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Abstract

Inversion over Galois fields is much more difficult than the corresponding multiplication. In this
article, efficient computation of inverses in GF(2™) is considered by solving a set of linear equations
over the ground field GF(2). The proposed algorithm uses two separate bases for the representation
of its input and output elements, and has low computational complexity. The algorithm is also
suitable for hardware implementation using VLSI technologies.

Index Terms: Computer arithmetic, Euclid’s algorithm, Galois (or finite) fields, multiplicative
inverses, canonical (or polynomial) basis and triangular basis.

I. INTRODUCTION

In order to provide digital signatures or message authentication, many digital communications
systems are becoming increasingly equipped with some form of cryptosystems. Many of these
cryptosystems require computation in Galois (finite) fields. In a public-key cryptosystem, two
parties wishing to communicate using a non-secure channel do not have to meet— they do not
even have to have established any kind of previous communication. Using the Diffie-Hellman
key exchange protocol, the two parties can set a common key [2]. The implementation of this
key exchange protocol using elliptic curve cryptosystems requires inversion in Galois fields [3].
Galois field inversion is also needed in many error-control coding schemes used for reliable data
transmission and storage systems. For example, certain encoding and decoding schemes of Reed-
Solomon codes require Galois field inversions [4].

In the recent past, considerable efforts have been made to develop efficient schemes for the in-
version in Galois fields, e.g., [5, 6, 7]. These schemes are mainly based on either Fermat’s theorem
or Euclid’s algorithm or the solution of a set of equations. The Fermat theorem based scheme
can be used for any basis representation of the field elements [5]. However, a normal basis repre-
sentation, where squaring is very simple, seems to be the most suitable one since the underlying
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scheme requires repeated squaring operations. The Euclid algorithm based scheme has a low space
complexity. So far, however, it has been used only for a canonical basis representation [6]. The
concept of computing inversion in an extended field by solving a set of equations in the corre-
sponding ground field can be applied to any basis representation. Unfortunately, its hardware
implementation requires too much space [7].

In this article, the inversion over the field GF(2™) is considered. An efficient inversion algorithm,
which relies on the solution of a set of linear equations over the ground field GF(2), is presented.
The proposed algorithm uses two separate bases for the representation of the input and output,
but has low computational complexity. It is also suitable for hardware implementation.

The remainder of the article is organized as follows. In Section II, the relationship between
inversion in GF(2™) and linear equations over GF(2) is briefly reviewed, and the computational
complexity for the formation of the equations for the double-basis inversion is formulated. In
Section III, an efficient double-basis inversion algorithm is developed. Section IV presents an
inverter structure based on a centralized control. Its operation, control and comparison to other
circuits are given in Section V. Finally, some concluding remarks are made at end of the article.

II. INVERSION AND LINEAR EQUATIONS

This section discusses an approach to compute inverses using a system of linear equations [8]
and lays the foundation of obtaining the main results of this article. The discussion is rather general
and does not consider any special cases for which efficient algorithms can be used (see, for example,
[9] and the references therein).

A. Single-Basis Inversion

The finite field GF(2™) is an extension field of GF(2) and has 2™ elements. Let
F(z)=>_fiz', fie{o1}
=0

be an irreducible polynomial of degree m over GF(2). Let F(z) has a root w in GF(2™). Then
Q={1, w, ..., w™ '} is a canonical basis and all the elements of GF(2™) can be represented
with respect to this basis, i.e., for a €GF(2™) one can write

ano
m—1
. ani
azzamwl:[l, w, ..., wm! . )
=0 .
L 4Q(m-1) |

where agq;’s are the coordinates of a with respect to . Similarly, for 0 < < m — 1, bg;’s denote
the coordinates of f.



