SAT Solving

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

based on slides by Prof. Ruzica Piskac, Nikolaj Bjorner, and others
Boolean Satisfiability (CNF-SAT)

Let V be a set of variables

A literal is either a variable v in V or its negation \(\sim v \)

A clause is a disjunction of literals

- e.g., \((v_1 || \sim v_2 || v_3)\)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

- e.g., \((v_1 || \sim v_2) \&\& (v_3 || v_2)\)

An assignment \(s \) of Boolean values to variables satisfies a clause \(c \) if it evaluates at least one literal in \(c \) to true

An assignment \(s \) satisfies a formula \(C \) in CNF if it satisfies every clause in \(C \)

Boolean Satisfiability Problem (CNF-SAT):

- determine whether a given CNF \(C \) is satisfiable
Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemann-Loveland, ‘60)
- smart enumeration of all possible SAT assignments
- worst-case EXPTIME
- alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
- conflict-driven clause learning
- extends DPLL with
 - smart data structures, backjumping, clause learning, heuristics, restarts…
- scales to millions of variables
Boolean Satisfiability: From Theoretical Hardness to Practical Success

By Sharad Malik, Lintao Zhang
Communications of the ACM, Vol. 52 No. 8, Pages 76-82
10.1145/1536616.1536637

There are many practical situations where we need to satisfy several potentially conflicting constraints. Simple examples of this abound in daily life, for example, determining a schedule for a series of games that resolves the availability of players and venues, or finding a seating assignment at dinner consistent with various rules the host would like to impose. This also applies to applications in computing, for example, ensuring that a hardware/software system functions correctly with its overall behavior constrained by the behavior of its components and their composition, or finding a plan for a robot to reach a goal that is
Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

![Bar chart comparing solver performance][1]

SAT - Milestones

Problems impossible 10 years ago are trivial today

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Davis-Putnam procedure</td>
</tr>
<tr>
<td>1962</td>
<td>Davis-Logeman-Loveland</td>
</tr>
<tr>
<td>1984</td>
<td>Binary Decision Diagrams</td>
</tr>
<tr>
<td>1992</td>
<td>DIMACS SAT challenge</td>
</tr>
<tr>
<td>1994</td>
<td>SATO: clause indexing</td>
</tr>
<tr>
<td>1997</td>
<td>GRASP: conflict clause learning</td>
</tr>
<tr>
<td>1998</td>
<td>Search Restarts</td>
</tr>
<tr>
<td>2001</td>
<td>zChaff: 2-watch literal, VSIDS</td>
</tr>
<tr>
<td>2005</td>
<td>Preprocessing techniques</td>
</tr>
<tr>
<td>2007</td>
<td>Phase caching</td>
</tr>
<tr>
<td>2008</td>
<td>Cache optimized indexing</td>
</tr>
<tr>
<td>2009</td>
<td>In-processing, clause management</td>
</tr>
<tr>
<td>2010</td>
<td>Blocked clause elimination</td>
</tr>
</tbody>
</table>

![Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mA timeout](image)

Concept

2002 - 2010

Millions of variables from HW designs

Courtesy Daniel le Berre
References

Chapter 2: Decision Procedures for Propositional Logic
Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given propositional logic (PL) formula F is satisfiable

- NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach

- Enumerate models (i.e., truth tables)
- Enumerate resolution proofs

Modern SAT solvers

- DPLL algorithm
 - Davis-Putnam-Logemann-Loveland
- Combines model- and proof-based search
- Operates on Conjunctive Normal Form (CNF)
Propositional Resolution

\[\text{Res}([C, p], [D, \neg p]) = [C, D] \]

Given two clauses \((C, p)\) and \((D, \neg p)\) that contain a literal \(p\) of different polarity, create a new clause by taking the union of literals in \(C\) and \(D\).
Resolution Lemma

Lemma:
Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup \{R\}$ is equivalent to F

\[
\begin{array}{c}
C \lor p \\
\hline
C \lor D
\end{array}
\quad
\begin{array}{c}
D \lor \neg p \\
\hline
C \lor D
\end{array}
\]
Resolution Theorem

Let F be a set of clauses

\[Res(F) = F \cup \{ R \mid R \text{ is a resolvent of two clauses in } F \} \]

\[Res^0(F) = F \]

\[Res^{n+1}(F) = Res(Res^n(F)), \text{ for } n \geq 0 \]

\[Res^*(F) = \bigcup_{n \geq 0} Res^n(F) \]

