Efficient Multiplication Beyond Optimal Normal Bases

A. Reyhani-Masoleh! and M. A. Hasan®

26th November 2002

Centre for Applied Cryptographic Research,
! Combinatorics and Optimization Department
? Electrical and Computer Engineering Department
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
E-mails: areyhani@math.uwaterloo.ca and ahasan@ece.uwaterloo.ca
Corresponding author: A. Reyhani-Masoleh.
Phone: +1 519 888 4567 ext 3529, Fax: 41 519 725-5441.

Abstract

In cryptographic applications, the use of normal bases to represent elements of the
finite field GF(2™) is quite advantageous, especially for hardware implementation. In
this article, we consider an important field operation, namely, multiplication which is
used in many cryptographic functions. We present a class of algorithms for normal
basis multiplication in GF(2™). Our proposed multiplication algorithm for composite
finite fields requires significantly lower number of bit level operations and hence can

reduce the space complexity of cryptographic systems.

Key words: Finite fields, multiplication, normal bases, composite fields, optimal bases.

1 Introduction

Many cryptographic functions, such as, key exchange, signing and verification, require sig-
nificant amount of computations in the finite field GF(2™). The elements of such a field can
be represented in different ways. The choice of the representation plays an important role
in determining the complexity of a finite field arithmetic unit and, consequently, that of a
cryptographic system. Among the various ways one can represent field elements, the use
of normal bases has drawn significant attention, especially for implementing cryptographic
functions in hardware [1].

In a normal basis representation, squaring can be performed simply by a cycle shift of
the coordinates of an element, and hence in hardware it is almost free of cost. Such a
cost advantage often makes the normal basis a preferred choice of representation. However,
a normal basis multiplication is not so simple. In [10], Massey and Omura proposed a
normal basis multiplication scheme which can be implemented in bit-parallel fashion using
m identical logic blocks whose inputs are cyclically shifted from one another [25]. Although,
this normal basis multiplier offers modularity, its space complexity® is considerably high.

In the recent past, considerable efforts have been made, for examples, [13], [23], [6],
[9], and [20], to reduce the space complexity of the normal basis multiplier. In [13], two
special types of normal bases were reported which are known as type-I and type-II optimal
normal bases. In [5], it was shown that these two types are all the optimal normal bases in
GF(2™). The use of these optimal normal bases can considerably reduce the complexity of
the multiplier [23], [6], [3] and [20].

In this article, we first present an algorithm for multiplication in GF(2™). This algorithm
is quite generic in the sense that it is not restricted to any special type of normal bases. Com-
pared to other generic algorithms for normal basis multiplication in GF(2™), the proposed
one requires fewer bit level multiplications. Although this is achieved at the expense of extra
bit level additions, the total number of GF(2) operations is the same as that of the best know
generic algorithm. Unlike the existing normal basis multiplication algorithms, our algorithm

is highly suitable for software implementation on general purpose processors, and we give

!Conventionally, the space complexity of the GF(2™) multiplier is given in terms of the number of logic
gates, namely XOR and AND gates, which corresponds to GF(2) (i.e., bit level) addition and multiplication,
respectively.

the number of main instructions needed by such processors for multiplication over GF(2™).
Our algorithm is then applied to the type-I optimal normal basis to further reduce the
number of bit level operations. We then present an algorithm for normal basis multiplication
in composite finite fields. This algorithm significantly reduces bit level operations, in terms
of both addition and multiplication over GF(2). To show the advantage of the proposed
algorithms, we compare our results with those of the best known normal basis multipliers.
The organization of the rest of this article is as follows. In the next section, we briefly
review the conventional normal basis multiplication scheme which relies on inner product op-
erations over the ground field. In Section 3, first we prove a number of results for the normal
basis multiplication matriz and then derive an algorithm for multiplication over GF(2™). We
also give the computational complexity of the algorithm in terms of the number of bit level
operations needed. This algorithm is then adapted for its easy software implementation on
general purpose processors. In Section 4, we apply the above algorithm to a special class of
normal bases, namely, the type-I optimal normal basis and we give an exact analysis for this
case and compare our results with those of existing schemes. Then in Section 5, we consider
finite fields GF(2™) where m is a composite number. For such composite finite fields, we
give a multiplication algorithm, its complexity and comparison results. Finally, we make a

few concluding remarks in Section 6.

2 Preliminaries

2.1 Normal Basis Representation

It is well known that there exists a normal basis (NB) in the field GF(2™) over GF(2) for
all positive integers m. By finding an element S€GF(2™) such that {3, 82, ---, 327" '} is a
basis of GF(2™) over GF(2), any element A € GF(2™) can be represented as

m—1

A= Zajﬁzj :a06‘|‘al/82+"'+am—162m_17 (1)

7=0
where a; € GF(2),0 < 7 < m — 1, is the j-th coordinate of A. In short, this normal basis

representation of A will be written as A = (ao, a1, -+, @m-1). In vector notation, equation

(1) will be written as

A=a-p'=p-d", (2)

where a = [ag, a1, -, am_1], B = [3, B2, ---, "], and T denotes vector transposition.
The main advantage of the NB representation is that an element A can be easily squared

by a cyclic shift of its coordinates, since
m—1
A2 — (am—ly ag, * ", am—?) = am—lﬁ + Goﬁz + ot 262 (3)

2.2 Normal Basis Multiplication

Let A and B be any two elements of GF(Z"‘) and be represented with respect to (w.r.t.) the
NBas A=>", Yai 62 and B = Zm ! b;3% , respectively. Let C denote their product, i.e.,

C=A-B=(a-p")-(B-b")=a-M-D", (4)
where the multiplication matrix M is defined by

0 0 0 1 0 m—1
BE+2 B2+2 L. g
/821+20 /821+21 L. /821_|_2m—1

M= éT b= [52"+2j] - : : : ' (5)

/82777,—1_}_20 /62m_1+21 L. /827”_1+2m_1

All entries of M belong to GF(2™) and if they are written w.r.t. the NB, then the following

1s obtained

M = MofB + MiB% + -+ + M1 877, (6)

where M;’s are m X m matrices whose entries belong to GF(2). Substituting (6) into (4),

the coordinates of C are found as follows

¢ =a-M;-b' 0<i<m-1
=a . M, - b(i) 0<i:<m-—1,

where a?) is the i-fold left cyclic shift of @ and the same is for b(i)T[G].

