SAT Solving

Testing, Quality Assurance, and Maintenance
Winter 2019

Prof. Arie Gurfinkel

based on slides by Prof. Ruzica Piskac, Nikolaj Bjorner, and others
Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation \(\sim v \)
A clause is a disjunction of literals
 • e.g., \((v_1 \vee \sim v_2 \vee v_3)\)
A Boolean formula in *Conjunctive Normal Form* (CNF) is a conjunction of clauses
 • e.g., \((v_1 \vee \sim v_2) \land (v_3 \vee v_2)\)
An *assignment* s of Boolean values to variables satisfies a clause c if it evaluates at least one literal in c to true
An assignment satisfies a formula C in CNF if it satisfies every clause in C
Boolean Satisfiability Problem (CNF-SAT):
 • determine whether a given CNF C is satisfiable
Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemann-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
 – smart data structures, backjumping, clause learning, heuristics, restarts…
• scales to millions of variables
Boolean Satisfiability: From Theoretical Hardness to Practical Success

By Sharad Malik, Lintao Zhang
Communications of the ACM, Vol. 52 No. 8, Pages 76-82
10.1145/1536616.1536637

There are many practical situations where we need to satisfy several potentially conflicting constraints. Simple examples of this abound in daily life, for example, determining a schedule for a series of games that resolves the availability of players and venues, or finding a seating assignment at dinner consistent with various rules the host would like to impose. This also applies to applications in computing, for example, ensuring that a hardware/software system functions correctly with its overall behavior constrained by the behavior of its components and their composition, or finding a plan for a robot to reach a goal that is
Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

SAT - Milestones

Problems impossible 10 years ago are trivial today

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Davis-Putnam procedure</td>
</tr>
<tr>
<td>1962</td>
<td>Davis-Logeman-Loveland</td>
</tr>
<tr>
<td>1984</td>
<td>Binary Decision Diagrams</td>
</tr>
<tr>
<td>1992</td>
<td>DIMACS SAT challenge</td>
</tr>
<tr>
<td>1994</td>
<td>SATO: clause indexing</td>
</tr>
<tr>
<td>1997</td>
<td>GRASP: conflict clause learning</td>
</tr>
<tr>
<td>1998</td>
<td>Search Restarts</td>
</tr>
<tr>
<td>2001</td>
<td>zChaff: 2-watch literal, VSIDS</td>
</tr>
<tr>
<td>2005</td>
<td>Preprocessing techniques</td>
</tr>
<tr>
<td>2007</td>
<td>Phase caching</td>
</tr>
<tr>
<td>2008</td>
<td>Cache optimized indexing</td>
</tr>
<tr>
<td>2009</td>
<td>In-processing, clause management</td>
</tr>
<tr>
<td>2010</td>
<td>Blocked clause elimination</td>
</tr>
</tbody>
</table>

Concept: Problems impossible 10 years ago are trivial today

![Graph showing SAT competition results](image)

Courtesy Daniel le Berre

[Le Berre'10]
DPLL PROCEDURE
References

Chapter 2: Decision Procedures for Propositional Logic
Decision Procedure for Satisfiability

Algorithm that in some finite amount of computation decides if a given propositional logic (PL) formula F is satisfiable

• NP-complete problem

Modern decision procedures for PL formulae are called SAT solvers

Naïve approach

• Enumerate models (i.e., truth tables)
• Enumerate resolution proofs

Modern SAT solvers

• DPLL algorithm
 – Davis-Putnam-Logemann-Loveland
• Combines model- and proof-based search
• Operates on Conjunctive Normal Form (CNF)
Propositional Resolution

Given two clauses (C, p) and $(D, \neg p)$ that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D.

$$\text{Res}(\{C, p\}, \{D, \neg p\}) = \{C, D\}$$
SAT solving by resolution (DP)

Assume that input formula F is in CNF

1. Pick two clauses C_1 and C_2 in F that can be resolved
2. If the resolvent C is an empty clause, return UNSAT
3. Otherwise, add C to F and go to step 1
4. If no new clauses can be resolved, return SAT

