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On Concurrent Detection of Errors in

Polynomial Basis Multiplication

Siavash Bayat-Sarmadi and M. Anwar Hasan

Abstract

The detection of errors in arithmetic operations is an important issue. This paper discusses the

detection of multiple-bit errors due to faults in bit-serial and bit-parallel polynomial basis (PB) multipliers

over binary extension fields. Our approach is based on multiple parity bits. Experimental results presented

here show that due to an increase in the number of parity bits,the area overhead tends to increase linearly,

but the probability of error detection approaches unity fairly quickly, e.g., for 8 parity bits. In bit-serial

implementation of aGF (2163) PB multiplier using 8 parity bits, the area overhead and the probability

of error detection are10.29% and 0.996, respectively. This is achieved without any increase in the

computation time of theGF (2163) PB multiplier.

Index Terms

Polynomial basis multiplication, concurrent error detection, finite fields.

1. INTRODUCTION

Digital systems that require large number of circuits for their implementation can be more

prone to produce erroneous results simply because of the increase in the probability that one of

the circuits may become faulty while in use. As a result, for sensitive or critical applications

large digital systems are generally designed with some kindof mechanism to provide correct

functionality or to detect errors.

In some hardware based cryptosystems or their arithmetic accelerators, a finite field multiplier

can be the most silicon area occupying component [1], [2] andhence can be subject to hardware
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faults. Depending on the cryptosystems, errors due to such faults in the multiplier can be detected

at an upper level operation, e.g., in elliptic curve cryptography (ECC), if a point leaves the curve

it can be easily detected by point verification [3], [4]. Thisis, however, not always possible. In

the case of ECC, a fault may move a point to another point withoutleaving the curve and this has

been exploited in the so-called sign change fault attack [5]. As a result, some kind of mechanisms

for error detection in the finite field multiplier can be quiteimportant in cryptography as well as

other critical applications where finite field multipliers of various sizes are used, for example,

in deep space channel coding [6] and VLSI testing [7].

One technique to detect errors in hardware implementation is on-line testing or concurrent

error detection (CED). CED is used to concurrently test a system while the system is operating

normally [8]. CED can test the circuit at full operating speedwithout stopping the system or

switching it to test mode. Accordingly, CED can detect transient faults, which may not be

detected in off-line testing, since they may not occur in test mode (see [9], [10], [11], [12],

[13], [14], [15], [16], [17] as CED examples). This paper focuses on the detection of errors in

extension field multipliers. The complexity of multiplication is much higher than the field’s two

basic operations namely addition and subtraction. Other complex finite field arithmetic operations

such as inversion and exponentiation over binary extensionfields can be preformed by repeated

multiplications [18], [19].

In [11], Fenn et al. presented a concurrent error detection scheme for finite field multipliers over

binary extension fields. They used a parity bit for detectingerrors in bit-serial multipliers, using a

number of bases for representation of fields, defined by an irreducible all-one polynomial. Thus,

the scheme is not generic in the sense that it cannot be used for other field defining polynomials.

In [10], Chiou presented a concurrent error detection for twobit-parallel systolic multipliers

for extension fields which the field defining polynomials are irreducible all-one polynomials

or irreducible equally spaced ones. In [14], [16], Reyhani-Masoleh and Hasan developed a

generic parity based error detection scheme for both bit-serial and bit-parallel polynomial basis

multipliers. The scheme can detect any odd number of erroneous bits. In this scheme, input

parity is developed through the multiplier, and predicted output parity is compared to actual

output parity. In case of inequality of the parities, an error signal is given.

This paper extends the work of [14], [16] by applying multiple parity bits. The concept of

multiple parity is already known and used in some other applications [20], [21], but this is the
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first time it is being used for the finite field multiplication.Like [16], our work can be applied

to any finite field GF(2m). However, unlike [16], our work can detect all odd parity errors as

well as most of the even parity errors. Additionally, our work can detect at leastm multiple-bit

errors in the multiplier.

The main contributions of this paper are summarized as follows:

• A multiple parity scheme that can detect multiple-bit errors in both bit-serial and bit-parallel

polynomial basis multipliers over binary extension fields are presented. The error detection

capability of the scheme in the presence of multiple-bit random errors is also investigated.

With our proposed frequency of check points, a maximum of onemultiple-bit error in each

round of the bit-serial operation (or each row of the bit-parallel operation) can be detected.

This implies that in aGF (2m) polynomial basis multiplier, at leastm multiple-bit errors

can be detected.

• A number of experimental analyses are presented, includingthe simulation-based fault-

injection evaluation of the scheme and the analyses of the area and time overheads. Our

experimental results show that the area overhead tends to increase linearly as the number

of parity bits increases but the probability of undetected errors decreases quite quickly.

Furthermore, the area overhead for the bit-serial implementation is quite low, e.g., for 8

parity bits the area overhead is10.29% and the error detection probability is 0.996. The area

overhead for a bit-parallel implementation of the multiplier is greater than the corresponding

bit-serial one, but it is still lower than the conventionaldual modular redundant systems.

The average time overhead due to the use of the scheme in bit-parallel implementations

is 25%. For bit-serial implementations, time overheads have beenobserved to be small to

negligible.