Example 1. Consider the finite field GF(2°) generated by the irreducible polynomial F(z) =
25+ 2241 and let a be its root, i.e., F(a) = 0. We choose B = o, then {3, B?, B*, 58, p'°}

is @ normal basis. Then, using Table 1 in [15], we have

(00011 1]
00011
Mo=|10010
11101
(11011

Let A and B be two elements in GF(2%), whose representations w.r.t. the normal basis
are A = (ag, ar, -+, as) = Y1y a;3* and B = (bo, by, -+, by) = S b;32. Thus, using
(7), the coordinates of C are computed as

¢ = a—i(by—i +b3—i + bai) + ar—i(bs—i + ba_i) + as—i(b_; + bs_i)+
az—i(bi + b1—i + boi + ba—y) + aq—i(b_j + b1 + bs_; + bs_;), 0<0 <4,

where subtractions in subscripts are performed modulo 5.

Definition 1. The numbers of 1’s in all M;’s are equal. Let us define this number by
CN:H(M,), 0§z§m—1, (8)

which is known as the complexzity of the NB [13]. In (8), H(M,) refers to the Hamming
weight, i.e., the number of 1’s, in M.

3 A New Multiplication Scheme

3.1 Multiplication Matrix Revisited

In (5), the multiplication matrix M is symmetric, i.e., M = M7, and its diagonal entries

m—1

are the elements of the NB. Denoting M as [u; ;]i"_, where y; ; = p1;; = B2+ it is easy to

see that
Wij = ﬂ?_17j_1, 0<2,7<m-—1.

Thus, given the m entries of the 0-th row of M, the generation of its all other entries (except
the leftmost entries) require at most some squaring operations, which are however essentially

free of cost in a normal basis representation. Now, if we let

5j:61+2j .]:07]-7 T, U, (9)

where v = L%J, then, the entries of M can be conveniently obtained from §,’s as stated in

the following lemma.

Lemma 1. For the multiplication matriz M = [u; ;|™_}, the following holds

1,7=07

52, O0<j—i<w
pig=pii =9 " o (10)
5m+i—j7 U<J_Z§m_1

Proof. Since M is symmetric, p; j = p;,. For 0 <1 < j < v,

. N .
2i 427 14244 2
tij = p = (5 *) = 5j—z-

Now, for v <1 < j < m — 1, we have j — ¢ > v. Thus, m — (j —¢) < v, and the following
holds

o o 24)
2420 2mti—igg g
lulJ - 6 - (6) - 5Tn-|—i—j‘

0
Noting that
0, formodd,
5m—1—u - (]—1)
0,1 for m even,
and
5, = 62" for m even, (12)

the multiplication matrix can be written as

5 51 . 5y XA cAA SRR A

DR SR P T AT i
W A A S . A .
B 52”"’1 52 521} (Szv-l-l 52'v+1 52v+1 . ()

m—1—v v e 1 0 1 e m—2—v

L RS BT m,

| (Sfm_l 537”_1 e 572r:—1—u (Srzr:}j;—v 572r:ji23—u e 53m_1 i
Now we write M as a sum of m matrices as follows:

M=MO® MO 4 ... vim-1) (14)
such that the non-zero entries of M@, 0 < [< m — 1, belong to {2, 6%, ---,62}. As an

example for m = 5, the representation of M given in (14) is as follows:

S 0 6 00 00 0 00 00 0 0 0
5§ 0 0 00 0 62 62 82 0 00 0 0 0
M = (46 0 000|+]{046 0 0 O0|+]|00 6 52 6
00 0 00 06 0 0 0 006 0 0
00 0 00 00 0 00| [006 0 0|
[0 00 & o [0 0 00 &"]
000 0 0 0 0 00 &
+{1 0 00 0 O0[+] 0 0 00 O
62 0 0 & & 0 0 00 0
0008 0| |6 & 00 &

From the structure of M given in (13), it is clear that these non-zero entries of M) exist
only along its row [and column I. Since M = M7”, we have M() = (M(l))T, and hence the
I-th column of M1 is the transpose of its I-th row. The latter can be obtained by using (12)
and (13), and for m odd, it is given by

[07 07 T 0753l7 5317 "'7512117 07 07 Tt 0]7
—_— —— ——_— ——

,u(l) _ 1 Z€T0oSs m—l—v—1 ZEros
Ix — 1 1 1 1 1 l
’ 2 2 2 2 2 2
[5m—l7 5m—l+17 e 751; > 07 07 T 0750 > 51 y T 75m—l—1]7
~—————r’
m—v—1 Z€Tr0S
and for m even
9l 9l 9l
[07 07"'707507517"'761]707 07"'70]7
———— ~—_———
[Z€eros m—Il—v—1 Z€ET0S
2l 2l 2l
Ml(l): [07 0, ---, 0, 507 517 "'751;—1]7
* —— —
m—v Z€T0S
21 21 21 2l 2l 2l
[5m—lv 5m_1+17 T 751;_17 0,0, -, 0750) 51) 75m—l—1
~—————r’
m—v Z€Ir0S

Thus, the following lemma holds.

0<I<w,

v+1<I<m-—1,

(15)

|, v+1<I<m-1.

(16)

Lemma 2. For 0 < 1,1 < m — 1, let us denote the number of non-zero entries of the

i-th row and the i-th column of MU as H(,u(l)) and H(,u(l)), respectively. If i # 1, then

7% *,%

H(,u(l)) = H(,uil)l) € {0, 1}. For i =1, there are two cases depending on m. If m is odd,

i7

and for m even

[
I [
H(p")) = H(u) = l

Corollary 1. Let HM®), 0 <1< m — 1, denote the number of non-zero entries of MW,

Then, for m odd
HMY) =20 41, VI,

and for m even
20+ 1,
20 — 1,

0<i<v-—1,

H(M(l)): <I< 1
v<[<m-—1.

Proof. We note that ,ugll) = 531. Since the non-zero entries of M® lie only in its row [and

column [, we have

HMY) = H(ul)) + H(u$)) = H(uy)).

8

The proof then follows from Lemma 2. O

Now we give another lemma which will be useful in our algorithm formulation presented

in the next section.

Lemma 3. For § and v as defined above, the following holds

° b0 + 027 form odd,

Z (5]‘ n 5;((—1))) _ (17)

=1 do + 53_1 + 4, form even,

where ((x)) indicates * modulo the degree of the field under consideration (i.e., m).