Termination: finitely many derived clauses
DPLL: David Putnam Logemann Loveland

Combines pure resolution-based search with case splitting on decisions
Proof search is restricted to unit resolution
 • can be done very efficiently (polynomial time)
Case split restores completeness

DPLL can be described by the following two rules
 • F is the input formula in CNF

\[
\begin{align*}
F & \quad \text{split} \quad p \text{ and } \neg p \text{ are not in } F \\
F,p & \quad \mid \quad F,\neg p
\end{align*}
\]

\[
\begin{align*}
F, C \lor \ell, \neg \ell & \quad \text{unit} \\
F, C, \neg \ell
\end{align*}
\]
The original DPLL procedure

Incrementally **builds** a satisfying truth assignment M for the input CNF formula F

M is grown by

- deducing the truth value of a literal from M and F, or
- guessing a truth value

If a wrong guess for a literal leads to an inconsistency, the procedure **backtracks** and tries the opposite value
DPLL: Illustration

M | F

Partial model

Set of clauses
DPLL: Illustration

Guessing

\[p \mid p \lor q, \neg q \lor r \]

\[p, \neg q \mid p \lor q, \neg q \lor r \]
DPLL: Illustration

Deducing

\[p \mid p \lor q, \neg p \lor s \]

\[p, s \mid p \lor q, \neg p \lor s \]
DPLL: Illustration

Backtracking

\[p, \neg s, q \mid p \lor q, s \lor q, \neg p \lor \neg q \]

\[p, s \mid p \lor q, s \lor q, \neg p \lor \neg q \]
Pure Literals

A literal is pure if only occurs positively or negatively.

Example:

\[\varphi = (\neg x_1 \lor x_2) \land (x_3 \lor \neg x_2) \land (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4) \]

\(\neg x_1 \) and \(x_3 \) are pure literals

Pure literal rule:

Clauses containing pure literals can be removed from the formula (i.e. just satisfy those pure literals)

\[\varphi_{\neg x_1, x_3} = (x_4 \lor \neg x_5) \land (x_5 \lor \neg x_4) \]

Preserve satisfiability, not logical equivalency!
DPLL (as a procedure)

- Standard backtrack search
- DPLL(F):
 - Apply unit propagation
 - If conflict identified, return UNSAT
 - Apply the pure literal rule
 - If F is satisfied (empty), return SAT
 - Select decision variable x
 - If DPLL(F ∧ x) = SAT return SAT
 - return DPLL(F ∧ ¬x)
The Original DPLL Procedure – Example

<table>
<thead>
<tr>
<th>assign</th>
<th>1</th>
<th>Deduce 1</th>
<th>1, 2, 3</th>
<th>Deduce 4</th>
<th>1, 2, 3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1, 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>¬2</td>
<td>2</td>
<td>¬2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>¬3</td>
<td>3</td>
<td>¬3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>¬1</td>
<td>¬4</td>
<td>4</td>
<td>¬4</td>
<td>4</td>
</tr>
</tbody>
</table>

Deduce 1:

\[\neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

Deduce ¬2:

\[\neg 1 \lor \neg 3 \lor \neg 4, 1 \]

Guess 3:

\[\neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

Deduce 4:

\[\neg 1 \lor \neg 3 \lor \neg 4, 1 \]

Conflict:

\[\neg 1 \lor \neg 3 \lor \neg 4, 1 \]
The Original DPLL Procedure – Example

<table>
<thead>
<tr>
<th>assign</th>
<th>1</th>
<th>1</th>
<th>1, 2</th>
<th>1, 2, 3</th>
<th>1, 2, 3, 4</th>
<th>Undo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deduce 1</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2, 3</td>
<td>1, 2, 3, 4</td>
<td>1</td>
</tr>
<tr>
<td>Deduce (\neg 2)</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2, 3</td>
<td>1, 2, 3, 4</td>
<td>1</td>
</tr>
<tr>
<td>Guess 3</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2, 3</td>
<td>1, 2, 3, 4</td>
<td>1</td>
</tr>
<tr>
<td>Deduce 4</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2, 3</td>
<td>1, 2, 3, 4</td>
<td>1</td>
</tr>
<tr>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
<td>1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guess 3
The Original DPLL Procedure – Example

