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Abstract

Division and bit-serial multiplication in finite fields are considered. Using coordinates of
the supporting elements it is shown that when field elements are represented by polynomials,
division over GF(¢™) can be performed by solving a system of m linear equations over GF(q).
For a canonical basis representation, a relationship between the division and the discrete time
Wiener-Hopf equation of degree m over GF(q) is derived. This relationship leads to a bit-serial
multiplication scheme which can be easily realized for all irreducible polynomials.

1 Introduction

Operations in finite fields GF(2™) are quite distinct from binary arithmetic. The elements of
GF(2™) can be represented by m binary digits. For such representation addition and subtraction
operations are simple, but division and multiplication operations are not. In recent years, the real-
ization of multiplication operation in finite fields has received wide attention and several approaches
have been presented. The use of the dual basis and normal basis for representing the elements of
finite fields has lead to interesting realizations of the multiplication operation.

Berlekamp [1] has developed a bit-serial multiplication algorithm over GF(2™) for the encoding
of Reed-Solomon codes. A block diagram for computing ¢ = ab over GF(2™) using Berlekamp’s bit-
serial multiplication scheme is shown in Fig. 1. When both the multiplicand and the multiplier are
represented by the primal basis (which is expected for most practical cases), the above multiplica-
tion scheme requires two basis transformations in addition to Berlekamp’s bit-serial multiplication
circuit. The latter requires only 2m shift registers, m AND gates and m + Wr(g) — 3 XOR gates
where Wiy (g) denotes Hamming weight of the irreducible polynomial g(z) chosen for that particular
finite field GF(2™). However, the circuits for the basis transformations are not always simple. A
lucid explanation of Berlekamp’s bit-serial multiplication scheme can be found in McEliece [2].

Berlekamp’s algorithm is very efficient in the sense that it requires minimum circuitry. It has
the additional advantage that multiplication by a fixed constant can be hard-wared. However, the
algorithm to multiply two elements of GF(2™) requires to represent one factor by a canonical basis
and the other factor by the corresponding dual basis and the product is obtained in the dual basis.
The involvement of two different bases is not advantageous specially when the multiplier is to be
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Figure 1: Involvement of dual basis in Berlekamp’s bit-serial multiplication scheme.

used as a part of a larger device; because it would be necessary in general to enhance circuitry to
change bases [2].

There are some cases for which the basis transformation is very easily accomplished. In fact
it can be done just by a permutation of the coordinates. Such easily accomplished basis change
depends on the irreducible polynomial chosen. Morii, Kasahara and Whiting have shown in [3] that
it is not necessary to use the dual basis for the realization of an efficient bit-serial multiplication
when the irreducible polynomial is a trinomial. They have also shown that when the irreducible
polynomial is of the form of g(z) = 2™ + 2**2 4 k1 £ 2F 1 1.0 < k < m — 2, only a simple
transformation of the bases is necessary to have an efficient bit-serial multiplication circuit.

Recently Wang and Blake [6] have proved that the element transformation into the dual basis
can be performed by a simple permutation of the coefficients if and only if the irreducible polyno-
mial is a trinomial. They have developed a bit-serial multiplication scheme which can be realized
for all irreducible polynomials over GF(2™). However, the involvement of some form of basis trans-
formation circuits both at the input and at the output is still there. As a result, it is desirable to
develop an algorithm where the number of gates and registers required for the basis transformation
circuit can be reduced for the realization of the bit-serial multiplication in finite fields.

In this paper, a new scheme is developed extending the works of [1], [3] and [6] to perform
bit-serial multiplication over GF(¢™). The scheme uses the coefficients of the so-called supporting
elements, viz., a®, al, -+ @?~2 where {a®, a!, .-+, ™71} is the basis for the finite field. It is
also shown that when the field elements are represented as polynomials using any suitable basis, the
division over GF(¢™) can be performed by solving a system of m linear equations of general form
over GF(¢); and for the canonical basis representation, the division can be performed by solving a
discrete time Wiener-Hopf equations (DTWHE) over GF(q) of 2m — 1 constants.