Proof. From (9), we have 5?((_j)) = (61+2j)2m_j = p¥"THT = g2 Thys,

v v

L.HS. = Z(5j+5?((_j))) 22(51+2j+61+2m_j) :52(52j+52m_j)

7=1 7=1 7=1

= BB +BT + BT BT BT 4 5T,

For the normal basis {8, A2, ---, 82"}, one has 22161 B2 = 1. Now noting that
m m—mT_lzv—l—l for m odd,
m—v=m— {—J =
2 m-— 5 =v for m even,
we can write
m—1 ; _
B BY =P+ =6+, for m odd,
L.H.S. = =1

m—1 .
3 <62” + 3 521> — B2 4 B+ B = S+ 53_1 + 4,, form even.
=1

3.2 Algorithm Formulation

Lemma 4. Let A and B be two elements of GF(2™) and C be their product. Then

m—1 m—1 v

> ab(ST s z Zy,](szt for m odd
¢ = :71201 i " 013; 1 v—1 : (18)
> a;bi 6t + Z Zy,] —I—Eymﬁg, for m even.
=0 =0 j=1 =0
where
Vi = (@i + agiv))(bi + bsn), 1 <j<v,0<i<m-—1. (19)

Proof. Here we present the case of m odd only. The case of m even is similar.
From (4) and (14), C =a-M - bl = ZBIQ MO BT Let €0 = o - MO LT, Using
(15), for 0 < ¢ < v we then have

C(l) - 0 Zal_”(g?l L? "'7ai512;£7 07 07 T O]QT
zZGI’OS m—i—v—1 Z€Tr0s
= Z CZZ+Jb 5 + Z a, b,+]52t
7=0 7=1
= a,b,égl + Z(a,biH + CZH_JZ),)(S]T
7=1

and forv+1<:<m-1

cl) = [ad%

m—1)

]

m—i—1

2¢ 2t 2t 2t 21
Ai0p_ii1s 5 Gi0, 0 0, , 0, E (i35 5 @0y 5 =+, a;0

m—v— 1zeros J=0

v

=) agrinbid; + Y aibisid;

J=0 J=1

= ab(SZ—I—ZabH_]))—I—a 2_+_] b)52l

7=1

Noting that ¢ + 7 = ((¢ + 7)) for 0 < 1,5 < v, we then have

C = C’(O)_|_C’(1)_|_ cee C(m—l)

m—1 m—1 v

— Zabézl—kZZab (i49)) + a(iaibi)oF

=0 j=1

10

m—1 m—1 v m—1 v
= Z a;b; 521 + Z Z aib; + aitjy) ((i+j))) 5]2 + Z Z y,'7j5J2<L (using(19)).
=0 j=1 =0 j7=1

After expansion and re-indexing, one can verify that

m—1 v m—1 v

i ((i=3))
Do) aqanbnd; = Yy abidi
=0 j7=1 =0 j7=1
Now we can write
m—1 m—1 v m—1 v
C = Zabﬁn—l—ZZ(abé’z—l—ab(Sz >—|— yngT
=0 j=1 =0 j7=1
m—1 v] m—1 v
= Y ab, (50 +) (5j + 5;“‘”))) +3°N 62
=0 7=1 =0 j5=1
Then using Lemma 3, the proof is complete. 0

Let h;, 1 < j < v, be the number of non-zero coordinates of the normal basis repre-

sentation of d;, i.e., h; = H(J;), and let w;y, wja, -+, wjpy; denote the positions of such
coordinates, i.e.,
h;
=) g 1< <, (20)
k=1
where 0 < wj;; < wjo < -+ < wjp; < m—1. Also, for even values of m, we have v = 7+ and
§, = 827 . This implies that in the normal basis representation of d,, its i-th coordinate is

equal to its ((5 + 2))-th coordinate. Thus, %, is even and we can write

h_
=), 0= 2
k=1

Now, substituting (20) and (21) into (18), and noting that 53i_1 = 3%, we have the following

theorem.

Theorem 1. Let A and B be two elements of GF(2™) and C be their product. Then

11

h

m—1 v j m—1 '
> aibzﬂz* s < ™ y((i—wj,k)),jﬁz) 7 for m odd
1=0 =1 k=1 =0
C = m—1 . f,_l hj /m-1 i (22)
> aibif® + E > <Z y((i_wj,k))Jﬁz) + F, for m even
where
71, v—1
% i+v m
F= Yimwne(B + B, andv = .

k=1 =0
Note that for a normal basis, the representation of d; is fixed and so is wjg, 1 < j <
v, 1 <k < h;. Theorem 1 is valid for any normal basis of GF(2™) over GF(2). A bit level
version of (22) has recently been reported in [3] for the special case of type-1I optimal normal

bases. Based on (22), now we have the following algorithm for low complexity normal basis

(LCNB) multiplication.

Algorithm 1. (Low Complexity Normal Basis Multiplication over GF(2™))
Input: A, B€ GF(2™), wjx, 1 <j<wv, 1<k <h;
Output: C = AB
1. Generate y; ; = (a; + a((i+5)))(0i + b(itjp), 1 < g <v,0<i <m—1,
where y; ; € GF(2).

2. Initialize ¢; := a;b;, 0 <i <m —1, C:=(co,c1, "+, Cm-1)
3. Forj=1tov—1{

4, T := (t07t17"'7tm—1) =0

5. For k=1 to h; {

6. Ti 1= Y((imwy) 0 <0 <m =1, Ri=(ro,m1,++,Tm_1)
7. T:=T+

8. }

9. C:=C+T

0.)

11. T:=0

12. If mis odd

13. s:=hy, t:=m

14. else s := h2 y =7

15. Generate Yiv (; + a((u+i)))(b + b((,))) 0<e<t—1,

16. If mis even Yiqpp = Yin, 0 <2 <Z-1
17. For k=1 to s {

18. r,:—y((,wk))v,()gigt—l

19. If m is even,

20. rigm =1, 0 <0 <5 =1, Ri= (ro,ri, -0, rmo, T, 11y, Ty
21. T:=T+R

22.

23. C:=C+T

12

Ak [wie] R | C |
Vi T-1- 71 - - 00100
ilj=1]j=2 1 [1 [otool | oi1o1
0] 1 0 103 2| 2 | 10100 | 11001
1] 0 0 3 | 3 | 01010 | 10011
21 0 0 1 | 0 | 00011 | 10000
31 1 1 5| 4| 2| 1 | tooor | oooor
41 0 1 3 | 2 | 11000 | 11001
4 | 4 | oo110 | 11111

(a) (b)

Table 1: (a) Generations of y; ; in line 1 of Algorithm 1. (b) Contents of R and C during
the execution of Algorithm 1 with A = (01110) and B = (10101).