<table>
<thead>
<tr>
<th>assign</th>
<th>1, 2, 3</th>
<th>1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2</td>
<td>1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1</td>
</tr>
<tr>
<td>1, 2</td>
<td>1, 2, 3</td>
<td>1 ∨ 2, 2 ∨ ¬3 ∨ 4, ¬1 ∨ ¬2, ¬1 ∨ ¬3 ∨ ¬4, 1</td>
</tr>
</tbody>
</table>

Deduce ¬2

Guess ¬3

Model Found
An Abstract Framework for DPLL

The DPLL procedure can be described declaratively by simple sequent-style calculi

Such calculi, however, cannot model meta-logical features such as backtracking, learning, and restarts

We model DPLL and its enhancements as transition systems instead

A transition system is a binary relation over states, induced by a set of conditional transition rules
An Abstract Framework for DPLL

State

• **fail** or M \(\parallel\) F
• where
 – F is a CNF formula, a set of clauses, and
 – M is a sequence of annotated literals denoting a partial truth assignment

Initial State

• \(\emptyset\ \parallel\) F, where F is to be checked for satisfiability

Expected final states:

• **fail** if F is unsatisfiable
• M \(\parallel\) G
 where
 – M is a model of G
 – G is logically equivalent to F
Transition Rules for DPLL

Extending the assignment:

UnitProp: \[M \parallel F, C \lor l \rightarrow M I \parallel F, C \lor l \]
- \(M \models \neg C \)
- \(l \) is undefined in \(M \)

Decide: \[M \parallel F, C \rightarrow M I^d \parallel F, C \]
- \(I \) or \(\neg I \) occur in \(C \)
- \(I \) is undefined in \(M \)

Notation: \(I^d \) is a decision literal
Transition Rules for DPLL

Repairing the assignment:

Fail
\[\text{M} \parallel \text{F, C} \rightarrow \text{fail} \]
\[\lnbracket \text{M} \models \neg \text{C} \\lnbracket \]
M does not contain decision literals

Backtrack
\[\text{M}_{\text{l}}^d \parallel \text{N} \parallel \text{F, C} \rightarrow \text{M} \neg \text{l} \parallel \text{F, C} \]
\[\lnbracket \text{M}_{\text{l}}^d \models \neg \text{C} \\lnbracket \]
I is the last decision literal
Transition Rules DPLL – Example

\[
\emptyset \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \\
\lor \neg 3 \lor \neg 4, 1
\]

1 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor
\neg 4, 1

1, 2 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor
\neg 3 \lor \neg 4, 1

1, 2, 3^d \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor
\neg 3 \lor \neg 4, 1

1, 2, 3^d, 4 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg
2, \neg 1 \lor \neg 3 \lor \neg 4, 1

UnitProp 1

UnitProp \neg 2

Decide 3

UnitProp 4

Backtrack 3
Transition Rules DPLL – Example

\[\emptyset \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

\[1 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

\[1, 2 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

\[1, 2, 3^d \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

\[1, 2, 3 \parallel 1 \lor 2, 2 \lor \neg 3 \lor 4, \neg 1 \lor \neg 2, \neg 1 \lor \neg 3 \lor \neg 4, 1 \]

UnitProp 1
UnitProp \neg 2
Decide 3
UnitProp 4
Backtrack 3
Transition Rules for DPLL (on one slide)

UnitProp
\[M \parallel F, C \lor l \rightarrow M I \parallel F, C \lor l \]
- \(M \models \neg C \)
- \(l \) is undefined in \(M \)

Decide
\[M \parallel F, C \rightarrow M I^d \parallel F, C \]
- \(l \) or \(\neg l \) occur in \(C \)
- \(l \) is undefined in \(M \)

Fail
\[M \parallel F, C \rightarrow \text{fail} \]
- \(M \models \neg C \)
- \(M \) does not contain decision literals