Theorem: A CNF F is UNAT iff \(Res^*(F) \) contains an empty clause
Resolution Theorem

Let F be a set of clauses

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$$

$$Res^0(F) = F$$

$$Res^{n+1}(F) = Res(Res^n(F)), \text{ for } n \geq 0$$

$$Res^*(F) = \bigcup_{n\geq0} Res^n(F)$$

Theorem: A CNF F is UNAT iff $Res^*(F)$ contains an empty clause
Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to $\text{Res}^i(F)$ for any i. Let n be such that $\text{Res}^{n+1}(F)$ contains an empty clause, but $\text{Res}^n(F)$ does not. Then $\text{Res}^n(F)$ must contain to unit clauses L and $\neg L$. Hence, it is UNSAT.

(Completeness) By induction on the number of different atomic propositions in F.

Base case is trivial: F contains an empty clause.

IH: Assume F has atomic propositions $A_1, \ldots A_{n+1}$

Let F_0 be the result of replacing A_{n+1} by 0

Let F_1 be the result of replacing A_{n+1} by 1

Apply IH to F_0 and F_1. Restore replaced literals. Combine the two resolutions.
Proof System

\[P_1, \ldots, P_n \vdash C \]

An inference rule is a tuple \((P_1, \ldots, P_n, C)\)

- where, \(P_1, \ldots, P_n, C\) are formulas
- \(P_i\) are called premises and \(C\) is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system \(P\) is a collection of inference rules

A proof in a proof system \(P\) is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node \(n\), \((\text{parents}(n), n)\) is an inference rule in \(P\)
Propositional Resolution

\[C \lor p \quad D \lor \neg p \]

\[\frac{}{C \lor D} \]

Propositional resolution is a sound inference rule.

Proposition resolution system consists of a single propositional resolution rule.
Example of a resolution proof

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:

```
  ¬p ∨ ¬q ∨ r  ¬r  q ∨ r  ¬r
     /   \     \   /   \
   p    ¬r     p ∨ ¬q
         /   \     /   \       /   \     /   \       /   \
        p    ¬p    p ∨ r   ¬q   q   r
          /   \   /   \   /   \   /   \
         p    ¬p   ¬r    ¬p    ¬r   ¬r
```

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

\[\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c) \]

\[\begin{align*}
\neg a \lor b \lor \neg c & \quad a \\
\hline
b \lor \neg c & \quad b \\
\hline
\neg c & \\
\hline
\end{align*} \]

\[\begin{align*}
a & \quad \neg a \lor c \\
\hline
c & \\
\hline
\end{align*} \]
Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$
Soundness and Completeness

A proof system P is sound iff

$$(F \vdash_P G) \implies (F \models G)$$

A proof system P is complete iff

$$(F \models G) \implies (F \vdash_P G)$$
SAT solving by resolution (DP)

Assume that input formula F is in CNF

1. Pick two clauses C_1 and C_2 in F that can be resolved
2. If the resolvent C is an empty clause, return UNSAT
3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses
DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions
Proof search is restricted to unit resolution
 • can be done very efficiently (polynomial time)
Case split restores completeness

DPLL can be described by the following two rules
 • F is the input formula in CNF

\[
\frac{F}{\begin{array}{c} F, p \\ F, \neg p \end{array}} \text{ split } p \text{ and } \neg p \text{ are not in } F
\]

\[
\frac{F, C \lor \ell, \neg \ell}{\begin{array}{c} F, C, \neg \ell \end{array}} \text{ unit}
\]

The original DPLL procedure

Incrementally builds a satisfying truth assignment M for the input CNF formula F

M is grown by

- deducing the truth value of a literal from M and F, or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure backtracks and tries the opposite value
DPLL: Illustration

M | F

Partial model

Set of clauses
DPLL: Illustration

Guessing (decide)

\[p \mid p \lor q, \lnot q \lor r \]

\[p, \lnot q \mid p \lor q, \lnot q \lor r \]
DPLL: Illustration

Deducing (unit propagate)

\[p \mid p \lor q, \neg p \lor s \]

\[p, s \mid p \lor q, \neg p \lor s \]
DPLL: Illustration

Backtracking

\[p, \neg s, q \mid p \lor q, s \lor q, \neg p \lor \neg q \]

\[p, s \mid p \lor q, s \lor q, \neg p \lor \neg q \]
Pure Literals

A literal is pure if it only occurs positively or negatively.

Example:
\[\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4) \]

\(\neg x_1 \) and \(x_3 \) are pure literals.