The organization of the remainder of this paper is as follows. In Section 2, some preliminaries

about polynomial basis multiplication are discussed. A concurrent error detection strategy is

presented in Section 3. In Section 4, the error detection capability of the scheme is investigated.

Our experimental results for this scheme are reported in Section 5. Finally, Section 6 gives a

few concluding remarks.
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2. PRELIMINARIES

In this section, first polynomial basis multiplication is briefly explained. Then three main

components for the construction of bit-serial and bit-parallel multipliers are introduced.

Let F (x) =
∑m

i=0 fix
i be an irreducible polynomial overGF (2) of degreem. Letα ∈ GF (2m)

be a root ofF (x), i.e., F (α) = 0. Polynomial (or canonical) basis is defined as the following

set:
{
1, α, α2, · · · , αm−1

}

Each elementA of GF (2m) can be represented using the polynomial basis (PB) asA =
∑m−1

i=0 aiα
i = (a0a1 · · · am−1) whereai ∈ GF (2).

The multiplication ofα and an arbitrary elementA of GF (2m) can be represented with respect

to PB as:

αA = α

m−1∑

i=0

aiα
i mod F (α)

= am−1f0 +
m−1∑

i=1

(am−1fi + ai−1) αi.

Hereafter, the module that receivesA ∈ GF (2m) as input and computesαA is called α-Mul

module.

Let C be the product of two elementsA andB of GF (2m). Then PB representation ofC is

as follows:

C = AB mod F (α) = A

m−1∑

i=0

biα
i mod F (α)

=
m−1∑

i=0

bi.A
(i) = (bm−1.A

(m−1) + bm−2.A
(m−2)+

· · · + b1.A
(1) + b0.A

(0)).

(1)

whereA(0) = A and A(i) = αA(i−1). In (1), ’.’ is a scalar multiplication, sincebi ∈ GF (2)

and A(i) ∈ GF (2m), and ’+’ is a vector addition, since its two operands are the elements of

GF (2m). Modules that perform scalar multiplication and vector addition are hereafter referred

to as SM module and VA module, respectively. These two modules and theα-Mul module

discussed earlier are the main components of a PB multiplier. In accordance with (1) and using
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these three main components, bit-serial and bit-parallel PB multipliers can be constructed as

shown in Fig. 1 (see [22] for a similar multiplier architecture).
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(a) Bit-serial
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(b) Bit-parallel

Fig. 1. Polynomial-basis multiplication

3. CONCURRENTERRORDETECTION STRATEGY

In this section, an error detection scheme for PB multipliers is presented. Errors may be

caused by different types of faults such as open faults, short (bridging) faults, and/or stuck-at

faults. Furthermore, the faults can be transient or permanent. The goal of this scheme is to detect

as many random errors as possible including single and multiple errors. Towards this goal, we

use a parity based method. One-bit parity is able to detect the presence of any odd number

of erroneous bits [23]. Here, we use additional parity bits in order to increase error detection

capability. In particular, anm-bit input is divided intok parts and for each part one parity bit

is used. Thus, them-bit PB representation ofA ∈ GF (2m) is divided as follows:

A = (A0, A1, A2, · · · , Ak−1).

The length ofAj, 0 ≤ j ≤ k − 1, is

lj =







⌊m
k
⌋ + 1 if j < m mod k;

⌊m
k
⌋ otherwise.
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For the sake of simplicity, we assume thatk|m and the length of each part isl = m
k

, i.e.,

Aj = αjk

l−1∑

i=0

ajk+iα
i = (ajk, ajk+1, ajk+2, · · · , ajk+l−1).

Parity of Aj is denoted asP (Aj). Using parity bits ofAj ’s, a k-bit parity of A is formed as

follows:

P (A) = (P (A0), P (A1), P (A2), · · · , P (Ak−1)).

Then using the parityP (A), we construct encodedA as follows:

E(A) = (A0, A1, A2, · · · , Ak−1, P (A)).

Unlike A which is represented withm bits, the field defining irreducible polynomialF (x)

requiresm + 1 bits. In order to have the same length for partitioning, we exclude the leading

coefficient ofF (x) and divideF (x) − xm into k parts as follows:

F (x) − xm = (F0, F1, · · · , Fk−1).

The parity bit ofFj, 0 ≤ j ≤ k − 1, is denoted asP (Fj).

One of the important issues in detecting errors in the outputof a finite field multiplier (or an

arbitrary circuit, in general) is parity prediction. The latter refers to the task of determining the

parity of the expected outputs by using the corresponding inputs as well as the functionality of

the circuit. As mentioned in Section 2, a polynomial basis multiplier consists of three modules:

1) α-Mul module 2) SM module, and 3) VA module. In the following, the parity prediction

method for each of these modules will be discussed.

A. Multiple Parity Prediction in α-Mul Module

In the following, the output parity of anα-Mul module is predicted.

Let A′ = αA, i.e.,
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A′ =
l−1∑

i=0

aiα
i+1 + αl

l−1∑

i=0

al+iα
i+1+

· · · + α(k−1)l

l−1∑

i=0

a(k−1)l+iα
i+1

=

(

0 +
l−1∑

i=1

ai−1α
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i

)

+

· · · + α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i

)

+ akl−1α
kl.