Example 2. To illustrate the operation of the above algorithm, we again use the field GF(2°)
and its normal basis as described in Example 1. Here m = 5, and v = EJ = 2. Using Table

1in [13], one has

51:/63:/82+64+687 h1:37 [wl,k]zlzlz[]-v 27 3]7
S, =P =B+ B2+ B+ B, hy=4, [wliz, =10, 1, 2, 4].

Let A = B2+ B* + % = (01110) and B = B + p* + 51® = (10101) be two field elements.
The generation of y; ;’s in line 1 of the LONB multiplication algorithm is shown in Table
I(a). Table 1(b) shows contents of variables R and C in the order they are updated by the
execution of the algorithm. In this table, the row with j being - indicates the initialization
step (i.e., line 2) of the algorithm. The final contents of C represent the product of A and
B.

3.3 Complexity and Comparison

Lemma 5. [9] For h; as defined above, the complezity of the normal basis N is

v—1
Cn =2 (Z hj + ehu) +1 (23)

=1

13

where

b 1 form odd ‘ (24)
0.5 form even

Theorem 2. For the LCNB multiplication algorithm, let # Mult;onp and #Addpcng denote

the numbers of bit level multiplications and additions, respectively. Then

m(m + 1)

Mult,ong = 5 , (25)

#Addycng = %(CN +2m—3—(1—e)(h, —2)). (26)

Proof. The number of bit level multiplications in lines 1, 2 and 15 of Algorithm 1 are m(v—1),
m and t respectively. Thus, the total number of such multiplications is mv + ¢t = %
The number of additions consists of two parts: (i) the bit level additions of lines 1 and 15
which are 2m(v — 1) and 2¢, respectively, and (ii) the word level additions of lines 7, 9, 21
and 23. The bit level additions of lines 7 and 9 without considering the first addition of line
7TwithT =01sm Zj: h;. Similarly, the bit level additions of line 23 is m. For line 21, the

number of bit additions is (s — 1)t because for even values of m half of the bits of R (and

hence T') are the same as the other half bits. Thus, the total number of bit level additions is

v—1
#Addyons = 2m(v — 1) +2t+m Y _hj+m+ (s — 1)t. (27)

=1

Using (23) and noting that s = €h,, t = em, (27) gives the proof.
0

Remark 1. In order to have a bit-parallel implementation of Algorithm 1, one needs to

generate all y; ;’s and a;b;’s using L(ZLH)

two input-AND gates and m(m — 1) two-input
XOR gates and the corresponding time delay is Ty + Tx, where Ty and T'x are time delays
due to an AND gate and an XOR gate, respectively. In lines 6 and 18 of the algorithm,
when we add r;’s and a;b;’s to obtain ¢;’s we need a total of Z;’: h; + €h, = % XOR

gates. If these gates are arranged in a binary tree fashion, then the corresponding time

complezity is ﬂog2 CNZ'HW Tx = ([logy(Cn 4+ 1)] = 1)Tx. Thus, the overall time complexity

14

Multipliers | #Mult #Add Total bit operations
MO [25] m? m(Cy — 1) m(Cy +m —1)
RR_MO [20] m? < < Z(Cn+3m —2)

LCNB) T < m(Cy 4 2m —3) | <™ (Cy +3m —2)

2

Table 2: Comparison of normal basis multipliers.

of the bit-parallel structure is T4 + [log,(Cn + 1)] Tx. Since Cy is an odd integer, one has
[log,(Cn + 1)] = [logy Cn|. Thus, the time complezity is simplified to

Timedelay = Ts + [log, Cn| Tx. (28)

Table 2 compares the number of bit level operations of the LCNB algorithm with those
of the Massey-Omura (MO) multiplier of [25] and the reduced redundancy Massey-Omura
(RR_MO) multiplier of [20]. The multipliers of [25] and [20] are used for comparison as they
appear to be the first and the most recently reported work in this area, and it seems the total
number of bit level operations of [20] is the least among the existing normal basis schemes.
All the multipliers in Table 2 have the same time delay T4 + [log, Cn| Tx in bit-parallel
implementation. As it can be seen from the table, the total number of bit level operations of
our new LCNB algorithm matches that of [20]. More importantly, the LCNB algorithm has
the least number of bit level multiplications that meets the lower bound on the number of
bit level multiplications determined in [3]. Since the bit level multiplication corresponds to
the multiplication in the ground field GF(2), if the algorithm is extended to a ground field of
degree more than one, where a multiplication is more expensive than an addition operation,
the use of the LCNB algorithm will be advantageous. This is investigated in Section 5 of

this article.

Remark 2. In Table 2, the numbers of bit level additions (and consequently, the total op-
erations) are given in terms of Cn. It is well known that Cy > 2m — 1 [13]. If a normal
basis has mintmum Cy, i.e., Cny = 2m — 1, then it is referred to as an optimal normal basis
(ONB). There are two types of ONBs, namely, type-I and type-II which are hereafter also
referred to as ONB-I and ONB-II, respectively. The ONBs do not exist for all m. The list
in [12] shows that only 23% of m < 2000 have ONBs. For a given m where an ONB ezists,

the minimum number of bit level additions needed in the LCNB algorithm can be obtained

15

by substituting Cn = 2m — 1 in (26), i.e., for an ONB we have
#AddLCNB = Qm(m — 1) (29)

Recent results on multipliers using the special case of ONB-II include references [23] and
[3] which have the same space and time complexities as those presented here. In Section 4,

we show that the number of bit level additions can be further reduced by considering ONB-I.

3.4 Multiplication on General Purpose Processors

General purpose processors, such as Intel’s Pentium processors, are not usually designed
to efliciently add [bits over GF(2), using a single (XOR or such) instruction, even when
[is less than the size of the internal registers of the processor. However, the conventional
approach? to normal basis multiplication relies on inner products over GF(2), as shown
in (7), and requires about m72 modulo 2 additions, on average, for each coordinate of the
product. Hence, this approach is considered not to be very efficient. Below we present a
normal basis multiplication algorithm, which is a variant of the LCNB algorithm and is

suitable for software implementation. From (22), we can write

m—1 . v hj m—1 ' 2%k
o oabiBF 4+ Y (Z ym‘521> , for m odd
=0 =1 k=1 =0
C - m—1 . fj—l hj m—1 . 2%k (30)
SooabiBY + > S (E ymﬂzz) + D, for meven
=0 7=1 k=1 =0
where
th v—1 2%k
D= (yio(B® + 62””)) ,and v = % (31)
k=1 =0
Let us define
AUJJ‘JC 2 Wik — Wik_1, 1 S] < v, 1 < k < hj, Wi = 07 (32)

where w;;’s are the positions of 1’s in the normal basis representation of ; as defined in (20).

