neq f(3) \]

then, by the array theory axiom: \(\text{read}(\text{write}(v, i, x), i) = x \)

\[b + 2 = c \land f(3) \neq f(3) \]
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]

By arithmetic, this is equivalent to

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), b)) \neq f(3) \]

then, by the array theory axiom: \text{read}(\text{write}(v, i, x), i) = x

\[b + 2 = c \land f(3) \neq f(3) \]

then, the formula is unsatisfiable
Example 2

\[x \geq 0 \land f(x) \geq 0 \land y \geq 0 \land f(y) \geq 0 \land x \neq y \]
Example 2

\[x \geq 0 \land f(x) \geq 0 \land y \geq 0 \land f(y) \geq 0 \land x \neq y \]

This formula is \textit{satisfiable}
Example 2

$$x \geq 0 \land f(x) \geq 0 \land y \geq 0 \land f(y) \geq 0 \land x \neq y$$

This formula is **satisfiable**:

Example model:

$$x \rightarrow 1$$
$$y \rightarrow 2$$
$$f(1) \rightarrow 0$$
$$f(2) \rightarrow 1$$
$$f(\ldots) \rightarrow 0$$
SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories

SMT-LIB syntax

• based on s-expressions (LISP-like)
• common syntax for interpreted functions of different theories
 – e.g. (and (= x y) (<= (* 2 x) z))
• commands to interact with the solver
 – (declare-fun ...) declares a constant/function symbol
 – (assert p) conjoins formula p to the current context
 – (check-sat) checks satisfiability of the current context
 – (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (>= (* 2 x) (+ y z)))
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)
Is this formula satisfiable?

1 ; This example illustrates basic arithmetic and
2 ; uninterpreted functions
3
4 (declare-fun x () Int)
5 (declare-fun y () Int)
6 (declare-fun z () Int)
7 (assert (>= (* 2 x) (+ y z)))
8 (declare-fun f (Int) Int)
9 (declare-fun g (Int Int) Int)
10 (assert (< (f x) (g x x)))
11 (assert (> (f y) (g x x)))
12 (check-sat)
13 (get-model)
14 (push)
15 (assert (= x y))
16 (check-sat)
17 (pop)
18 (exit)
19

http://rise4fun.com/z3
Example

\[b + 2 = c \land f(\text{read}(\text{write}(a, b, 3), c - 2)) \neq f(c - b + 1) \]
Is this formula satisfiable?

1 ;; Is this formula satisfiable?
2 (declare-fun b () Int)
3 (declare-fun c () Int)
4 (declare-fun a () (Array Int Int))
5 (declare-fun f (Int) Int)
6 (assert (= (+ b 2) c))
7 (assert (not (= (f (select (store a b 3) (- c 2))) (f (+ (- c b) 1)))))
8 (check-sat)
import z3

def main():
 b, c = z3.Ints ('b c')
 a = z3.Array ('a', z3.IntSort(), z3.IntSort())
 solver = z3.Solver ()
 solver.add (c == b + z3.IntVal(2))
 lhs = f (z3.Store (a, b, 3)[c-2])
 rhs = f(c-b+1)
 solver.add (lhs <> rhs)
 res = solver.check ()
 if res == z3.sat:
 print 'sat'
 elif res == z3.unsat:
 print 'unsat'
 else:
 print 'unknown'
 if __name__ == '__main__':
 main()
```python
import z3

def main():
    b, c = z3.Ints('b c')
    a = z3.Array('a', z3.IntSort(), z3.IntSort())
    solver = z3.Solver()
    solver.add(c == b + z3.IntVal(2))
    lhs = f(z3.Store(a, b, 3)[c-2])
    rhs = f(c-b+1)
    solver.add(lhs <> rhs)
    res = solver.check()
    if res == z3.sat:
        print('sat')
    elif res == z3.unsat:
        print('unsat')
    else:
        print('unknown')
if __name__ == '__main__':
    main()
```

z3 python package

create constants

SMT solver

create constraints and add to solver

run solver. can take long time.

result is: sat, unsat, unknown
Useful Z3Py Functions

All these functions are under python package z3

Create constants and values
- \texttt{Int(name)} – an integer constant with a given name
- \texttt{FreshInt(name)} – unique constant starting with name
- \texttt{IntVal(v)}, \texttt{BoolVal(v)} – integer and boolean values

Arithmetic functions and predicates
- +, -, /, <, \leq, >, \geq, ==, etc.
- \texttt{Distinct(a, b, ...)} – the arguments are distinct (expands to many disequalities)

Propositional operators
- And, Or, Not

Methods of the \texttt{z3.Solver} class
- \texttt{add(fml)} – add formula \texttt{fml} to the solver
- \texttt{check()} – returns \texttt{z3.sat}, \texttt{z3.unsat}, or \texttt{z3.unknown} (on failure to solve)
- \texttt{model()} – model if the result is sat