A′ must be reduced byF (α) = αm +
∑k−1

j=0 Fj(α) as follows:

A′ mod F (α) =
(

0 +
l−1∑

i=1

ai−1α
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i

)

+ · · · + α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i

)

+ am−1

(
k−1∑

j=0

Fj(α)

)

.

Now, we group the expression and obtain

A′ mod F (α) =
(

0 +
l−1∑

i=1

ai−1α
i + am−1

l−1∑

i=0

fiα
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i + am−1

l−1∑

i=0

fl+iα
i

)

+ · · · + α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i

+am−1

l−1∑

i=0

f(k−1)l+iα
i

)

.

Thus, thejth part of A′ for 0 ≤ j ≤ k − 1 can be derived as:

A′

j = αjl

(

ajl−1 +
l−1∑

i=1

ajl+i−1α
i + am−1

l−1∑

i=0

fjl+iα
i

)

(2)
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wherea−1 = 0. Fig. 2 shows a circuit diagram implementingA′

j. In practice, many coefficients

of F (x) are zero and hence the corresponding XOR gates in Fig. 2 are not needed. By cascading

k copies of the circuit shown in Fig. 2, anα-Mul module can be constructed as illustrated in

Fig. 3.

ajl+i−1

ajl

a(j+1)l−1

a(j+1)l−2

am−1

fjl+1

fjl+i

f(j+1)l−1

fjl

ajl−1

a′

jl

a′

jl+1

a′

jl+i

a′

(j+1)l−1

Fig. 2. Thejth part of theα-Mul module

Let ω be the Hamming weight ofF (x). The total number of two-input XOR gates required

in anα-Mul module isω− 2, since no XOR gate is needed for the first and the last coefficients

of F (x).

For parity prediction of thejth part of theα-Mul module, we have the following lemma where

A′ = αA andPFj
=
∑l−1

i=0 fjl+i.

Lemma 1: Let P (Aj) andP (A′

j) be the parities of the input and the expected output of the

jth part of theα-Mul module, respectively. Then,

P (A′

j) = ajl−1 + P (Aj) + a(j+1)l−1 + am−1PFj
.

Proof: Using (2) the proof is immediate.

Fig. 4 shows the parity prediction circuit of thejth part of theα-Mul module, whereP (x)

is predicted parity ofx. The parity of thejth part of F (x) is PFj
and is assumed to be known,

since it can be pre-computed. Thus, the corresponding AND gate is not really required. On the
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Fig. 3. α-Mul module

other hand,F (x) can be a trinomial or a pentanomial and usually it can be chosen so that the

parities of all parts become zero, i.e.,PFj
= 0 for 0 ≤ j ≤ k − 1. In this case, the value of

ak−1,l−1 is not important and one XOR gate is removed. In the worst casethe circuit of Fig. 4

can be implemented with 3 two-input XOR gates. The total number of two-input XOR gates for

the whole parity prediction circuit is3k.

PFj

am−1

a(j+1)l−1

ajl−1

P (Aj)
P (A′

j)

Fig. 4. Parity prediction circuit of thejth part of theα-Mul module

Hereafter, anα-Mul module together with its parity prediction circuit (PPC) is referred to

asα-Mul-P module. It should be mentioned that different partitioning of A andF can change

the parity prediction circuit of theα-Mul module. Appendix I presents a partitioning ofA and
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F that reduces the number of XOR gates of each parity prediction circuit by two, i.e., parity

prediction circuit can be constructed by only one XOR gate.

B. Parity Prediction in Scalar Multiplication and Vector Addition Modules

In this work, scalar multiplication refers to multiplication of an element ofGF (2) by an

element ofGF (2m) and vector addition refers to addition of two elements ofGF (2m). For

bi ∈ GF (2) andA ∈ GF (2m) = (a0, a1, · · · , am−1), scalar multiplication ofbi andA is bi.A =

(bia0, bia1, · · · , biam−1). Thus,

P (bi.A) = bia0 + bia1 + · · · + biam−1

= bi(a0 + a1 + · · · + am−1) = biP (A).
(3)

For A,B ∈ GF (2m), vector addition ofA andB is:

A + B =
m−1∑

i=0

aiα
i +

m−1∑

i=0

biα
i =

m−1∑

i=0

(ai + bi)α
i.

Thus,

P (A + B) =
m−1∑

i=0

(ai + bi) =
m−1∑

i=0

ai +
m−1∑

i=0

bi

= P (A) + P (B).

(4)

The circuit of the parity prediction, as defined in (3) and (4), are shown in Fig. 5 where they

needk two-input AND gates andk two-input XOR gates, respectively. These circuits for parity

bits are now included with the SM and the VA modules appropriately and the resulting new

modules are hereafter referred to as SM-P and VA-P.

C. Parity Checking Circuit

In order to detect errors in the multiple parity scheme, the predicted parity bits should be

compared with the corresponding actual parity bits. Actualparity bits are generated by parity

generating circuit. Fig. 6 shows the parity generator and the parity checker.

In Fig. 6, Z and Z̃ can be considered as the expected and the actual outputs of one of the

three modules discussed earlier.P (Z) and P (Z̃) are k-bit parities of Z and Z̃, respectively.

