method factorial (n: int) returns (v:int)
 requires n >= 0;
 ensures v = fact(n);
{
 v := 1;
 if (n <= 1) { return v; }
 var i := 2;
 while (i <= n)
 invariant i <= n + 1
 invariant v = fact(i - 1)
 {
 v := i * v;
 i := i + 1;
 }
 return v;
}
Program Verification

How can we argue that a given program is correct
• i.e., satisfies its formal specifications?

Such an argument must combine
• Operational Semantics – to understand different programming constructs
• Propositional Reasoning – to break the problem into sub-goals that can be reasoned individually and combined later
• Mathematical Reasoning – properties of numbers, arithmetic, factorial, etc…
• Formal argument style – to mechanically check the flow of reasoning

All of this requires a LOGIC
• A formal language with well-defined semantics and strict reasoning rules
Three Logics of Program Verification

- **Hoare Logic**
 (logic of programs)
- **First Order Logic**
 (logic of mathematical theories)
- **Propositional Logic**
 (logic of Boolean circuits)

Tools:
- **Program Verifier (Dafny)**
- **SMT Solver (Z3)**
- **SAT Solver (Z3)**
Plan for the next few weeks

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 7 (Feb 24)</td>
<td>Propositional Logic</td>
<td>First Order Logic</td>
</tr>
<tr>
<td>Week 8 (March 2)</td>
<td>SAT/SMT Solving</td>
<td>Hoare Logic (part 1)</td>
</tr>
<tr>
<td>Week 9 (March 9)</td>
<td>NO CLASS</td>
<td>Hoare Logic (part 2)</td>
</tr>
</tbody>
</table>

Understanding formal logic can be **boring** hard. Don’t ignore suggested reading material!!!
Propositional Logic

Testing, Quality Assurance, and Maintenance
Winter 2020

Prof. Arie Gurfinkel
References

• Chapter 1 of Logic for Computer Scientists
 http://www.springerlink.com/content/978-0-8176-4762-9/

• Chapter 1 of Calculus of Computation
What is Logic

According to Merriam-Webster dictionary logic is:

a (1): a science that deals with the principles and criteria of validity of **inference** and demonstration

d: the arrangement of circuit elements (as in a computer) needed for computation; *also*: the circuits themselves
What is Formal Logic

Formal Logic consists of

- syntax – what is a legal sentence in the logic
- semantics – what is the meaning of a sentence in the logic
- proof theory – formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously
Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as *and*, *or*, and *not* between simplest “atomic sentences”

\[
A = \text{“Paris is the capital of France”} \\
B = \text{“mice chase elephants”}
\]

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

\[
A \text{ and } B \\
A \text{ or } B \\
\text{if } A \text{ then } B
\]
Syntax and Semantics

Syntax

• MW: the way in which linguistic elements (such as words) are put together to form constituents (such as phrases or clauses)
• Determines and restricts how things are written

Semantics

• MW: the study of meanings
• Determines how syntax is interpreted to give meaning
Syntax of Propositional Logic

An *atomic formula* has a form A_i, where $i = 1, 2, 3 \ldots$

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula F, $\neg F$ (called not F) is a formula
- For all formulas F and G, $F \land G$ (called and) and $F \lor G$ (called or) are formulas

Abbreviations

- use A, B, C, \ldots instead of A_1, A_2, \ldots
- use $F_1 \rightarrow F_2$ instead of $\neg F_1 \lor F_2$ (implication)
- use $F_1 \leftrightarrow F_2$ instead of $(F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$ (iff)
Syntax of Propositional Logic (PL)

truth_symbol ::= \top(true) | \false(false)
variable ::= p, q, r, \ldots
atom ::= truth_symbol | variable
literal ::= atom | \neg(atom)
formula ::= literal | \neg(formula) | formula \and formula | formula \or formula | formula \rightarrow formula | formula \leftrightarrow formula
Example

\[F = \neg((A_5 \land A_6) \lor \neg A_3) \]

Sub-formulas are

\[F, ((A_5 \land A_6) \lor \neg A_3), \]
\[A_5 \land A_6, \neg A_3, \]
\[A_5, A_6, A_3 \]
Semantics of propositional logic