For a particular normal basis, all w;’s are fixed. Hence, all Aw;;’s need to be determined

ZFor an algorithmic description, the reader may refer to [14].

16

only once, i.e., at the time of choosing the basis.
Let A® B denote the bitwise AND operations between the coordinates of A = (ag, a1, -+, @m-1)
and B = (bo, bl, Ty, bm—1)7 i.e.,

A B 2 (aobo, Cl1b1, T 7am—1bm—1>'

Let us denote i-fold left and right cyclic shifts of the coordinates of A by A <« 7 and A > 1,
respectively.
Based on (30), a software version of LCNB (referred to as S-LCNB) multiplication algo-

rithm can then be stated as follows:

Algorithm 2. (S-LCNB Multiplication over GF(2™))
Input: A, B€ GF(2™), Aw;j, 1 <j<v, 1 <k<h;
Output: C = AB

1 Initialize C := A B, S4:= A, Sg:=B

2 For j=1tov—1{

3 Sa <1, 55 «1

4, LA::A—I-SA,LBZZB—I-SB

5. R = LA ©) LB

6 For k=1 to h; {

7 R > A’U)j’k

S C=C+R

11. S4k 1, 5«1

12. LA ZZA—I-SA, LB ::B—I-SB
13. R .= LAQLB

14. If mis odd, s:=h,

15. else s := %”

16. For k=1 to s {
17. R > Aw,
18. C=C+R
19. }

Remark 3. In the above algorithm, shifted values of A and B are stored in S4 and Sp, re-

spectively. In lines 5 and 13, R € GF(2™) contains (Yo j, Y1,j5 s Ym—1,5)s €., Z:’;l ymﬂzi.
Wik

Also, right cyclic shifts of R in lines 7 and 17, corresponds to (Z:’;l ymﬂzi)z J . After the
final iteration, C is the normal basis representation of the required product A - B. Since for
even values of m, Yirvo = Yiw, 0 <1 < v — 1, where v = %, hence one may slightly reduce
the computational cost of lines 12 and 13 by noting that the = bits of each of the upper halves

of Ly, Lp and R are the same as the % bits of their respective lower halves.

17

SA SB LA LB k ij,k R C
01110 10101 - - - - - 00100
11100 01011 10010 11110 10010

1 1 01001 01101
2 1 10100 11001
3 1 01010 10011
11001 10110 10111 00011 00011
1 0 00011 10000
2 1 10001 00001
3 1 11000 11001
4 2 00110 11111

Table 3: Contents of variables in Algorithm 2 for multiplication of A = (01110) and B =
(10101).

Example 3. Here the multiplication of A = (01110) and B = (10101) of Ezample 2 is shown
using Algorithm 2. Table 3 shows contents of various variables of the algorithm as they are

updated. The row with j being -’ is for the initialization step (i.e., line 1) of the algorithm.

In order to obtain the overall computation time for a GF(2™) multiplication using Al-
gorithm 2, the coordinates of the field elements can be divided into (%w units where w
corresponds to the data path size of the processor. We assume that the processor can per-
form bit-wise XOR and AND of two w-bit operands using one single XOR and one single
AND instruction, respectively. Also, when a programming language, such as C, is used, we
assume that an i-fold, 1 < i < w, left/right shift is emulated using a total of p instructions.
The value of p can be 4 or so when simple logical instructions, such as AND, SHIFT, and
OR are used.

Theorem 3. The dynamic instruction count for Algorithm 2 is given by

-1
Instructions = ((p + 1)CN2 + (2p + 3)v + 1) [ﬂ-‘ 7

w

where Cy, v, p and w are as defined earlier.

Proof. Initialization of C in line 1 needs [2] instructions. Lines 3, 4 and 5 are repeated
v — 1 times and require (v — 1)(2p + 3)[=] instructions. Lines 7 and 8 are inside a two-level

w

nested loop and require (E;’: h;)(p + 1)[2] instructions. For lines 11 to 13, one needs

18

(2p+3)[2] instructions, whereas for lines 17 and 18, eh,(p+1)[2] instructions are needed.
Adding up all these instructions and assuming that overhead costs for the loops are small

(alternatively, assuming unrolled loops), one completes the proof. O

Algorithm 2 and the NB multiplication algorithm of [14] have been implemented on an
AMD Athlon XP 1500+ running at 1.33GHz with 480MB RAM. This implementation uses
Visual C++ 6.0 and speed-optimized release build to obtain the timing data. For comparison
purposes, we have used GF(2?**) which is one of the fields recommended by NIST and
has a type-II ONB. Our results show that for a GF(2***) multiplication, Algorithm 2 and
multiplication algorithm of [14] require 22.53 us and 607.8 us, respectively.

Additional normal basis multiplication algorithms suitable for general purpose processors

are the subject of discussions in an another article by the authors [19].

4 Type-I Optimal Normal Basis Multiplication

An ONB-I is generated by roots of an irreducible all-one polynomial (AOP), i.e.,

P(Z):Zm—I-Zm_l—I-"'—I-Z—I-l. (33)

The AOP is irreducible if m + 1 is prime and 2 is primitive modulo m + 1 [24]|. Thus, the
roots of (33) i.e., B¥ j=0,1,--m—1, form an ONB-I if and only if m + 1 is prime and

2 is primitive in modulo m + 1.

Lemma 6. [20]

5 | e,z (34)
where k; is obtained from

27 +1=2% mod (m 4+ 1). (35)

Substituting (34) into (18), the product C can be written as

19

C = (Z a,»b,ﬂ?”) +2. (Z y,-,jﬁzi) + (Z y) : (36)

=0
where the right most summation results in 0 or 1, and in the normal basis representation, 0
and 1 correspond to (0, 0, ---, 0) and (1, 1, - -+, 1) respectively. Based on (36), now we can
state an algorithm for ONB-I multiplication as follows.

Algorithm 3. (Low Complexity ONB-I Multiplication over GF(2™))
Input: A, BE GF(2"),kj, 1<j<v,v=1%
Output: C = AB
1. Generate y; ; = (a; + a((i+5)))(bi + b((it;

Generate y; , = (a; + a((wti)))(bi + b((o+i

Initialize ¢; ;== a;b;, 0 <1 <m—1, f:

For j=1tov—1{

Ty =Yg, 0<2:<m— 17 R = (TO7T17"'7TW—1)
R:= R?"