The result of bit by bit comparison ofP (Z) andP (Z̃) are ORed to signal any difference which

indicates an error. The parity generator is constructed by XOR trees which containl−1 two-input
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Fig. 6. Multiple-bit parity checker

XOR gates. Furthermore,k two-input XOR gates are required for comparison. Total numbers of

two-input XOR and OR gates required for a parity checker arem (= k(l − 1) + k) andk − 1,

respectively.

D. Polynomial Basis Multiplier with CED

To construct a bit-serial and a bit-parallel multiplier with concurrent error detection capability,

we will use PPC embedded modulesα-Mul-P, SM-P, and VA-P. Fig. 7 shows a bit-serial

multiplier with PPC.A andB are the inputs of the multiplier. RegisterD is initialized with A

and itsk-bit parity P (A). A parity checker can be at each of the three locations: L1, L2and

L3. In the next section, the frequency of check points will bediscussed.
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Fig. 7. Bit-serial polynomial basis multipliers with parity prediction circuit

Fig. 8 shows a bit-parallel multiplier with PPC. In the bit-parallel multiplier a parity checker

can be placed after each modules. Thus, there can be as many as3m − 2 error checkers for a

bit-parallel multiplier.

4. ERRORDETECTION CAPABILITY

In this section, first the error model is explained. Then the probability of error detection at

the output of the circuit using the multiple parity method isdetermined. Finally, the frequency

of the check points is discussed.

A. Error Modelling

The effect of a fault, such as a transient fault, in one location of the multiplier circuit is

modelled by XORing an error vector with the expected correct ”value” of that location. The

ith bit of the error vector of a location being one implies that the ith bit of the value of the

location has changed from 0 to 1 or vice versa due to a fault. Ifthe location is one of the

main components (α-Mul-P, SM-P or VA-P), without loss of generality we can assume that the

error vector should be XORed with the output of the component.It is worth mentioning that the

parity prediction circuits, parity generators and parity checkers should be fault free or at least

self-checking [8]. Since in practice the number of parity bits, k, is much less than the size of the
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Fig. 8. Bit-parallel polynomial basis multipliers with parity prediction circuit

input operands of the multiplier,m, the self-checking technique is feasible. In this work, these

circuits are assumed to be fault free or self-checking. It will be shown in Section 5 that with a

moderate number of parity bits the probability of error detection becomes quite close to unity.

As an example, form = 163, with 8 parity bits, the error detection probability is approximately

0.996.

Let e = (e0, e1, · · · , em+k−1) be the representation of an error of a location in the multiplier.

The first m bits of e correspond to errors in an element, sayA ∈ GF (2m) that is part of the

value of that location. The remainingk bits of e correspond to errors in thek-bit parity vector

P (A). Note that although we assume the parity prediction and the parity checking circuits to be

fault free or self-checking, an error may occur in the paritybits any where in the remainder of

the multiplier circuit such as the registers in the bit-serial implementation of the multiplier or

the wires through which the parity signals propagate. If oneassumes otherwise, i.e., the parity

bits/signals are error free, then all registers and wires through which these signals travel have to

be fault free, even though some of these registers and wires are not part of the parity prediction

and checking circuits.

Sincee is an (m + k)-tuple vector and the all-zeroe = (0, 0, · · · , 0) corresponds to no error,

the number of possible errors is2m+k − 1. We logically dividee into k parts each of length
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l + 1 = m
k

+ 1 bits where thejth part is

(ejl, ejl+1, · · · , ejl+l−1, em+j).

In the following, we investigate which kind of errors cannotbe detected by thek-bit parity

scheme.

B. Probability of Error Detection

Let eO be an odd parity error, i.e., the number of 1’s ineO is odd. Then the parity of at least

one of thek partitions is odd. Therefore,eO can be detected by the proposed CED method and

the probability of undetected error isPrU(eO) = 0.

Let eE be a nonzero even parity error. Sincek < m, there is at least one error,eE, such that all

of its partitions have even parity. Then the error cannot be detected. Accordingly,PrU(eE) ≥ 0.

Theorem 1: Let k be the number of parity bits of the scheme. Supposep is the probability

that ei = 1 for 0 ≤ i ≤ m + k − 1. The probability of error detection is given as follows:

PrD(e) = 1 −

[(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k

]

. (5)

Proof: PrD = 1−PrU wherePrU is the probability of undetected errors. As it is mentioned,

all nonzero errors with even parity in their partitions are undetectable. Thus, considering error

vectors are(m + k)-bit long and each of them hask partitions, first we need to compute the

probability of an(m
k

+ 1)-bit number with even parity.

Let Ei and Oi be the probabilities that ani-bit number has even parity and odd parity,

respectively. Thus,Ei = 1−Oi. Moreover, letq be the probability that a bit of the error vector

is zero, i.e.,q = 1 − p. We proceed in a recursive manner.

Ei+1 = qEi + pOi

= (1 − p)Ei + p(1 − Ei)

= (1 − 2p)Ei + p.
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Let 1 − 2p = A andp = B. We determineEi for somei to find a closed formula:

E0 = 1

E1 = q

E2 = Aq + B

E3 = A2q + AB + B

E4 = A3q + A2B + AB + B

...

Ei = Ai−1q + Ai−2B + · · · + AB + B

= Ai−1q + B

(
Ai−1 − 1

A − 1

)

.