Let o # 0 and 1/ov = 3. Then
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where pgl is the ith coordinate of w’. Equating the coefficients of w’ (fori=0,1, ..., m—1)on
both sides of (1), one obtains
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where 4; ; = ampgj]]. Following [8], (2) can be written as
=0
log = A(an)Bg; (3)

where 1g, ag and j, are the column vectors corresponding to the €2 basis representations of 1, o
and 3, respectively, and A(aq) = |:%7 oawq, .., awmg_l} is an m X m matrix over GF(2). Since

m—1 .
Aij= > ampgjj], the matrix in (3) can be uniquely defined by the coordinates of o and the

coeflicients of F(z), and it has been shown in [7] that with m bits of memory the formation of the
matrix requires O(m?) arithmetic operations over GF(2). Then the inverse 3 is obtained by solving
the system of linear equations (2), which requires O(m?) arithmetic operations over GF(2).

B. Double-Basis Inversion

To avoid any basis change, the elements of GF(2™) are conventionally represented with respect
to a single basis, such as the canonical basis discussed above. However, it has been shown that
the use of two suitable bases in one single device/system can lead to efficient realization of the
multiplication operation [10, 11, 12]. In the following discussion, both the canonical basis and its
triangular basis will be simultaneously used in the inversion operation.



The set A = {Xg, A1, -+, Am—1} of m elements is called the triangular basis of Q if

m—1—1

ANi= Y fipe’, 0<i<m—1, (4)
J=0

where f;’s are the coefficients of the irreducible polynomial F(z) [13]. For any irreducible F(z) of
degree m over GF(2)

Ao = w_l, (5)
1. (6)

Let ap; denote the ith coordinate of a with respect to A, and a, denote the vector of the
coordinates of « represented with respect to A, i.e.,

)\m—l -

T
QA = |AAQ, QAL """,y aA(m—l)
m—1 m—1
Since o = ) ap;A; = Y, agjw;, one can change the € basis coordinates to the corresponding A
=0 7=0
basis coordinates using the following relationship [13]:
AQ(m—1-j)> ] = 07
apj = (7)

i1
aQ(m-1-j) + Zofm—j+iam, 1<j<m—1,
1=

which can be expressed as

ay = Tag, (8)
where
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0 0 O 1 t to
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and t; = '—Eo fm—jtiti, for 0 < i < m —1, and to = 1. Pre-multiplying both sides of (3) with T, we

have
L = Hlas, (10
where 1, is the A basis representation of the multiplicative unity of GF(2™) and
H(ay) = [QA awp v %K‘_l}- (11)

H(a,) is a Hankel matrix, and the computational complexity for its formation, as stated in the
following lemma, is equal to that of A(agq) in (3). However, the main advantage of using (10) to
compute inverses is that (10) can be solved for bg,’s with O(m?) GF(2) arithmetic operations [14],
as opposed to O(m?) required by (3). Efficient algorithms for solving (10) are discussed in the next
section.

Lemma 1 The formation of H requires O(m?) arithmetic operations over GF(2).

Proof:

m—1 m—1—1

m—1
a = Z aniNi = Z an; Z firjm?. (12)

m—1—1

m—1
aw = Y ani ¥, fippw’ T
=0 7=0

m—1 m—1

= > ani Y fipw’
=0 7=1

=0 7=0

m—1 m—1
= Y ani (Z finypipe’ + fi) : (13)

Using F(w) =0, (4) and (6), one can write (13) as follows:

m—1 m—1

aw = Y apdici+ Y anifidmo1. (14)
=1 1=0
Equations (12) and (14) relate the coordinates of o and aw. The result can be generalized to obtain

awy iy 0<j<m =2,
awitt = (15)
m—1

> %i\lfl J=m-—1L
=0



Thus, %XH can be obtained from %i\ with only m multiplications and m —1 additions over GF(2)

resulting in only O(m?) operations for the formation of H. Q.E.D.

III. EFFICIENT DOUBLE-BASIS INVERSION

In this section, an area efficient algorithm suitable for hardware implementation to solve (10) for
boi’s is presented. As an intermediate result, an inversion algorithm (referred to as Algorithm 1) is
derived first from Sugiyama’s work [14] which gives us a solution, if it exists, even when a principal
sub-matrix of the matrix in (10) is singular. We then present the area efficient inversion algorithm
(referred to as Algorithm 2) which is derived from Algorithm 1 by applying GCD-preserving trans-
formations. The latter transforms a pair of polynomials into another pair with the property that
a GCD (greatest common divisor) of the first pair is also a GCD of the transformed pair [15].