Backtrack
\[M I^d N \parallel F, C \rightarrow M \neg l \parallel F, C \]
- \(M I^d N \models \neg C \)
- \(l \) is the last decision literal
The DPLL System – Correctness

Some terminology

• Irreducible state: state to which no transition rule applies.
• Execution: sequence of transitions allowed by the rules and starting with states of the form $\emptyset \parallel F$.
• Exhausted execution: execution ending in an irreducible state

Proposition (Strong Termination) Every execution in DPLL is finite

Proposition (Soundness) For every exhausted execution starting with $\emptyset \parallel F$ and ending in $M \parallel F$, $M \models F$

Proposition (Completeness) If F is unsatisfiable, every exhausted execution starting with $\emptyset \parallel F$ ends with fail

Maintained in more general rules + theories
Modern DPLL: CDCL

Conflict Driven Clause Learning

• two watched literals – efficient index to find clauses that can be used in unit resolution
• periodically restart backtrack search
• activity-based decision heuristic to choose decision variable
• conflict resolution via clausal learning

We will briefly look at clausal learning

More details on CDCL are available in

• Chapter 2 of Decision Procedures book
• http://gauss.ececs.uc.edu/SAT/articles/FAIA185-0131.pdf
Conflict Directed Clause Learning

Lemma learning

\[-t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s\]

\[-t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor \neg s\]

\[-t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor \neg q\]

\[-t, p, q, s \mid t \lor \neg p \lor q, \neg q \lor s, \neg p \lor \neg s \mid \neg p \lor t\]
Modern CDCL: Abstract Rules

- **Initialize**
 \[\varepsilon \mid F \]
 \(F \) is a set of clauses

- **Decide**
 \[M \mid F \Rightarrow M, \ell \mid F \]
 \(\ell \) is unassigned

- **Propagate**
 \[M \mid F, C \vee \ell \Rightarrow M, \ell^{C\vee \ell} \mid F, C \vee \ell \]
 \(C \) is false under \(M \)

- **Sat**
 \[M \mid F \Rightarrow M \]
 \(F \) true under \(M \)

- **Conflict**
 \[M \mid F, C \Rightarrow M \mid F, C \mid C \]
 \(C \) is false under \(M \)

- **Learn**
 \[M \mid F \mid C \Rightarrow M \mid F, C \mid C \]

- **Unsat**
 \[M \mid F \mid \emptyset \Rightarrow \text{Unsat} \]

- **Backjump**
 \[MM' \mid F \mid C \vee \ell \Rightarrow M\ell^{C\vee \ell} \mid F \]
 \(\bar{C} \subseteq M, \neg \ell \in M' \)

- **Resolve**
 \[M \mid F \mid C' \vee \neg \ell \Rightarrow M \mid F \mid C' \vee C \]
 \(\ell^{C\vee \ell} \in M \)

- **Forget**
 \[M \mid F, C \Rightarrow M \mid F \]
 \(C \) is a learned clause

- **Restart**
 \[M \mid F \Rightarrow \varepsilon \mid F \]
 [Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

Model
Proof
Conflict Resolution
Conjunctive Normal Form

\(\varphi \iff \psi \implies \text{CNF} \quad \varphi \rightarrow \psi \land \psi \rightarrow \varphi \)

\(\varphi \rightarrow \psi \implies \text{CNF} \quad \neg \varphi \lor \psi \)

\(\neg (\varphi \lor \psi) \implies \text{CNF} \quad \neg \varphi \land \neg \psi \)

\(\neg (\varphi \land \psi) \implies \text{CNF} \quad \neg \varphi \lor \neg \psi \)

\(\neg \neg \varphi \implies \text{CNF} \quad \varphi \)

\((\varphi \land \psi) \lor \xi \implies \text{CNF} \quad (\varphi \lor \xi) \land (\psi \lor \xi) \)

Every propositional formula can be put in CNF

PROBLEM: (potential) exponential blowup of the resulting formula
Tseitin Transformation – Main Idea