Pure literal rule:
Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

\[\varphi_{\neg x_1, x_3} = (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4) \]

Preserve satisfiability, not logical equivalency!
DPLL (as a procedure)

- Standard backtrack search
- DPLL(F):
 - Apply unit propagation
 - If conflict identified, return UNSAT
 - Apply the pure literal rule
 - If F is satisfied (empty), return SAT
 - Select decision variable x
 - If DPLL(F \land x) = SAT return SAT
 - return DPLL(F \land \neg x)
The Original DPLL Procedure – Example

assign

Deduce 1

1

Deduce ¬2

1, 2

Guess 3

1, 2, 3

Deduce 4

1, 2, 3, 4

Conflict

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1

1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1
The Original DPLL Procedure – Example

assign

Deduce 1

1

Deduce \neg 2

1, 2

Guess 3

1, 2, 3

Deduce 4

1, 2, 3, 4

Undo 3

1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2,
\neg 1 \lor \neg 3 \lor \neg 4, 1
The Original DPLL Procedure – Example

<table>
<thead>
<tr>
<th>assign</th>
<th>1, 2, 3</th>
<th>Model Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deduce 1</td>
<td>1</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
</tr>
<tr>
<td>Deduce \neg 2</td>
<td>1, 2</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
</tr>
<tr>
<td>Guess \neg 3</td>
<td>1, 2, 3</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
</tr>
</tbody>
</table>
An Abstract Framework for DPLL

State

- **fail** or $M \parallel F$
- where
 - F is a CNF formula, a set of clauses, and
 - M is a sequence of annotated literals denoting a partial truth assignment

Initial State

- $\emptyset \parallel F$, where F is to be checked for satisfiability

Expected final states:

- **fail** if F is unsatisfiable
- $M \parallel G$
 where
 - M is a model of G
 - G is logically equivalent to F
Transition Rules for DPLL

Extending the assignment:

UnitProp \[M \parallel F, C \lor I \rightarrow M I \parallel F, C \lor I \]

\[M \models \neg C \]
I is undefined in M

Decide \[M \parallel F, C \rightarrow M I^d \parallel F, C \]

\[I \text{ or } \neg I \text{ occur in } C \]
I is undefined in M

Notation: \(I^d \) is a decision literal
Transition Rules for DPLL

Repairing the assignment:

- **Fail**
 \[M \parallel F, C \rightarrow \text{fail} \]

- **Backtrack**
 \[M \uparrow^d N \parallel F, C \rightarrow M \uparrow \neg I \parallel F, C \]

\[
\begin{align*}
M \models \neg C \\
\text{M does not contain decision literals}
\end{align*}
\]

\[
\begin{align*}
M \uparrow^d N \not\models \neg C \\
I \text{ is the last decision literal}
\end{align*}
\]
Transition Rules DPLL – Example

\[
\emptyset \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \\
\lor \neg 3 \lor \neg 4, 1
\]

UnitProp 1

UnitProp \neg 2

Decide 3

UnitProp 4

Backtrack 3
Transition Rules DPLL – Example

∅ \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1

1 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1

1, 2 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1

1, 2, 3^d \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1

1, 2, 3 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1

UnitProp 1
UnitProp \neg 2
Decide 3
UnitProp 4
Backtrack 3
Transition Rules for DPLL (on one slide)

UnitProp

\[
\text{M } \parallel \text{ F, C } \lor \text{ l } \Rightarrow \text{ M } \parallel \text{ F, C } \lor \text{ l }
\]

- \(M \models \neg \text{ C} \)
- l is undefined in M

Decide

\[
\text{M } \parallel \text{ F, C } \Rightarrow \text{ M } \mid \text{l} \parallel \text{ F, C}
\]

- I or \(\neg \text{l} \) occur in C
- I is undefined in M

Fail

\[
\text{M } \parallel \text{ F, C } \Rightarrow \text{ fail}
\]

- \(M \models \neg \text{ C} \)
- M does not contain decision literals

Backtrack

\[
\text{M } \mid \text{l} \mid \text{N } \parallel \text{ F, C } \Rightarrow \text{ M } \neg \text{l } \parallel \text{ F, C}
\]

- \(M \mid \text{l} \mid \text{N} \not\models \neg \text{ C} \)
- I is the last decision literal
The DPLL System – Correctness

Some terminology

- Irreducible state: state to which no transition rule applies.
- Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.
- Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with $\emptyset \parallel F$ and ending in $M \parallel F$, $M \models F$