Now, we write the expression only in terms ofp:

Ei = (1 − 2p)i−1(1 − p) + p

(
(1 − 2p)i−1 − 1

(1 − 2p) − 1

)

= (1 − 2p)i−1(1 − p) −
(1 − 2p)i−1 − 1

2

= (1 − 2p)i−1(1 − p − 1/2) + 1/2

=
(1 − 2p)i + 1

2
.

The probability that an
(

m
k

+ 1
)
-bit partition of the error vector has even parity isEi=m

k
+1.

Moreover, the partitions are independent. Thus, the probability of having a vector with even

parity in each of its partitions is
(
Ei=m

k
+1

)k
or

(
(1 − 2p)

m
k

+1 + 1

2

)k

.

However, the zero vector should be excluded and hence,

PrU =

(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k.

As a result,

PrD = 1 −

[(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k

]

.
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As mentioned,p is the probability of an error vector bit being one. A reduction of p increases

the probability of having an all-zero error vector. This reduction means a reduction in the

probability of (nonzero) errors, which in turn means a reduction in the probability of undetectable

errors. Thus, with a reduction inp, the probability of error detection increases.

As it can be determined from Equation (5), as the number of parity bits increases, the

probability of error detection quickly approaches unity sothat it reaches 0.996 for 8 parity

bits.

C. Frequency of the Check Points

Suppose that there are several multiple-bit errors in a location of the circuit of a PB multiplier.

For having an error detection capabilityPrD as given in Theorem 1, each of the above mentioned

locations in Section 3-D should have a parity checker. This causes a very high area overhead

especially for bit-parallel multipliers. The following lemma helps us reduce the number of

checkers considerably.

Lemma 2: Suppose only a maximum of one multiple-bit error occurs per round of a bit-serial

multiplier or per row of a bit-parallel multiplier (see Fig.7 and Fig. 8). Then any such error can

be detected with the probabilityPrD, given in Section 4-B, using a parity checker at L3 of the

bit-serial multiplier or a parity checker before the vertical input of every VA-P and one parity

checker after the final VA-P in the bit-parallel multiplier.

Proof: It should be verified if a detectable error vector can be changed to an undetectable

one after passing through a main component and before reaching one of the check points.

If a detectable error vector passes through anα-Mul-P module, it can be changed to an

undetectable one. However, the check points are located so that any error vector can reach one

of the check points without passing through anyα-Mul-P module. Therefore, one of the following

cases should be considered: 1) a detectable error vector passes through an SM-P module or 2)

a detectable error vector passes through a VA-P module or 3) both.

In the first case, ifbi = 0 then regardless of the other input value, the value of the output

vector and parity are zero. This is a correct result and thereis no error anymore. Ifbi = 1 then

the input and the output of the SM-P module are equal. Hence, the error vector passes SM-P

without any change.



17

In the second case, if only one of the two inputs of VA-P modulehas erroneous bits, the error

vector can pass the VA-P module without any change. Since a maximum of one multiple-bit

error is allowed in a round of a bit-serial multiplier or in a row of a bit-parallel multiplier, only

one of the inputs of VA-P can be erroneous.

In the third case, the error must occur before an SM-P module but after theα-Mul-P module

(in the corresponding row of a bit-parallel multiplier). Therefore, according to case 1 and case 2,

it passes SM-P and VA-P modules and reaches the parity checker.

5. RESULTS

Important performance measures for an error detection scheme include error detection ca-

pability, area and time overheads. In this section the results of our studies on these measures

are presented. The results can guide the choice of a proper number of parity bits for design

requirements.

A. Simulation-Based Fault Injection

We have injected stuck-at faults to aGF (2163) PB multiplier with k = 8 to evaluate the error

detection capability of the proposed scheme. The fault injection was performed in a C model

of the multiplier. Furthermore, the fault injection was at the gate-level, i.e., stuck-at faults (both

stuck-at 1 and stuck-at 0) were injected at the input and output pins of the gates of the multiplier.

In the proposed scheme, a checker is placed at the end of a round of a bit-serial multiplier (or

at the end of the row of a bit-parallel one). Moreover, the scheme can detect an error if the

error can be detected in one round of a bit-serial multiplier(or a row of a bit-parallel one).

Fault injection in a complete multiplier ofGF (2163) is extremely time consuming. In order to

reduce the time for completing experiments, faults were injected in only one round of a bit-serial

multiplier (and a row of a bit-parallel one). In the following, two phases of our fault injections

are presented.

1) Single-Bit Stuck-at Faults: In this experiment, single-bit stuck-at faults were injected at

the input or output pins of gates. As shown in Figure 9, to inject a fault at a point, a multiplexer

is placed at that point, where the control signal of the multiplexer selects between the original

value of that point and the fault. Also the fault can be chosento be stuck-at 1 or stuck-at 0.
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original pin value

stuck-at 1/0 fault

fault injection select

faulty/not faulty

pin value

Fig. 9. Fault injection at a gate pin

In a GF (2m) PB multiplier, there areω − 2 two-input XOR gates,m two-input AND gates,

and m two-input XOR gates in theα-Mul, SM and VA modules, respectively, whereω is the

Hamming weight of the field defining polynomial. Single-bit stuck-at faults are injected at all

input and output pins except the output pins of AND gates of SMmodule because they are direct

inputs of the VA module’s XOR gates. Therefore, the number oflocations for single-bit stuck-at

fault injections at a round of a bit-serial (or a row of a bit-parallel) multiplier is3(ω− 2) + 5m.