C:=C+R

fi=F+Yjw

¥
0. Iffisl, C:=C+(1,1,---,1,1)
L}

The above algorithm is hereafter referred to as LCONB-I.

), 1< i<, 0<e<m—1,
1), 0< < v —1,
Yo,vu, fEGF(Q)

= =

P2 O XN Gtk N

Remark 4. In line 6 of the LCONB-I algorithm, the operation R? can be accomplished by
a kj-fold cyclic shift. The number of bit level operations of lines 1, 2 and 8 are 2m(v — 1),
2v and v — 1, respectively. Also, lines 7 and 10 need m(v — 1) and m additions. Thus, the

total number of additions is

#AddLCONB-I = 15m2 —0.5m — 1, (37)
and the number of multiplications is the same as that of the LCNB algorithm given in (25).

For comparison, we consider four other ONB-I multipliers as shown in Table 4. This
table shows the number of bit operations of these multipliers and the time complexity of
multipliers in bit-parallel implementation. The multiplier of [25] is considered to be the first
such work published in the open literature and those of [6], [7], [20] are more recent work
and have the best results among the known existing ones. As it can be seen in this table,

although the total number of operations of the proposed LCONB-I algorithm is the same

20

Multipliers #Mult #Add Total operations Time complexity
MO [25] m? 2m?* — 2m 3m* —2m Ta+ (1+ [log,m])Tx
Hasan et al.[6] m? m? — 1 2m? — 1 Ta+ (14 [log, m])TX

Koc and Sunar [7] | m? m? — 1 2m? — 1 Ta+ (24 [log,m])Tx
RR MO [20] m? m? — 1 2m? — 1 Ta+ (14 [log, m])TX
LCONB-I) 11 5m? — 0.5m — 1 2m? — 1 T4+ (1+ [log, m])Tx

Table 4: Comparison of bit level operations of ONB-I based multiplication schemes.

as those of the three best multiplication schemes, the LCONB-I algorithm requires the least
number of bit level multiplications, which can be advantageous in composite finite fields as

discussed in the next section.

Remark 5. ONB-I can be treated as a polynomial basis after some permutations and then
various methods can be applied for field multiplication [7], [8]. One of the methods is the
Karatsuba-Ofman algorithm. In asymptotic sense, the Karatsuba-Ofman algorithm has fewer
bit level operations compared to the previously reported algorithms. However, for this special
case of ONB-I, the value of m is composite. Using the algorithms presented in Section 5
of this article, one can obtain an tmplementation for certain values of m, which has fewer

number of bit level operations than the Karatsuba-Ofman algorithm based multiplier [17].

5 Composite Field Multiplication

In this section, we consider multiplications in the finite field GF(2™) where m is a composite
number. These fields are referred to as composite fields and have been used in the recent
past to develop efficient multiplication schemes [16], [15]. If such a field is to be used for
cryptographic applications, special care needs to be taken in choosing the composite value
for m. In order to avoid the recent Weil descent attack on elliptic curve cryptosystems [4],
[22], the reader is referred to references [11] and [2] for “good” and “bad” composite values

of m.

5.1 Algorithm Formulation

Theorem 4. [21] Let my > 1, my > 1 be relatively prime. Let Ny = {2 |0 <1 < my — 1}
and Ny = {622J |0 < j < mg— 1} be normal bases for GF(2™') and GF(2™2), respectively.

21

Then N = {3232

|0<i<my—1,0<j<my— 1} is a normal basis for GF (2™ ™) over

GF(2). The complexity of N is Cnx = Cp, Ch,, where Cy, and Cy, are the complexities of
N; and N, respectively.

Assume that m = my-mq where m; and my are as defined above. Let A € GF((2™2)™),then
A can be represented w.r.t. the basis

N:{62J|0§]§m_1}76:61627
as follows

m—1 mimo—1 my—1
. 2j . 2] mod mj 2] mod mo 21,'
A= § a;B” = E a;pBi E AiBy
=0 j=0 i=0
where a;’s are coordinates of A w.r.t. basis N and

(38)

mg—l

2i+l~m1 mod my
A,’ = E Ai4l-mqg Pg . (39)
=0

We assume this kind of representation for any two elements: A and B € GF((2™2)™), i.e
A Eml 1)

, B=3% """ ' B;? ;where A;, B; € GF(2™2). Without loss of generality,
then the product C = AB can be obtained from Lemma 4 as

mp—1 mi—1 v
Z%) A Bl’yg - —I_ z% E P]7] i fOI' mi Odd
C = 777'1__1 il1 m]— 1{)1 1 v —1 (40)
E Ai Blﬁyg + E E i]'7] ‘I’ E PR ’le 5 for miy even
=0 =0 j=1

where v; = Lml

ZJ,’yj— 1427 , 0< 7 <w; and
Vij & (Ai 4+ Agirs) (Bi + Biiggy), 1<j <o, 0<i<my —1

(41)

In (41), ((1 4+ 7)) = ¢ +j mod m; and the underlying field operations are performed over
the subfield GF(2™2).

22

Also, using (20), one can write v; w.r.t. Nj as

y
T

i = 2R 1< <, (42)
k=1

and similar to (22), the product C can also be obtained as

(1)
my —1 v1 hj m;—1 .
S amar+ 5 (). formodd
C — = 7=1 k:(ll) =0 I (43)
my—1 v —1 hj my—1)
Z A, B; 51 > < > Y'(i_w(lg))j612> + D, for m;even
=1 k=1 \ =0 5,)
where
s
5 v1—1 my
— 2itvy _na
D= ' Y—((’)Ul(ﬁl —I_ﬁ)’ - 9"
k=1 =0

Based on (43), we can state the following algorithm for multiplication in GF(2™) where
m = 1my - ms.

Algorithm 4. (Composite Field Normal Basis Multiplication)

Input: A, Be GF((2™)™), v, € GF(2™),1<j <

Output: C = AB

1. Al := Ali + mql], Bi[I'] := Bli + mql], 0 <1< my—1,0 <i <my — 1, where
' =i+ myl mod m,

2. Generate Y ; := (A, + A((H_])))(B, + B((,'+j))), 1<y<v,0< < my —1,

i
where Y, ;, A;, B, € GF(2™).