For an atomic formula A_i in D: $A'(A_i) = A(A_i)$

$A'((F \land G)) = 1$ if $A'(F) = 1$ and $A'(G) = 1$
$= 0$ otherwise

$A'((F \lor G)) = 1$ if $A'(F) = 1$ or $A'(G) = 1$
$= 0$ otherwise

$A'(\neg F) = 1$ if $A'(F) = 0$
$= 0$ otherwise
Example

\[F = \neg (A \land B) \lor C \]

\(\mathcal{A}(A) = 1 \)

\(\mathcal{A}(B) = 1 \)

\(\mathcal{A}(C) = 0 \)
Truth Tables for Basic Operators

<table>
<thead>
<tr>
<th>$A(F)$</th>
<th>$A(G)$</th>
<th>$A((F \land G))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A(F')$</th>
<th>$A(\neg F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$A(F)$</th>
<th>$A(G)$</th>
<th>$A((F \lor G))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[F = \neg(A \land B) \lor C \]

\[\mathcal{A}(A) = 1 \]
\[\mathcal{A}(B) = 1 \]
\[\mathcal{A}(C) = 0 \]
Propositional Logic: Semantics

An assignment A is *suitable* for a formula F if A assigns a truth value to every atomic proposition of F.

An assignment A is a *model* for F, written $A \models F$, iff

- A is suitable for F
- $A(F) = 1$, i.e., F holds under A.

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable* (or contradictory).

A formula F is *valid* (or a tautology), written $F \models F$, iff every suitable assignment for F is a model for F.
Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2^n suitable assignments.

Build a truth table enumerating all assignments.

F is satisfiable iff there is at least one entry with 1 in the output.

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>\cdots</th>
<th>A_{n-1}</th>
<th>A_n</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$A_1(F)$</td>
</tr>
<tr>
<td>A_2:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$A_2(F)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>A_{2^n}:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$A_{2^n}(F)$</td>
</tr>
</tbody>
</table>
An example

\[F = (\neg A \rightarrow (A \rightarrow B)) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\neg A</th>
<th>(A \rightarrow B)</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Validity and Unsatisfiability

Theorem:
A formula F is valid if and only if $\neg F$ is unsatisfiable

Proof:
F is valid \iff every suitable assignment for F is a model for F
\iff every suitable assignment for F is not a model for $\neg F$
\iff $\neg F$ does not have a model
\iff $\neg F$ is unsatisfiable
Normal Forms: CNF and DNF

A **literal** is either an atomic proposition \(v \) or its negation \(\neg v \)

A **clause** is a disjunction of literals

- e.g., \((v_1 \lor \neg v_2 \lor v_3)\)

A formula is in **Conjunctive Normal Form** (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

- e.g., \((v_1 \lor \neg v_2) \land (v_3 \lor v_2)\)

\[
\land_{i=1}^{n} \big(\lor_{j=1}^{m_i} L_{i,j} \big)
\]

A formula is in **Disjunctive Normal Form** (DNF) if it is a disjunction of conjunctions of literals

\[
\lor_{i=1}^{n} \big(\land_{j=1}^{m_i} L_{i,j} \big)
\]
From Truth Table to CNF and DNF

\[\neg A \land \neg B \land \neg C \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C) \]

\[\land (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (A \lor \neg B \lor \neg C) \land (\neg A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor \neg C) \]

\[\begin{array}{ccc|c}
A & B & C & F \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
\end{array}\]
Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F_1 in CNF and F_2 in DNF

Proof: (by induction on the structure of the formula F)
ENCODING PROBLEMS INTO CNF-SAT
Graph k-Coloring

Given a graph $G = (V, E)$, and a natural number $k > 0$ is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.