A. Less Complex Inversion Algorithm

The Hankel matrix in (10) has 2m — 1 constant coefficients. Let these coefficients be h;, 0 < 7 <
2m — 2. Then the matrix entry at (¢, j) is h;4;, and equation (10) becomes

Che ki o s b || b | 0]
by hy oo hpa B bon 0
= (16)
hm—2 hm—1 -+ ham—a hom-3 ba(m—2) 0
| hm—1r hmo ccr hames hom—2 || bom-1) | [ 1]

Let H(z) and Bq(z) denote the two polynomials whose coefficients are the entries of the corre-
sponding matrix and vectors in (16). Then

0< deg H(z) <2m-—2,
0 < deg Ba(z) <m-—1.

Also, let [U(z)/V(z)] denote the quotient polynomial when U(z) is divided by V'(z). Then we can
state the following algorithm which requires O(m?) arithmetic operations over GF(2):

Algorithm 1 (Less Complex Double-Basis Inversion Algorithm)

Step 1
RV (z) = 221 RON(z2) = 22— 2H (271,
U-Y(z) =0, UO(z) =1,
$O(z)=zm-1  LO)(z) =0,
1= 0.



Step 2 While deg R()(2) > m — 1, do
{

}
Step 3 Bq(z) = LW(2). O

Sketch of proof: Since every nonzero element in GF(2™) has an inverse and the matrix in (16) is
non-singular, a unique solution for the bq;’s exists. Noting that R(O)(z) is the reciprocal polynomial
of H(z), the remainder of the proof follows from [14]. O

Instead of Algorithm 1, the Sugiyama algorithm [14, p. 400] could be used to compute inverses
in GF(2™). While the Sugiyama algorithm checks the degrees of four polynomials to stop the iter-
ations, Algorithm 1 checks the degree of only one polynomial. This simplification is advantageous
especially for a hardware implementation.

B. Area Efficient Inversion Algorithm

Algorithm 1 keeps track of eight polynomials. Furthermore, its iteration loop requires polynomial
divisions. For a polynomial division, one needs to locate the leading nonzero term of each partial
remainder polynomial, and its automation in hardware is not simple. Below we present an area
efficient algorithm which overcomes these problems.

Note that like the computation of the GCD using Euclid’s algorithm, Algorithm 1 proceeds the
same way to reduce the degree of RU~2) to yield R() in the ith iteration. Thus the GCD-preserving
transformation can be applied to obtain R() in several sub-iterations. For this purpose, instead of
the full quotient polynomial 62(")(2)7 only one nonzero term of it, starting from the highest degree,
can be used. Then we have the following algorithm for computing inversion over GF(2™):

-~



Algorithm 2 (Area Efficient Double-Basis Inversion Algorithm)
Step 1

{

i = 141

d = deg R“’—?)() deg RUV(z)
RY(z) = z) — 4RV (2
U (z)

2 )
“(z) - U ()
If deg R (2) > deg RU~1)(2) then swap R(’)( ) and RU=1(z), and U (2) and U1 (2).

}
Step 3 Bq(z) =Ul)(2). O

Proof: Let Algorithm 1 terminate with ¢ = e. Thus,

deg R V(z) > m—1,
deg R (z) < m-1.

The value of e is unique since deg R(i)(z) is monotonously decreasing as ¢ is increasing.

For 1 < i< e~ 1, we have D(z) = 0, which, in turn, means S()(z) = ™! and LU (z) = 0.
Let us assume that deg R~ (2) > m — 1, then Bg(z) = L{®) = 0 which, however, cannot be true
since Bq(z) is the polynomial representation of the inverse of o, and every nonzero element has a
unique inverse which is also nonzero. Thus deg R*~")(z) = m — 1 which means D(®)(z) = 1 and

Bq(2) = L) = U, Q.ED.