3. Initialize C; := A;B;, 0 <1 <m; — 1, C := Col|Ch]| -+ ||Cny =1
4. For j=1tov; —1{
5. For k=1 to h;l) {
6. Ri:=Y, . .,0<i<m;—1, R:=Rg||Ri|l"||Rms—1

B ~(Emwyi))a !
7. C:=C+R
8. }
9.
10. If my 1s odd,
11. § = hi}), t:i=m

0

12. else s := =L, t:= 7L
13. Generate Y; , = (A, + A((UH_,')))(B, + B (v +l))), 0<e <t —1,
14. If my is even Yigy, v, = Yie,, 0 <0 < L —
15. For k=1 to s {
16. R, =Y 0<:<t—1

(=l)

23

17. If my is even,

18. Riym =R, 0<i <™ —1, Ri=Rol|-++||Rma ||Ro|| -+ || Rems _,
19. C=C+R
20.

}
21. Cli+ml]:==Cil',0<1<my—1,0<i<my—1.

Example 4. Let m = 33, m; = 3 and my = 11. As per Table 3 of [13], there are ONBs
for GF(2%) and GF(2"). Thus, Ny = {82 |0 < i < 2} and N, = {BZ |0 < 1 < 10}
are type-II optimal normal bases of GF(2%) and GF(2"), respectively. Using Theorem 4,
N = {ﬁzj |0 < 5 < 32}, where 8 = 182 is a normal basis of GF(2**) over GF(2). The
complezity of N is Cy = Cn,Cn, = (2-3 —1)(2-11 — 1) = 105. Any two field elements
A, B € GF(2%) can be written w.r.t. N as

32

A= a;8% = AoBi + AfE + Asf
7=0
32)

B=Y"0;8% = Bophi + Bi % + Bof!
7=0

where A; = 21120 ai+316221 , B; = Z}QO b,'_|_316221 ,0< <2 andl =i+3l mod 11. Let
C = Cofy + C1% + Co3} be the product of A and B. Thus, using (40), we have

C = AoBoSi +(Ao+ A)(Bo + B1)5f
+A1B, A 4(As + Ay)(By + By)p¢
+A2Byfi +(As+ Ao)(Bz + Bo)Bi.

Using Table 2 in [9], for the type-II ONB over GF(2?), we have 3} = 1 + B%. Thus,

C = ((AoBo+ (Ao+ A1)(Bo+ By) + (Ax+ Ag)(By + By))p
+((A1By 4 (A1 + A2)(By + By) + (Ao + A1)(By + Bl))ﬁlz (44)
+((A2B2 + (As + Ao)(By + Bo) + (A1 + A2)(By + By)) !

From (44), we see that 6 multiplications and 12 additions over subfield GF(2™*) are
needed to generate Cy, Cy and Cy. Thus, the total numbers of bit level multiplications and
additions are 396 and 1452, respectively.

24

5.2 Complexity and Comparison

In Algorithm 4, C in line 3 is obtained by concatenating Cj;’s. R in line 6 is obtained in a
similar way. The total number of operations of the composite field NB (CFNB) multiplication

algorithm consists of two parts: multiplications and additions over the subfield GF(2™?).

mi (m1+1)

Using Theorem 2, the numbers of multiplications and additions over GF(2™2) are 5

and ZL(Cn, + 2my — 3)%, respectively. Each GF(2™) addition can be performed by m bit
level (i.e., GF(2)) additions. If we use Algorithm 1 for subfield operations, then at the bit

ma(ma+1)

level each GF(2™2) multiplication requires 5

multiplications and 2(Cy, 4 2mg — 3)

additions. Thus, the total numbers of bit level operations are as follows

m(my + 1)(mg + 1)
4 9

#MultCFNB = (45)

and

#Adderng = %H(Cn, +2my — 3) -my + mim+) 2(Cn, + 2my — 3)

2

(46)
[Cn, 4 2my — 3+ 25 (O, + 2my — 3)] .

0|3

Thus, for a given m, we can use m; < my to reduce the number of addition operations
given in (46). Additionally, if my + 1 is prime and 2 is primitive modulo my + 1, then there
exists an ONB-I over GF(2™2) and Algorithm 3 can be used for GF(2™2) multiplication.
Thus, using (37), the number of additions as given in (46) can be reduced to Z:(Cy, +2m, —
3)my + " (1 52 — 0.5m, — 1).

In order to obtain the time complexity of the composite field NB multiplication of
GF((2™2)™) over GF(2™2) in bit-parallel implementation, one can easily replace the time
delay of AND gate with the time delay of subfield multiplication of GF(2™2) over GF(2) into
(28). Thus, the time delay of the CENB multiplier is T4 + ([log, Cn, | + [log, Cn,) Tx.

Table 5 compares bit level operations for multiplication over GF(2??) for a number of
algorithms. Rows 2, 3 and 4, where Cy = 65, use ONB-II which exists for GF(2**) over
GF(2). On the other hand, rows 5, 6 and 7, where Cy = Cy, - Cy, = 105, use the two ONB-
IT’s which exist for the subfields GF(2%) and GF(2'') as discussed in the above example.
This comparison shows that the proposed CENB multiplier has the least number of bit level

3For sake of simplicity, we have not used the symmetrical property for m even.

25

Multipliers | Cn | #Mult | #Add | Total bit operations
MO [25] 65 1089 2112 3201
RR_MO [20] | 65 1089 1584 2673
LCNB 65 561 2112 2673
MO [25] 105 | 1089 3432 4521
RR_MO [20] | 105 | 1089 2244 3333
LCNB 105 | 561 2772 3333
CFNB 105 | 396 1452 1848

Table 5: Comparison of operations for normal basis multipliers over GF(2%3).

operations. More interestingly, for composite values of m, the well known optimal normal
bases GF(2™) over GF(2) do not seem to be the best choice when one considers bit level
operations, which in turn determines the space complexity for hardware implementation of
a normal basis multiplier.

In [15], two normal basis multipliers in the composite field GF((2™2)™") over GF(2™2) are
proposed. The structures are only applicable to special cases of m = mimg, ged(my, my) =1
where there exists an ONB-I for the subfield and ONB-II for the extension field, or vice versa.

In both structures, the number of subfield multiplications required is m?, which is about twice

mq (m1 +1)

of what has been proposed here, i.e., 5

We wind up this section by stating the following theorem which gives the bit level oper-

ations for normal basis multiplication over generalized composite fields.

Theorem 5. Let m = [[/_,mi, 1 <my < mg < -+ < my, where ged(m;, mj) =1, i # j.
Then, for a normal basis multiplication over the composite field GF(2™), the numbers of bit

level multiplications and additions are

n

m
#Multcrng = on H(mz + 1), (47)

=1

and

23

n—1 J
Cn.., +2mjy1 —3
#Addcrnp = % (C'N1 +2m; —3 + Z it — H(ml + 1)) ; (48)

respectively.