Methods of \texttt{z3.Model} class
- \texttt{eval(fml)} – returns the value of \texttt{fml} in the model
Job Shop Scheduling

\[\xi(s) = 0 \Rightarrow s = \frac{1}{2} + ir \]
Job Shop Scheduling

Constraints:

Precedence: between two tasks of the same job

Resource: Machines execute at most one job at a time

\[[\text{start}_{2,2} \ldots \text{end}_{2,2}] \cap [\text{start}_{4,2} \ldots \text{end}_{4,2}] = \emptyset \]
Job Shop Scheduling

Constraints:

Precedence:

Resource:

Encoding:

\(t_{2,3} \) - start time of job 2 on mach 3
\(d_{2,3} \) - duration of job 2 on mach 3

\[t_{2,3} + d_{2,3} \leq t_{2,4} \]

Not convex

\[t_{2,2} + d_{2,2} \leq t_{4,2} \]
\[t_{4,2} + d_{4,2} \leq t_{2,2} \]
Job Shop Scheduling

<table>
<thead>
<tr>
<th>$d_{i,j}$</th>
<th>Machine 1</th>
<th>Machine 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Job 2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Job 3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

$\max = 8$

Solution

$t_{1,1} = 5$, $t_{1,2} = 7$, $t_{2,1} = 2$, $t_{2,2} = 6$, $t_{3,1} = 0$, $t_{3,2} = 3$

Encoding

\[
(t_{1,1} \geq 0) \land (t_{1,2} \geq t_{1,1} + 2) \land (t_{1,2} + 1 \leq 8) \land \\
(t_{2,1} \geq 0) \land (t_{2,2} \geq t_{2,1} + 3) \land (t_{2,2} + 1 \leq 8) \land \\
(t_{3,1} \geq 0) \land (t_{3,2} \geq t_{3,1} + 2) \land (t_{3,2} + 3 \leq 8) \land \\
((t_{1,1} \geq t_{2,1} + 3) \lor (t_{2,1} \geq t_{1,1} + 2)) \land \\
((t_{1,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{1,1} + 2)) \land \\
((t_{2,1} \geq t_{3,1} + 2) \lor (t_{3,1} \geq t_{2,1} + 3)) \land \\
((t_{1,2} \geq t_{2,2} + 1) \lor (t_{2,2} \geq t_{1,2} + 1)) \land \\
((t_{1,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{1,2} + 1)) \land \\
((t_{2,2} \geq t_{3,2} + 3) \lor (t_{3,2} \geq t_{2,2} + 1))
\]
Bit Tricks

Let \(x, y \) be a 32 bit machine integers (a bit-vector)

Show that \(x \neq 0 \land \neg (x \land (x - 1)) \) is true iff \(x \) is a power of 2

Show that \(x \) and \(y \) have different signs iff \(x^y < 0 \)
Dog, Cat, Mouse

Spend exactly 100 dollars and buy exactly 100 animals.

- Dogs cost 15 dollars,
- cats cost 1 dollar,
- and mice cost 25 cents each.

You have to buy at least one of each.

How many of each should you buy?
Eight Queens Problem

Place 8 queens on an 8x8 chess board so that no two queen attacks one another
Incremental Interface

Z3 provides two interfaces for incremental solving that allow for adding and removing constraints

- push/pop, and assumptions

Constraints can be added at any time. This is not called incremental 😊

Push/Pop Interface

- Store current solver state by a call to push
 - `s.push()` in Python, and `(push)` in SMT-LIB
- Restore previous state by a call to pop
 - `s.pop()` in Python and `(pop)` in SMT-LIB
Incremental Interface: Assumptions

Requires two steps, but much more flexible than push/pop

1. **tag constraints by fresh Boolean constants**
 - e.g., use \(\text{assert} (\Rightarrow p \ phi) \) instead of \(\text{assert} \ phi \)

2. **during check-sat, enable constraints by forcing tags to be true**
 - e.g., use \(\text{check-sat} p \)

For example,

\[
\begin{align*}
\text{(assert} (\Rightarrow a0 c0)) \\
\text{(assert} (\Rightarrow a1 c1)) \\
\text{(assert} (\Rightarrow a2 c2)) \\
\text{(check-sat} a0) & \quad \text{; check whether c0 is sat} \\
\text{(check-sat} a0 a2) & \quad \text{; check whether c0 and c2 are sat} \\
\text{(check-set} a1 a2) & \quad \text{; check whether c1 and c3 are sat}
\end{align*}
\]
Assumptions in Python Interface

Methods of `z3.Solver` class

- `check(self, *assumptions)` – check with assumptions
- `unsat_core(self)` – if the last call to check was unsat, returns the subset of assumptions that were actually used to show unsat