Introduce a fresh variable e_i for every subformula G_i of F

- intuitively, e_i represents the truth value of G_i

Assert that every e_i and G_i pair are equivalent

- $e_i \leftrightarrow G_i$
- and express the assertion as CNF

Conjoin all such assertions in the end
Formula to CNF Conversion

```python
def cnf (ϕ):
    p, F = cnf_rec (ϕ)
    return p ∧ F

def cnf_rec (ϕ):
    if is_atomic (ϕ): return (ϕ, True)
    elif ϕ == ψ ∧ ξ:
        q, F_1 = cnf_rec (ψ)
        r, F_2 = cnf_rec (ξ)

        p = mk_fresh_var ()
        # C is CNF for p⟷(q∧r)
        C = (¬p∨q)∧(¬p∨r)∧(p∨q∨¬r)
        return (p, F_1∧F_2∧C)
    elif ϕ == ψ∨ξ:
        ...
```

Exercise: Complete cases for

\[\phi = \psi \lor \xi, \phi = \neg \psi, \phi = \psi \iff \xi \]
Tseitin Transformation: Example

\[G : p \leftrightarrow (q \rightarrow r) \]

\[G : e_0 \land (e_0 \leftrightarrow (p \leftrightarrow e_1)) \land (e_1 \leftrightarrow (q \rightarrow r)) \]

\[
\begin{align*}
e_1 &\leftrightarrow (q \rightarrow r) \\
&= (e_1 \rightarrow (q \rightarrow r)) \land ((q \rightarrow r) \rightarrow e_1) \\
&= (\neg e_1 \lor \neg q \lor r) \land ((\neg q \lor r) \rightarrow e_1) \\
&= (\neg e_1 \lor \neg q \lor r) \land (\neg q \rightarrow e_1) \land (r \rightarrow e_1) \\
&= (\neg e_1 \lor \neg q \lor r) \land (q \lor e_1) \land (\neg r \lor e_1)
\end{align*}
\]
Tseitin Transformation: Example

\[G : p \leftrightarrow (q \rightarrow r) \]

\[G : e_0 \land (e_0 \leftrightarrow (p \leftrightarrow e_1)) \land (e_1 \leftrightarrow (q \rightarrow r)) \]

\[
\begin{align*}
e_0 & \leftrightarrow (p \leftrightarrow e_1) \\
& = (e_0 \rightarrow (p \leftrightarrow e_1)) \land ((p \leftrightarrow e_1) \rightarrow e_0) \\
& = (e_0 \rightarrow (p \rightarrow e_1)) \land (e_0 \rightarrow (e_1 \rightarrow p)) \land ((p \land e_1) \lor (\neg p \land \neg e_1)) \rightarrow e_0 \\
& = (\neg e_0 \lor \neg p \lor e_1) \land (\neg e_0 \lor \neg e_1 \lor p) \land (\neg p \lor \neg e_1 \lor e_0) \land (p \lor e_1 \lor e_0)
\end{align*}
\]
Tseitin Transformation: Example

\[G : p \leftrightarrow (q \rightarrow r) \]

\[G : e_0 \land (e_0 \leftrightarrow (p \leftrightarrow e_1)) \land (e_1 \leftrightarrow (q \rightarrow r)) \]

\[G : e_0 \land (\neg e_0 \lor \neg p \lor e_1) \land (\neg e_0 \lor p \lor \neg e_1) \land (e_0 \lor p \lor e_1) \land (e_0 \lor \neg p \lor \neg e_1) \land (\neg e_1 \lor \neg q \lor r) \land (e_1 \lor q) \land (e_1 \lor \neg r) \]
Tseitin Transformation [1968]

Used in practice

- No exponential blow-up
- CNF formula size is linear with respect to the original formula

Does not produce an equivalent CNF

However, given F, the following holds for the computed CNF F’:

- F’ is equisatisfiable to F
- Every model of F’ can be translated (i.e., projected) to a model of F
- Every model of F can be translated (i.e., completed) to a model of F’

No model is lost or added in the conversion