26

6 Concluding Remarks

In this article, efficient algorithms for normal basis multiplication over GF(2™) have been
proposed. These algorithms are suitable for implementation of cryptographic functions both
in hardware and software. It has been shown that when m is composite, the proposed
CFNB algorithm requires significantly fewer number of bit level operations compared to
other similar algorithms available in the open literature. More interestingly, it has been
shown that for composite values of m, the well known optimal normal bases GF(2™) over
GF(2) do not seem to be the best choice when one considers bit level operations, which
in turn determines the space complexity for hardware implementation of a normal basis
multiplier.

There are a number of possibilities for construction of the composite field NB multipliers
in hardware implementation. These depend on which architecture is chosen for subfield im-
plementation. Investigation is being carried out to obtain the best composite field multiplier
such that the complexities of the multiplier architecture is minimum for any given composite

m € [160, 600].

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments. The authors
also would like to thank Z. Zhang for his help with implementing the algorithms and getting
their timing results. The work was supported in part by an NSERC Research grant to M.
A. Hasan. A preliminary version of this article was presented at the First International

Conference in Cryptology in India, Calcutta, India, December 2000 [18].

References

[1] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. “An Implementation
for a Fast Public-Key Cryptosystem”. Journal of Cryptology, 3:63-79, 1991.

27

2]

[10]

[11]

M. Ciet, J.-J. Quisquater, and F. Sica. “A Secure Family of Composite Finite Fields
Suitable for Fast Implementation of Elliptic Curve Cryptography”. In LNCS 2247 as
Proceedings of Indocrypt 2001, pages 108-116, India, December 2001. Springer Verlag.

M. Elia and M. Leone. “On the Inherent Space Complexity of Fast Parallel Multipliers
for GF(2™)". IEEE Transactions on Computers, 51(3):346-351, March 2002.

S. D. Galbraith and N. Smart. A Cryptographic Application of Weil Descent. In
Proceedings of the Seventh IMA Conf. on Cryptography and Coding, LNCS 1746, pages
191-200. Springer-Verlag, 1999.

S. Gao and Jr. H. W. Lenstra. “Optimal Normal Bases”. Designs, Codes and Cryptog-
raphy, 2:315-323, 1992.

M. A. Hasan, M. Z. Wang, and V. K. Bhargava. “A Modified Massey-Omura Parallel
Multiplier for a Class of Finite Fields”. IEEE Transactions on Computers, 42(10):1278—
1280, Oct. 1993.

C. K. Koc and B. Sunar. “Low-Complexity Bit-Parallel Canonical and Normal Basis
Multipliers for a Class of Finite Fields”. IEEE Transactions on Computers, 47(3):353—
356, March 1998.

M. Leone. A New Low Complexity Parallel Multiplier for a Class of Finite Fields.
In Proceedings of Cryptographic Hardware and Embedded Systems CHES 2001, pages
160-170. LNCS 2162, Springer, 2001.

Chung-Chin Lu. “A Search of Minimal Key Functions for Normal Basis Multipliers”.
IEEE Transactions on Computers, 46(5):588-592, May 1997.

J. L. Massey and J. K. Omura. “Computational Method and Apparatus for Finite Field
Arithmetic”. US Patent No. 4,587,627, 1986.

M. Maurer, A. Menezes, and E. Teske. “Analysis of the GHS Weil Descent Attack on the
ECDLP over Characteristic Two Finite Fields of Composite Degree”. In LNCS 2247 as
Proceedings of Indocrypt 2001, pages 195-213, India, December 2001. Springer Verlag.

28

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

A. J. Menezes, 1. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian.
Applications of Finite Fields. Kluwer Academic Publishers, 1993.

R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. “Optimal Normal
Bases in GF(p")”. Discrete Applied Mathematics, 22:149-161, 1988/89.

National Institute of Standards and Technology. Digital Signature Standard. FIPS
Publication 186-2, February 2000.

S. Oh, C. H. Kim, J. Lim, and D. H. Cheon. “Efficient Normal Basis Multipliers in
Composite Fields”. IEEE Transactions on Computers, 49(10):1133-1138, Oct. 2000.

C. Paar, P. Fleishmann, and P. Soria-Rodriguez. “Fast Arithmetic for Public-Key Algo-
rithms in Galois Fields with Composite Exponents”. IEEE Transactions on Computers,

48(10):1025-1034, Oct. 1999.

A. Reyhani-Masoleh. Low Complexity and Fault Tolerant Arithmetic in Binary FEz-
tended Finite Fields. PhD thesis, Department of Electrical and Computer Engineering,
University of Waterloo, 200 University Ave., Waterloo, Ontario N2L 3G1, Canada, May
2001.

A. Reyhani-Masoleh and M. A. Hasan. “On Efficient Normal Basis Multiplication”. In
LNCS 1977 as Proceedings of Indocrypt 2000, pages 213-224, Calcutta, India, December
2000. Springer Verlag.

A. Reyhani-Masoleh and M. A. Hasan. “Fast Normal Basis Multiplication Using General
Purpose Processors”. In Selected Areas in Cryptography, SAC 2001, pages 230-244,
Toronto, Ontario, August 2001.

A. Reyhani-Masoleh and M. A. Hasan. “A New Construction of Massey-Omura Parallel
Multiplier over GF(2™)”. IEEE Transactions on Computers, 51(5):511-520, May 2002.

J. E. Seguin. “Low Complexity Normal Bases”. Discrete Applied Mathematics, 28:309—
312, 1990.

N. P. Smart. How Secure Are Elliptic Curves over Composite Extension Fields? In

Proceedings of Eurocrypt 2001, LNCS 2045, pages 30-39. Springer-Verlag, 2001.

29

[23] B. Sunar and C. K. Koc. “An Efficient Optimal Normal Basis Type II Multiplier”. IEEFE
Transactions on Computers, 50(1):83-88, Jan. 2001.

[24] P. K. S. Wah and M. Z. Wang. “Realization and Application of the Massey-Omura
Lock”. presented at the IEEE Int. Zurich Seminar on Digital Communications, pages

175-182, 1984.

[25] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed.
“VLSI Architectures for Computing Multiplications and Inverses in GF(2™)”. IEEE
Transactions on Computers, 34(8):709-716, Aug. 1985.

30