Example 1 Consider the field GF(2*) generated by the irreducible polynomial 2* + z + 1. Let
a = w* whose 4-tuple representation w.r.t. the triangular basis {w'* w? w,1}is (0, 0, 1, 1). Using
the definition of the Hankel matrix of (11), we have

(000 1 1]
01 10
H(QA)_ll()l
101 0|

which yields H(z) = 2° + 23 + z2. The step-by-step operations of Algorithm 2 applied to the
calculation of the inverse of a are given below:



Step 1

Step 2 Computations of this step are performed by iterations. Before each iteration, the degree
of R()(z) is checked. As long as deg R()(z) > m — 1, (i.e., 3) the iteration continues. The
updated polynomials in each iteration are given in Table 1.

1 Updated Polynomials
d = 3 RO(2) = 28424
) R(l)(z) = 25424 R(l)(z) = 2*4+2342
UMz = 28 UO((z) = 28
Since deg R (2) > deg R()(z), swap. vN(z) = 1
d — 2 R(l)(z) — 25 _I_ Z4 _I_ 33
5 R(z)(z) = P4 A428 R(z)(z) = 2242342
U(z)(z) = 23422 U(l)(z) = 23422
Since deg R(?)(2) > deg R(V(z),swap. Uz = 1
d =1
3 RO(z) = 28422
U (2) = 2242242
Since deg R®)(2) < deg R()(z), do not swap.

Table 1: Computations of Step 2 in Example 1.

Step 3 Bg(z) = U(S)(z) = 2%+ 22 + 2, which is the polynomial representation of the 2 basis
coordinates of the inverse of . O

The main advantage of Algorithm 2 is that its iteration process in Step 2 requires only four
polynomials which is half of that of Algorithm 1. As a result, its implementation would require less



storage space. Additionally, there are no polynomial divisions in the algorithm; there are even no
multiplications, since 2¢RU=")(2) corresponds to a d-times shifting of the coefficients of RU=1(z).

IV. INVERTER STRUCTURE

Because of the simple shift and add operations, Algorithm 2 appears to be suitable for hardware
implementation. In Step 1 of the algorithm, the only part that requires computation is R(O)(z). In
Step 2, a number of polynomials are updated in each iteration by shift and add operations. Possible
hardware structures of these two steps are presented below.

A. Generation of R((z)
Since RO)(z) = z2™=2H(2~"), using (11), (15) and (16) one can write

ap; 0<1<m-—1,
m—1 )

> Piemtsif; m<ie<2m - 2.
=0

Thus, R()(2) can be realized using a Galois type linear feedback shift register (LFSR) with F(2)
as its feedback polynomial and S(z) as the seed polynomial, which is given by

m—1 ] m—1 )
S(z) = ZGA]‘Z] = Zhjz]

= H(z) mod z™.

Given the triangular basis coordinates ap;, 7 = 0, 1 ---, m — 1, the above LFSR based
approach requires m — 1 clock cycles to compute R(O)(z). In order to reduce the computation time,
one may attempt to compute R(O)(z) using combinational logic circuits. Such circuits will require
(m — 1)(Wr — 2) two-input XOR gates where Wy is the Hamming weight of the field defining
polynomial F(z). Thus, it is advantageous to use a low weight F(z), such as, a trinomial, if it
exists. A trinomial of the form z™ + z + 1 yields

hi = aprj—m + api—ms1 m <1< 2m -2,
which, unlike (17), does not have any recursion, and gives the shortest critical logic path of only
one XOR gate. This is illustrated in Fig. 1 using F(z) of Example 1.
B. Polynomial Updating

Hardware realization of the polynomial updating which occurs in Step 2 of Algorithm 2 can be
achieved by a number of ways. The overall inverter structure using a centralized control unit is
shown in Fig. 2. The datapath portion of the structure consists of a number of components whose
functions and operations are given below. The control unit of the structure depends on the overall
inversion operation and is given in the next section.