Proposition (Completeness) If F is unsatisfiable, every exhausted execution starting with $\emptyset \parallel F$ ends with fail

Maintained in more general rules + theories
Modern DPLL: CDCL

Conflict Driven Clause Learning

- two watched literals – efficient index to find clauses that can be used in unit resolution
- periodically restart backtrack search
- activity-based decision heuristic to choose decision variable
- conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in

- Chapter 2 of Decision Procedures book
- http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf
Conflict Directed Clause Learning

Lemma learning

\[\neg t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \]

\[\downarrow \]

\[\neg t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor \neg s \]

\[\downarrow \]

\[\neg t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor \neg q \]

\[\downarrow \]

\[\neg t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor t \]
Learned Clause by Resolution

A new clause is learned by resolving the conflict clause with clauses deduced from the last decision

\[-t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s\]

\[-p \lor \neg s \quad \neg q \lor s\]

\[\quad \frac{\neg p \lor \neg q}{t \lor \neg p \lor q}\]

\[\quad \frac{t \lor \neg p}{t \lor \neg p}\]

Trivial Resolution: at every resolution step, at least one clause is an input clause
Modern CDCL: Abstract Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Formulation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>$\epsilon \mid F$</td>
<td>F is a set of clauses</td>
</tr>
<tr>
<td>Decide</td>
<td>$M \mid F \Rightarrow M, \ell \mid F$</td>
<td>ℓ is unassigned</td>
</tr>
<tr>
<td>Propagate</td>
<td>$M \mid F, C \lor \ell \Rightarrow M, \ell^{C\lor\ell} \mid F, C \lor \ell$</td>
<td>C is false under M</td>
</tr>
<tr>
<td>Sat</td>
<td>$M \mid F \Rightarrow M$</td>
<td>F true under M</td>
</tr>
<tr>
<td>Conflict</td>
<td>$M \mid F, C \Rightarrow M \mid F, C \mid C$</td>
<td>C is false under M</td>
</tr>
<tr>
<td>Learn</td>
<td>$M \mid F \mid C \Rightarrow M \mid F, C \mid C$</td>
<td></td>
</tr>
<tr>
<td>Unsat</td>
<td>$M \mid F \mid \emptyset \Rightarrow \text{Unsat}$</td>
<td></td>
</tr>
<tr>
<td>Backjump</td>
<td>$MM' \mid F \mid C \lor \ell \Rightarrow M\ell^{C\lor\ell} \mid F$</td>
<td>$\neg C \subseteq M, \neg \ell \in M'$</td>
</tr>
<tr>
<td>Resolve</td>
<td>$M \mid F \mid C' \lor \neg \ell \Rightarrow M \mid F \mid C' \lor C$</td>
<td>$\ell^{C\lor\ell} \in M$</td>
</tr>
<tr>
<td>Forget</td>
<td>$M \mid F, C \Rightarrow M \mid F$</td>
<td>C is a learned clause</td>
</tr>
<tr>
<td>Restart</td>
<td>$M \mid F \Rightarrow \epsilon \mid F$</td>
<td></td>
</tr>
</tbody>
</table>

[Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized
SAT Algorithm

while(true) {
 if (!Decide())
 return SAT;
 while (!BCP())
 if (!ResolveConflict())
 return UNSAT
 Apply unit resolution while it is applicable. Return FALSE if reached a conflict
 Backtrack until no conflict. Return FALSE if impossible.
}
Conjuctive Normal Form

\[
\begin{align*}
\varphi & \leftrightarrow \psi \quad \Rightarrow \text{CNF} \quad \varphi \rightarrow \psi \land \psi \rightarrow \varphi \\
\varphi & \rightarrow \psi \quad \Rightarrow \text{CNF} \quad \neg \varphi \lor \psi \\
\neg (\varphi \lor \psi) & \quad \Rightarrow \text{CNF} \quad \neg \varphi \land \neg \psi \\
\neg (\varphi \land \psi) & \quad \Rightarrow \text{CNF} \quad \neg \varphi \lor \neg \psi \\
\neg \neg \varphi & \quad \Rightarrow \text{CNF} \quad \varphi \\
(\varphi \land \psi) \lor \xi & \quad \Rightarrow \text{CNF} \quad (\varphi \lor \xi) \land (\psi \lor \xi)
\end{align*}
\]

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula
Tseitin Transformation – Main Idea