Additionally, for each input or output gate pin, two single-bit faults can be injected. Hence, the

number of single-bit stuck-at faults that should be injected at a round of a bit-serial (or a row

of a bit-parallel) multiplier is6(ω − 2) + 10m.

In this experiment, we simulated the multiplier for one million random inputs and for every

input, all the above mentioned single-bit stuck-at faults were injected. As shown in Table I all

faults were detected.

Type of stuck-at faults No. of stuck-at faults1 No. of random inputs Error detection capability

Single-bit 1648 1000000 100%

Multiple-bit 500 1000000 99.61%

1in one round of a bit-serial (or one row of a bit-parallel) multiplier

TABLE I

ERROR DETECTION CAPABILITY OF THE SCHEME FOR AGF (2163) PB MULTIPLIER AGAINST STUCK-AT FAULTS

2) Multiple-Bit Stuck-at Faults: For multiple-bit stuck-at fault injection, the location ofthe

above mentioned single-bit faults were randomly selected and a stuck-at 0 or stuck-at 1 was
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randomly injected there. Furthermore, simulations were performed for one million random

inputs and for every input, 500 random multiple-bit stuck-at faults were injected. It is worth

mentioning that for aGF (2163) multiplier experiment, there are 824 single-bit stuck-at fault

locations. Therefore, the number of accesses to those locations, whether or not any fault is

injected, is(1000000 ∗ 500 ∗ 824 =) 412 billions, implying that the experiment is very time

consuming. As shown in Table I, the error detection capability of the scheme for multiple-bit

stuck-at fault injections is99.61%.

B. Time and Area Overheads

We have described the multiple-bit parity scheme by VHDL to obtain a realistic approximation

of area and time overheads. In order to reduce the number of XOR gates in the multiplier, field

defining polynomialF (x) can be chosen to be a trinomial or a pentanomial such that the parity

of F (x) in each partition is zero, i.e.,PFj
= 0. In Section I-B, the complexity of the parity

prediction circuit for NIST recommended irreducible polynomials for ECDSA is discussed.

We used Modelsim(TM) to simulate the design for checking its correct functionality. We

implemented the multiple parity scheme on a Xilinx Spartan 3(XC3S5000) FPGA using Xilinx

ISE 7.1i.

1) Bit-Serial PB Multiplication: The circuit of a complete bit-serial multiplier with CED is

shown in Fig. 10. The circuit consists of two major blocks: 1)PB multiplier with PPC and 2)

checker. The parity generator of the checker is used at the initialization phase to generate the

parity of inputA. Note that no extra clock cycle is needed for the circuit shown in Fig. 10 when

compared to a bit-serial PB multiplier without CED.

From the first experiment, we obtained the area overhead percentage of the scheme for

multipliers of different field sizes. The number of parity bits for this experiment was chosen to

be 8 bits since the probability of error detection was withinacceptable range for our experiment

(≈ 0.996). Furthermore, the defining polynomial of the fields used in the experiment included

the NIST recommended irreducible polynomials for ECDSA. Fig. 11 shows the result of the

experiment.

As shown in the figure, the area overhead for a fixed number of parity bits tends to decrease

as the size of the field increases. The area overhead does not decrease in a strictly monotonic

way because the FPGA compiler used in the experiment optimizes the multiplier for different
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Fig. 10. A complete bit-serial multiplier with CED

field sizes differently. The worst area overhead percentageamong the fields implemented is for

GF (2201) and is still reasonably low, i.e.,< 12%.

In the second experiment, we implemented the scheme form = 163 andm = 283 using the

NIST recommended field defining polynomials for ECDSAF (x) = x163 + x7 + x6 + x3 + 1 and

F (x) = x283 + x12 + x7 + x5 + 1, respectively. Both of these polynomials are quite suitablefor

implementation because the parity prediction circuits of the scheme would be in the simplest

form since, in ak-bit parity scheme, we have:

{P (Fi) = 0 | 0 ≤ i ≤ k − 1 and2 ≤ k ≤ 20} .

As shown in Fig. 12, area overhead cost increases as the number of parity bits increases. For

all points in each graph depicted in the figure, a line is fittedas follows:

for GF (2163) : overhead (%)= 0.50 × (# of parity bits)+ 5.94,

for GF (2283) : overhead (%)= 0.30 × (# of parity bits)+ 6.44.
(6)

As expected according to the first experiment, the slope of the fitted line forGF (2163) is more

than that forGF (2283), i.e., the area overhead increase rate vs. parity-bit numbers in GF (2283)
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Fig. 11. Area (i.e., slice) overhead for bit-serial PB multipliers for different size of fields

is lower. Furthermore, based on the experimental results, area overhead tends to increase linearly

except for very small numbers of parity bits.

Note that Equation (6) implies that even if one parity is usedfor each information bit, circuit

overhead is not expected to be more than 100%, which is the overhead for the conventional dual

modular redundant (DMR) scheme.