10
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Figure 1: Generation of coefficients hg, h1, --+, he when F(z) = 2* + 2z + 1.

o Registers & and ¥: The purpose of these two registers is to hold the coefficients of the
polynomials of Step 2 of Algorithm 2. Each register consists of 3m storage cells labeled as ¢;
and ¥;, 0 < ¢ < 3m — 1. These cells can be considered to be simple D flip-flops clocked by
Ckg and Cky, respectively.

Initially, the upper and lower portions of register ¥ are loaded with the coefficients of R(O)(z)
and U(©)(z), respectively. Since R(?)(z) = 22™~2H(z) and U(®)(z) = 1, this loading operation
results in

0 t=3m—1,
h3m—2—i m§z§3m—2,
i = (18)
0 1< <m—1,
1 1 =10,

which implies that a suitable mechanism, such as multiplexing, is needed to initialize 1; with
h3m_9_;, for m <1< 3m — 2.

On the other hand, register ® is initialized with the coefficients of R(=1)(2) = 22™~! and
U=Y(z) = 0, respectively, i.e.,

1 i=3m-1,
¢ = (19)
0 0<i<3m-2.

which can be accomplished simply by clearing all but the top cell which is set to 1.

When a clock pulse is applied through Cke (resp. Cky), contents of & (resp. ¥) are shifted
up by one cell. A sequence of d such consecutive shifts to one of these registers is equivalent to
multiplying the corresponding register polynomials with z¢ (as required in Step 2). Also, note
that each shift operation pushes out the highest order coefficient of the polynomial stored

11
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Figure 2: Structure for polynomial updating.
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Figure 3: Details of cell 6;.

in the upper portion of the register resulting in a reduction of the degree of the polynomial
by one. Since the iterations of Step 2 do stop when deg R(i)(z) is no longer greater than
m — 1, the degrees of the polynomials stored in the upper portion of & and ¥ can go from
2m — 1 down to m — 1, which implies that the iterations will stop when a maximum of
(2m — 1) — (m — 1) = m clock pulses are applied to one of these registers.

Selector O: It provides appropriate inputs to registers ® and ¥, and is divided into 3m cells
labeled as 6;, 0 < i < 3m — 1. Each cell has three data inputs (floaq, flefy and Ipgni) and
one data output (dout). Each cell also has two control inputs ¢; and ¢3. The output doyy is
related to the inputs as follows:

Iload if (627 Cl) = (07 0)7
Lo + L if (¢cq,¢1) = (0,1),
o = teft 1 Tright | (c2,¢1) = (0,1) (20)
Iright if (c2,¢1) = (1,0),
Dieft if (c2,¢1) = (1, 1),

implying that a 4:1 multiplexor and an XOR gate are needed for each cell. If the 4:1 mul-
tiplexor is substituted with three 2:1 multiplexors, as shown in Fig. 3, then cell 8;, for
1 =1,2,---,m— 1, and 3m — 1, can be constructed with only two 2:1 multiplexors, since
in this type of cells, [j,,q is fixed and can be incorporated simply by clearing/pre-setting the
corresponding flip-flop.

Down counters: They are labeled as DC¢ and DCy. The purpose of DCq (resp. DCy) is
to indicate the number of clock pulses applied to @ (resp. ¥). Since a maximum of m clock
pulses are applied to ® and ¥ (and hence to these two counters), the latter can be initialized
with m and the iteration process of Step 2 will stop when either DCg or DCy reaches zero.
This would require both down counters to be [log,(m+1)] bit long with zero detection signals
(Zre and Zry) as shown in Fig. 2.

13



e Up-down counters: The [log, m| + 1 bit up-down counter, labeled as UDC, is to indicate
the differences between the number of clock pulses applied to DCs and DCy. When DCp
(resp. DCy) gets a pulse, the value of UDC is increased (resp. decreased) by 1. The
increment /decrement is determined by the control signal U/D generated by the control unit.
The UDC is clocked by the system clock denoted as Ck in Fig. 2. The Sb signal is the
most significant bit of the UDC and is used to indicate whether the contents of the counter
is positive or negative. Signal Zr is equal to 1 if UDC=0, and 0 otherwise. The UDC is
initialized by clearing its flip-flops indicating UDC=DCg—-DCy = 0 at the beginning.