Formally:
- does there exists a function $f : V \to [0..k)$ such that
- for every edge (u, v) in E, $f(u) \neq f(v)$

Graph coloring for $k > 2$ is NP-complete

Problem: Encode k-coloring of G into CNF
- construct CNF C such that C is SAT iff G is k-colorable

https://en.wikipedia.org/wiki/Graph_coloring
k-coloring as CNF

Let a Boolean variable $f_{v,i}$ denote that vertex v has color i

- if $f_{v,i}$ is true if and only if $f(v) = i$

Every vertex has at least one color

$$\bigvee_{0 \leq i < k} f_{v,i} \quad (v \in V)$$

No vertex is assigned two colors

$$\bigwedge_{0 \leq i < j < k} (\neg f_{v,i} \vee \neg f_{v,j}) \quad (v \in V)$$

No two adjacent vertices have the same color

$$\bigwedge_{0 \leq i < k} (\neg f_{v,i} \vee \neg f_{u,i}) \quad ((v, u) \in E)$$
PROPOSITIONAL REASONING
Propositional Resolution

\[
\begin{array}{c}
C \lor p \\
\hline
C \lor D
\end{array}
\]

\[
\begin{array}{c}
D \lor \neg p
\end{array}
\]

Res({C, p}, {D, !p}) = {C, D}

Given two clauses (C, p) and (D, !p) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D.
Resolution Lemma

Lemma:
Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup \{R\}$ is equivalent to F.
Proof System

An inference rule is a tuple \((P_1, \ldots, P_n, C)\)
- where, \(P_1, \ldots, P_n, C\) are formulas
- \(P_i\) are called premises and \(C\) is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system \(P\) is a collection of inference rules

A proof in a proof system \(P\) is a tree (or a DAG) such that
- nodes are labeled by formulas
- for each node \(n\), \((\text{parents}(n), n)\) is an inference rule in \(P\)
Propositional Resolution

\[C \lor p \quad \quad D \lor \neg p \]

\[\underline{C \lor D} \]

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule
Example of a resolution proof

A refutation of \(\neg p \lor \neg q \lor r, p \lor r, q \lor r, \neg r \):
Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c)$$

\[
\begin{align*}
\neg a \lor b \lor \neg c & \quad a \\
\hline
b \lor \neg c & \quad b \\
\hline
\neg c & \quad a \quad \neg a \lor c \\
\hline
\bot & \quad c
\end{align*}
\]
Entailment and Derivation

A set of formulas F **entails** a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is **derivable** from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$
Soundness and Completeness

A proof system P is **sound** iff

\[(F \vdash_P G) \implies (F \models G) \]

A proof system P is **complete** iff

\[(F \models G) \implies (F \vdash_P G) \]
Completeness of Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic
Proof by resolution

Notation: positive numbers mean variables, negative mean negation

Let $\varphi = (1 \ 3) \land (-1 \ 2 \ 5) \land (-1 \ 4) \land (-1 \ -4) \land (1 \ -2)$

We’ll try to prove $\varphi \rightarrow (3 \ 5)$
Resolution

Resolution is a sound and complete inference system for CNF. If the input formula is unsatisfiable, there exists a proof of the empty clause.

http://www.decision-procedures.org/slides/
Example: UNSAT Derivation

Notation: positive numbers mean variables, negative mean negation
Let $\varphi = (1\ 3) \land (-1\ 2) \land (1\ -2) \land (-1\ 4) \land (-1\ -4) \land (-3)$

\[
\begin{array}{c}
(1\ 3) \\
\downarrow \\
(2\ 3) \\
\downarrow \\
(1\ -2) \\
\downarrow \\
(-1\ 4) \\
\downarrow \\
(-1\ -4) \\
\downarrow \\
(1\ 3) \\
\downarrow \\
(-1) \\
\downarrow \\
(3) \\
\downarrow \\
(-3) \\
\downarrow \\
()
\end{array}
\]
Using resolution show that

\[A \land B \land C \]

is a consequence of

\[\neg A \lor B \]
\[\neg B \lor C \]
\[A \lor \neg C \]
\[A \lor B \lor C \]
Show using resolution that F is valid

$$F = (\neg B \land \neg C \land D) \lor (\neg B \land \neg D) \lor (C \land D) \lor B$$

$$\neg F = (B \lor C \lor \neg D) \land (B \lor D) \land (\neg C \lor \neg D) \land \neg B$$