In the second experiment, we also investigated the time overhead of theGF (2163) and

GF (2283) PB multipliers for different numbers of parity bits. Since there is no extra clock

cycle, the time overhead is equal to the clock period overhead. We obtain the clock periods

from the post place and route static timing report of Xilinx ISE. Except for four cases, there

was no clock period overhead and in turn no time overhead for the bit-serial implementation

of the multipliers. These four cases belong to theGF (2163) PB multiplier shown in Table II.

According to the table, the time overheads even for these cases are small.

2) Bit-Parallel PB Multiplication: A circuit diagram of a complete bit-parallel polynomial

basis multiplier with CED is depicted in Fig. 13. The parity checker is very similar to that

presented in Fig. 10. As shown in Fig. 13, once the inputsA and B are updated, the results

of the multiplication and error detection are ready after certain amount of delay due to the

propagation of various signals through the circuit where noclocking is used.
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Fig. 12. Area overhead vs. parity-bit number

No. of parity bits 1 4 11 13

Time overhead (%) 12.27 4.39 15.26 4.79

TABLE II

NON ZERO TIME OVERHEADS FOR BIT-SERIAL IMPLEMENTATION WHICH BELONG TO THEGF (2163) PB MULTIPLIER

For bit-parallel multiplier, the first experiment was to measure the area overhead percentage

of the eight parity-bit scheme for multipliers of differentfield sizes. The results show that the

area overhead decreases as the field size increases (Fig. 14).

There is a major difference between the structure of bit-serial and bit-parallel PB multipliers

and this affects the area overhead considerably. A bit-serial PB multiplier contains simple and

shift registers, but a bit-parallel multiplier does not. Basically, registers are relatively area

consuming components in FPGAs. Therefore, assuming that one wants to implement a PB

multiplier for a field of sizem, the area (in terms of slices) needed for a bit-parallel PB

multiplier without CED is significantly smaller thanm times the area needed for a bit-serial

multiplier. Accordingly, CED overhead on a bit-parallel PB multiplier is much higher than that

on a bit-serial one. This fact can be observed easily in the experiments reported in this section.



23

PB mul with CED Checker

VA−P

VA−P

VA−P

SM−P

SM−P

SM−P

SM−P

error

generator

parity

parity

checker

parity

checker

parity

checker

parity

checker

A

α-Mul-P

α-Mul-P

α-Mul-P

α-Mul-P

1

b1

b2

bm−1

b0
P (A)

C

k

m

m + k

m + k

m + k m + k

m + k

m + k

m + k

1

1

1

m + k

Fig. 13. A complete bit-parallel multiplier with CED

The second experiment was to investigate the area and time overheads’ increase rates vs.

the number of parity bits for the fieldGF (2163) (see Fig. 15). The field defining polynomial is

F (x) = x163+x7+x6+x3+1. According to Table III, the bit-parallel implementation is very area

consuming; therefore, similar experiments for the fieldGF (2283) are extremely time consuming

and clearly that design does not fit into our current FPGA. However, the area overhead results

for higher values ofm are expected to be better than the result of this experiment as one can

infer from Fig. 14, where the number of parity bits is fixed to eight.

Fig. 15 illustrates that as the number of parity bits increases, the area overhead for a bit-

parallel implementation increases at a greater rate compared to the bit-serial implementation.

However, the area overhead may be still acceptable for some applications. This is because for

obtaining a sufficiently high probability of error detection (say≈ 0.996), one needs only about

8 parity bits in the proposed scheme and it results in about50% area overhead, which is better

than100% overhead of the DMR scheme.

In the bit-parallel implementation, the time overhead is the delay of the critical path, i.e., the
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Fig. 14. Area (i.e., slice) overhead for bit-parallel PB multipliers for different size of fields

No. of parity bits Without CED 4 8 12 16 20

Number of required Slices 13541 19121 20049 21616 22864 24390

FPGA area consumption (%)1 40.69 57.45 60.24 64.95 68.70 73.29

1The total number of slices in a Xilinx Spartan 3 (XC3S5000) FPGA is 33280.

TABLE III

FPGA AREA CONSUMPTION FOR A BIT-PARALLEL GF (2163) PB MULTIPLIER

maximum propagation delay from one of the input pins to one ofthe output pins. We obtain

the delay of all input pins to output pins from the post place and route static timing report of

Xilinx ISE. The time overhead for the bit-parallel implementation of aGF (2163) PB multiplier

vs. number of parity bits is given in Fig 16, which shows that the time overhead is generally

less than 25% when more than a couple of parity bits are used.

6. CONCLUSIONS

In this paper, a multiple parity error detection scheme is presented for concurrent detection

of errors in polynomial basis multipliers. In this scheme, the probability of error detection for
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random errors is more than 75% and it quickly approaches unity for approximately 8 parity

bits. The overhead of our implementation tends to increase linearly as the number of parity bits

increases. Results show that the area overhead cost of the bit-serial implementation is lower than

that for the bit-parallel one. Both implementations have lower area overheads than the traditional

dual modular redundant scheme for a sufficient number of parity bits. Additionally, the average

time overhead due to the use of the scheme in bit-parallel implementations is around25%, while

for bit-serial implementations time overheads have been observed to be small to negligible. It is

hoped that using the results presented in this paper, one will be able to choose an appropriate

number of parity bits for specific applications.