V. OVERALL OPERATION AND RELATED ISSUES

A. Overall Inversion Operation

An informal description of the computation of an inverse using the structure of Fig. 2 is now given.
The coefficients of R(O)(Z) (which, in turn, are equal to h;’s, 0 < ¢ < 2m — 2) are assumed to be
generated using combinational logic circuits as explained in the previous section. When Load=1,
counters DCg and DCy are loaded with m. At the same time, register ¥ is loaded with R(¥)(z)
and U©)(2), and register ® is loaded with R(=1)(2) and U(=1)(2) (refer to (18) and (19)). Then, in
each clock cycle, if ¥3,,_1 (resp. ¢3m_1) is zero!, the contents of register ¥ (resp. ®) are shifted
one position up by applying a clock pulse through Cky (resp. Ckg). The latter also reduces the
value of DCy (resp. DCg) by 1. The change in DCy (resp. DCg) is reflected on the UDC by
decreasing (resp. increasing) its value by 1.

If in a particular clock cycle, both ¢3,,_1 and t3,,_1 are equal to 1, the contents of ® and ¥
are added (say, [' = ® + ¥) using the XORs in the cells of ©. Whether I' will be written into & or
¥ depends on the values of DCg and DCy. If DCs > DCy (resp. DCy > DCg), I' is written to
® (resp. ¥). When DCs= DCy, in which case UDC=0 and hence Zr=1, the contents of the two
down counters in the previous clock cycle are compared, which could be accomplished by looking
at one more signal, namely Sb’ which is the most significant bit of UDC in the previous cycle. Also,
since @3m—1 + PY3m—1 = 0, I' is written (to & or ¥) one cell up resulting in a saving one clock cycle.

When one of the down counters reaches zero, i.e., either Zrg or Zry becomes 1, the iterations
of Step 2 stop, and additional clock cycles do not affect the registers and the counters. Zrg=1
(resp. Zry=1) implies that the contents of ® (resp. ¥) have been shifted m times, and the required
U (2) polynomial coefficients can be found in the register cells numbered from m to 2m — 1. These
coefficients which represent the inverse of the input element «, are also available at the d,,; lines
of;,i=m+1,m+2,---,2m.

The maximum number of clock cycles needed for the iterations of Step 2 is 2m — 1. Since
deg R©)(2) < 2m — 2, the coefficients of R(®)(2) can be loaded into ¥ one cell up. Then the
resulting maximum number of clock cycles would be 2m — 2. (This requires DCy to be initialized
with m — 1 rather than m.) Assuming that it takes two clock cycles for clearing and initializing
all flip-flops of the structure, a throughput of 2m clock cycles per inversion can be obtained. The
clock cycle period is independent of the circuits to generate R(O)(Z) and, hence, the value of m.

1t can be shown that both ¢3m—1 and Ysm—1 do not become 0 in the same clock cycle.
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B. Control Unit

The control unit which is a part of the structure presented in Fig. 2 and generates the signals
required to coordinate the above inversion operation, is now given. The inputs to the control unit
are signals Load, Ck, Sb, Zr, Zrg and Zry. The output signals are ¢y, ¢, Cke and Cky. While
signals ¢; and cy are the select inputs to the multiplexors of O, signals Cke and Cky are simply
the clock inputs to the flip-flops of ® and ¥, respectively. Internally, the control unit generates
another signal denoted as Sb’ which is simply the value of Sb in the previous clock cycle.

Signals ¢; and ¢y determine the data to be written into the selected register (® or ¥). Based
on (20), the generation of these two signals can be formulated as follows:

0 if Load=1 or %3,,_1 =0,

1 otherwise.

0 if Load=1 or (¢3m—17 ’l/)gm_l) = (]_, 1),
Cy =
1 otherwise.