Introduce a fresh variable e_i for every subformula G_i of F

- intuitively, e_i represents the truth value of G_i

Assert that every e_i and G_i pair are equivalent

- $e_i \leftrightarrow G_i$
- and express the assertion as CNF

Conjoin all such assertions in the end
Formula to CNF Conversion

```python
def cnf (ϕ):
    p, F = cnf_rec (ϕ)
    return p ∧ F

def cnf_rec (ϕ):
    if is_atomic (ϕ): return (ϕ, True)
    elif ϕ == ψ ∧ ξ:
        q, F1 = cnf_rec (ψ)
        r, F2 = cnf_rec (ξ)
        p = mk_fresh_var ()
        # C is CNF for p⟷(q∧r)
        C = (¬p∨q)∧(¬p∨r)∧(p∨¬q∨¬r)
        return (p, F1 ∧ F2 ∧ C)
    elif ϕ == ψ∨ξ:
        ...
```

Exercise: Complete cases for

- $\phi = \psi \lor \xi$
- $\phi = \neg \psi$
- $\phi = \psi \leftrightarrow \xi$
Tseitin Transformation: Example

\(G : p \leftrightarrow (q \rightarrow r) \)

\[
G : e_0 \land (e_0 \leftrightarrow (p \leftrightarrow e_1)) \land (e_1 \leftrightarrow (q \rightarrow r))
\]

\[
e_1 \leftrightarrow (q \rightarrow r)
= (e_1 \rightarrow (q \rightarrow r)) \land ((q \rightarrow r) \rightarrow e_1)
= (\neg e_1 \lor \neg q \lor r) \land ((\neg q \lor r) \rightarrow e_1)
= (\neg e_1 \lor \neg q \lor r) \land (\neg q \rightarrow e_1) \land (r \rightarrow e_1)
= (\neg e_1 \lor \neg q \lor r) \land (q \lor e_1) \land (\neg r \lor e_1)
\]
Tseitin Transformation: Example

\[G : p \leftrightarrow (q \rightarrow r) \]

\[G : e_0 \land (e_0 \leftrightarrow (p \leftrightarrow e_1)) \land (e_1 \leftrightarrow (q \rightarrow r)) \]

\[
\begin{align*}
 e_0 \leftrightarrow (p \leftrightarrow e_1) \\
 = (e_0 \rightarrow (p \leftrightarrow e_1)) \land ((p \leftrightarrow e_1)) \rightarrow e_0) \\
 = (e_0 \rightarrow (p \rightarrow e_1)) \land (e_0 \rightarrow (e_1 \rightarrow p)) \land
 (((p \land e_1) \lor (\neg p \land \neg e_1)) \rightarrow e_0) \\
 = (\neg e_0 \lor \neg p \lor e_1) \land (\neg e_0 \lor \neg e_1 \lor p) \land
 (\neg p \lor \neg e_1 \lor e_0) \land (p \lor e_1 \lor e_0)
\end{align*}
\]
Tseitin Transformation: Example

\[G : p \leftrightarrow (q \rightarrow r) \]

\[G : e_0 \wedge (e_0 \leftrightarrow (p \leftrightarrow e_1)) \wedge (e_1 \leftrightarrow (q \rightarrow r)) \]

\[G : e_0 \wedge (\neg e_0 \vee \neg p \vee e_1) \wedge (\neg e_0 \vee p \vee \neg e_1) \wedge (e_0 \vee p \vee e_1) \wedge (e_0 \vee \neg p \vee \neg e_1) \wedge \\
(\neg e_1 \vee \neg q \vee r) \wedge (e_1 \vee q) \wedge (e_1 \vee \neg r) \]
Tseitin Transformation [1968]

Used in practice
- No exponential blow-up
- CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given \(F \), the following holds for the computed CNF \(F' \):
- \(F' \) is equisatisfiable to \(F \)
- Every model of \(F' \) can be translated (i.e., projected) to a model of \(F \)
- Every model of \(F \) can be translated (i.e., completed) to a model of \(F' \)

No model is lost or added in the conversion
MiniSat

MiniSat is one of the most famous modern SAT-solvers
• written in C++
• designed to be easily understandable and customizable
• many new SAT-solvers use MiniSAT as their base

Web page: http://minisat.se/

We will use a slightly updated version from GitHub: https://github.com/agurfinkel/minisat

Good references for understanding SAT solving details
• MiniSat architecture: http://minisat.se/downloads/MiniSat.pdf
• Donald Knuth’s SAT13 (also based on MiniSat)