APPENDIX I

ALTERNATIVE PARTITIONING

In this section another partitioning ofA andF is presented. The new partitioning reduces the

overhead of the parity prediction circuit of theα-Mul module.

As mentionedA =
∑m−1

i=0 aiα
i is partitioned intok parts. As before, we assume thatm is



26

0 5 10 15 20

0

20

40

60

80

100

T
im

e
 O

v
e
rh

e
a
d
 (

%
)

Number of Parity Bits

Fig. 16. Time overhead vs. parity-bit number for the fieldGF (2163)

divisible by k and l = m/k. The alternative (vertical) partitioning is illustrated below:

a0 , a1 , a2 , · · · , ak−1 ,

ak , ak+1 , ak+2 , · · · , a2k−1 ,
... , ,

.. . , ,
... ,

a(l−1)k , a(l−1)k+1 , a(l−1)k+2 , · · · , alk−1

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

A0 A1 A2 · · · Ak−1

For 0 ≤ j ≤ k − 1, the jth partition is:

Aj =
l−1∑

i=0

aik+jα
ik+j = (aj, ak+j, a2k+j, · · · , a(l−1)k+j).
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A. Structure of α-Mul Module

A′ =αA mod F (α)

=
k−1∑

j=0

l−1∑

i=0

aik+jα
ik+j+1 mod F (α)

=
k∑

j=1

l−1∑

i=0

aik+j−1α
ik+j mod F (α)

=
k−1∑

j=1

l−1∑

i=0

aik+j−1α
ik+j +

l−2∑

i=0

ak(i+1)−1α
k(i+1)

+ (am−1α
m mod F (α))

=
k−1∑

j=1

l−1∑

i=0

aik+j−1α
ik+j +

l−1∑

i=1

aki−1α
ki + am−1

m−1∑

i=0

fiα
i

=
k−1∑

j=1

l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j

+
l−1∑

i=0

(aki−1 + am−1fki) αki

=
k−1∑

j=0

l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j

(7)

wherea−1 = 0.

Fig. 17 shows thejth part of theα-Mul module. The completeα-Mul module is shown in

Fig. 18. The number of gates is exactly the same as for the previous α-Mul module mentioned

in Section 3-A, as only the position of the coordinates is changed.

The following lemma discusses parity prediction in thejth part of theα-Mul module.

Lemma 3: Let P (Aj) andP (A′

j) be the input and the expected output parities of thejth part

of the α-Mul module, respectively andPFj
=
∑l−1

i=0 fik+j. Then,

P (A′

j) =







P (Aj−1) + am−1PFj
if 1 ≤ j ≤ k − 1,

P (Ak−1) + am−1(PF0 + 1) if j = 0.
Proof: According to (7), we have:

A′

j =
l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j.
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Therefore, for1 ≤ j ≤ k − 1, we have:

P (A′

j) = P

(
l−1∑

i=0

aik+j−1α
ik+j

)

+ P

(
l−1∑

i=0

am−1fik+jα
ik+j

)

= P (Aj−1) + am−1PFj
.

For j = 0, we have:

P (A′

0) = P

(
l−1∑

i=0

aik−1α
ik

)

+ P

(
l−1∑

i=0

am−1fikα
ik

)

= (P (Ak−1) + am−1) + am−1PF0

= P (Ak−1) + am−1(PF0 + 1).

PFj
’s can be pre-computed. Therefore, the maximum number of gates required for the parity

prediction circuit of each part of theα-Mul module is one XOR gate. No XOR gate is needed

for the parity prediction circuit of a part of theα-Mul module whenPF0 = 1 or PFj
= 0 for

0 < j < k. Furthermore, the probability of error detection can be computed by Theorem 1, since

the conditions are the same.
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Irreducible polynomials No. of nonzero-parity partitions No. of 2-input XOR gates for PPC ofα-Mul-P

Horizontal partitioning Vertical partitioning Horizontal partitioning Vertical partitioning

F (x) = x163 + x7 + x6 + x3 + 1 0 4 15 4

F (x) = x233 + x74 + 1 2 2 17 2

F (x) = x283 + x12 + x7 + x5 + 1 0 4 15 4

F (x) = x409 + x87 + 1 2 2 17 2

F (x) = x571 + x10 + x5 + x2 + 1 0 2 15 2

TABLE IV

XOR COUNTS FORPPCOF AN α-MUL MODULE FOR NIST RECOMMENDED IRREDUCIBLE POLYNOMIALS FORECDSA

APPLICATION

B. Comparison of α-Mul-P Modules

According to Section 5-A, the scheme with eight partitions results in a fairly high probability

of error detection for values ofm that are of interest for elliptic curve cryptosystems. Therefore,

we have divided each of corresponding NIST recommended irreducible polynomials into eight

partitions using our horizontal and vertical partitioningmethods. Table IV gives the number of

partitions with nonzero parity and the number of required two-input XOR gates for PPC of the
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α-Mul module along with the NIST recommended irreducible polynomials.

As it can be seen in Table IV, theα-Mul-P module is relatively area efficient in the vertical

paritioning than the horizontal partitioning. However, the α-Mul-P module is much less resource

consuming than any of the SM-P and VA-P modules. Therefore, the overheads resulting from the

vertical partitioning are expected to be very similar to those presented in Section 5 for horizontal

partitioning.
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