Register & (resp. V) is updated with the data available at its input by applying the system
clock (i.e., Ck) through Cke (resp. Cky). The system clock is applied to ® and ¥ as long as
neither DCg nor DCy reach zero. Based on the inversion operation given above, one can see that
¥ is clocked for the following three operations— (i) to load ¥ with h;’s when Load=1, (ii) to shift
contents of ¥ one cell up when t3,,,_1=0, and (iii) to add-and-shift (i.e., ¥;41 < ¥;+¢;) when both
P3m—_1 and ¢3,,_1 are equal to 1, and DCy > DCg in the current or previous clock cycle. Except
for the loading of h;’s, the updating conditions for & are similar to those of ¥. Logic equations for
the gated clock signals CKy and CKg to update ¥ and ® are given below.

- Ck if ZrgZry (Load V ¢y V (€261 (Sb V Sb'Zr)))
‘lj —_—

0  otherwise,

Ck Ck if %@%\Ij (CzCl \Y (Ezcl (sz V Sb/ZI')))
(b —_

0 otherwise.

where T is the complement of x and V indicates a logical OR operation. The complete control unit
which will generate the above signals can be implemented with a number of logic gates and one
flip-flop.

C. Comparison

The inverter presented above will be compared with some other similar inverters, which use the
canonical basis to represent either the input or the output. The inverter structures of [16] and [6]
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are similar to the proposed one in the sense that they rely on Euclid’s algorithm. The inverter
of [16] has better area and time complexities than those of [6]. However, both use the canonical
basis for their inputs as well as outputs; consequently, if the inputs are given w.r.t. the triangular
basis, as it has been the case for the inverter presented in this article, then additional circuits are
needed to change the basis of the inputs. The structure of [17], like the proposed inverter structure,
uses two separate bases for representing the inputs and outputs; it can directly compute a division
in GF(2™), but relies on expensive Gauss-Jordan elimination method to solve its system of linear
equations. A comparison of these structures on the basis of gate count, time complexity and other
important VLSI design related issues is given in Table 2.

From the above table one can see that the proposed inverter has space and time complexities
which are comparable to those of [16]. The main advantage of the proposed inverter seems to be in
applications, e.g., [18], where the input to the inverter is represented w.r.t. the triangular or dual
basis, since the proposed inverter can be used without any basis change. Also, compared to the
inverters of [6] and [17], the proposed inverter has less area and area-time product complexities.

D. Comments
Clock cycle distribution

With the rapid expansion of the wireless communications systems, the power dissipated by battery
operated portable devices has become an important issue. If the proposed inverter is to be imple-
mented in VLSI technologies, the average number of clock cycles that would be applied to & and ¥
for an inversion operation could be useful to estimate/reduce the dynamic power dissipation in the
structure. Earlier, we have seen that the maximum number of clock cycles these two registers can
receive to realize Step 2 of Algorithm 2 is tax = 2m — 2. It can also be seen that the corresponding
minimum number of clock cycles is t,,;, = m which occurs when the element to be inverted is equal
to the multiplicative identity of GF(2™). Our exhaustive computations of inversion operations over
fields with various values of m suggest that the number of clock cycles is not evenly distributed in
the range [fmin,tmax].- The actual probability distribution functions of the number of clock cycles
for m =7, 8, 9, and 10 are shown in Fig. 4. The corresponding average values are 11.05511811,
13.03137255, 15.01761252 and 17.00977517, respectively, and it is conjectured that the average
value asymptotically approaches 2m — 3.

Distributed control based structure

For Step 2 of Algorithm 2, the bit serial systolic structure of [15] can also be used. The structure
consists of a number of identical processing cells (PEs) each of which decides the operations it needs
to perform on the incoming data. Since

deg RV (z) = 2m—1,
deg R9(z) < 2m -2,
deg RU=D(z) —deg RY(z) > 1, Vi,

the structure would have 2m — 2 PEs. Both the time and space complexities of such bit serial
realization are linearly proportional to m. For a higher throughput, a bit parallel pipeline realization
can be considered where an inverse is obtained in every time step. Such a structure would consist
of a maximum of 2m — 2 PEs each of which is capable of performing the computations of one
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Figure 4: Probability distribution functions of the number of clock cycles for the iterations of Algorithm 2.
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iteration of Step 2. The space complexity of this kind of structure is O(m?). If the chip’s real-
estate of a VLSI implementation is of prime concern, one can search for suitable F(z)’s whose use
would reduce the maximum number of PEs needed. In this regard, Table 3 shows the maximum
number of PEs using different primitive polynomials over GF(2). These polynomials? correspond
to some primitive polynomials of degrees 5 to 10 most of which are listed in [19]. In the table, the
polynomials are given in the octal notation, for example, 103 in the top row denotes the polynomial
S+ z2410f degree 6.
It can be seen that the minimum number of PEs listed in Table 3 is given by

(m—1) m odd,

Nmin (21)

NIW W

m—1 m even,

for 5 < m < 10. Equation (21) implies that compared to the approach of not optimizing the
structure for the field generating polynomial to implement Step 2 which requires 2m — 2 PEs, the
use of the polynomials marked with underlines in Table 3 provides considerable space saving which
could be up to 25% when m is odd and =2 x 25% for m being even.

m—1

VI. CONCLUDING REMARKS

In this article, we have presented an algorithm and its hardware realization for computing in-
verses in GF(2™) where the input is represented w.r.t. the triangular basis and the output w.r.t.
the canonical basis. When the input is represented w.r.t. the dual basis, the proposed algorithm
could also be used, which leads to a possible partial solution to the issue raised in the last paragraph
of [11]. As the use of two bases has been suggested for the finite field multiplication operation,
where the product is obtained w.r.t. the triangular or dual basis, the proposed inversion algorithm
and its structure can be used without any basis change.
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Components/ Fenn et al. Brunner et al. Araki et al. Proposed
Features [17] [16] [6] here
Flip-flops O(m?) 4m 7(m+1) 6m

AND/OR gates O(m?) 3m 5(m+ 1) -
XOR gates O(m?) 3m 4(m+1) 3m+ (m—1)(Wr —2)
MUX O(m?) 8m 21(m+1) 8m
1 counter + 3 counters +
Other circuits - -
1 small control 1 small control
F(z) dependency - 22U & U/z - Py Bent1y -y hoam—2
Global control signals - 4 4 2
2m+ 3
Clock cycles
m 2m to 2m
per inversion
3m+ 2
Input-output dela;
P P y bm—1 ditto ditto ditto
(in clock cycles)
Clock period 0(1) 0(1) O(m) 0(1)
AT-Product O(m?) O(m?) O(m?) O(m?)

Table 2: Comparison of inverter structures for GF(2™) generated by a field-defining polynomial
F(z) of Hamming weight Wg. The calculation of the input-output delay assumes parallel-in and
parallel-out data. Clock and clear signals for thg flip-flops are excluded from the count of global
signals.



Degree | Polynomial | Max. PEs || Degree | Polynomial | Max. PEs
5 45 8 6 103 8
5 75 6 6 147 8
5 67 6 6 155 8
7 211 10 8 435 11
7 217 10 8 551 12
7 235 10 8 747 12
7 367 10 8 453 13
7 277 9 8 545 12
7 325 11 8 537 11
7 203 10 8 703 12
7 313 10 8 543 11
9 1021 13 10 2011 14
9 1131 14 10 2415 14
9 1461 13 10 3771 14
9 1423 13 10 2157 15
9 1055 13 10 3515 16
9 1167 16 10 2773 14
9 1541 13 10 2033 15
9 1333 14 10 2443 14
9 1725 12 10 2461 14
9 1751 14 10 3023 15
9 1743 15 10 3543 17
9 1617 13 10 2745 15
9 1553 14 10 2431 14
9 1157 14 10 3177 16

Table 3: Maximum number of PEs using different primitive polynomials for the distributed control
based bit parallel inverter structure.

21