The organization of this paper is as follows. Section 2 provides the preliminaries and the
definition of the supporting elements. The algorithm to perform division over finite fields appears
in Section 3. The relationship between the DTWHE and division in finite fields is derived in Section
4. Using this relationship a realization of the bit-serial multiplication scheme is developed in Section
5. Finally conclusions are drawn in Section 6.



2 Preliminaries

GF(¢™) is an extension field of GF(q) where ¢ is a prime and m is a positive integer. The extension
field has ¢™ elements. Let

9(2) =" gi2'|9; € GF(q)

=0

be an irreducible monic polynomial of degree m; ¢(z) has a root a in GF(¢™). Then every element
of GF(¢™) can be represented as a polynomial of powers of a over GF(q) i.e., GF(¢™) = {aga® +
aya® 4 aga®? - a,_10Fm=1]a; € GF(q) for 0 < i < m — 1} where {a*o, o1 ... afm-1}is
the basis of GF(¢™). We denote the row vector a as
a= [aO7 ay, - '7am—1] .
The set H is defined in this paper as
H = {a**tk} 4ij=0,1, -, m—1. (1)

The elements of the set H are hereafter referred to as the supporting elements. The coordinates
of these supporting elements are used in our analyses. To distinguish these coordinates we denote
them by adding superscripts as follows.

o = Z pgn]ak". (2)

Thus pgn] is the i-th coordinate of the supporting element a™. We denote pEkj] as a column vector
whose components are the ith coordinates of the supporting elements a*otki akitk; ... qkm-1+kj,
ie.,
k; ko+k;] [k +k; K1 k5117
I J]} . (3)

3 Division Algorithm

The conventional way to perform division ¢(«)/a(e) in a finite field is to first compute the mul-
tiplicative inverse of a(a) and then multiply the inverse with ¢(a). The following theorem states
that the division in the finite field can be computed in an alternate way.

Theorem 1: Let g(z) be an irreducible polynomial over GF(¢) and a(a), b(e) and c(a) be
any three elements in GF(¢™). Let the elements be represented by a suitable basis of the form
{ako, aF1 ... akm-1} Then the division b(a) = ¢(a)/a(a) (mod g(a)), a(a) # 0, in the finite



field GF(¢™) can be performed by solving the following equation over GF(q)

[km—l]

[km—2]

(ko]

a Py a Py a Py bm—l Cm—1
a- p1[fzﬂ—1§1] a- ngﬂ_zf] a - PEiO_]z bm—z Cm—2
KR pgkm_l] a- pg“m—ﬂ ... oa- pgﬁo] | L bo ] | Co |

where “x -y” denotes the inner product of x and y.
Proof: The polynomial representations of a(«), b(«) and c(«) are

m—1
a(a) = Z ao®|a; € GF(q),
=0
m—1
bla) = Z bjoekj|bj € GF(q)
7=0
and
m—1
cla) = c;a¥|e; € GF(q).
=0
Then
c(@) = a(a)b(a) (mod g(a))
m—1 m—1
= aza Z bjafi (mod g(a))
= 7=0
m—1 m—1
= Z b; Z ae®tri (mod g(a)).
7=0 =0

Using (2) we can write



Equating the coefficients of o on both sides of the above equation we obtain

m—1 /m—1
c; = Z (Z alpgkz-}-kj]) bj t=m-—-1,m-2, ---, 0 (5)
7=0 =0

which represents the system of m linear equations in by, b1, ---, bn—1 of (4). Q.E.D.

From (4) we see that when the coordinates of a(«), ¢(a) and the supporting elements are known,
b(a) = ¢(a)/a(e) (mod g(e)) can be computed by solving the system of m linear equations in m
unknowns over GF(g). For the convenience of representation, we denote (4) as Ub = ¢ where

-1

_ Cym—1 __ [km—l—j] m _ m—1 _ qm—1 :

U = [uw]i,jzo = {a-pm_l_i g b = [by_1-i]iy and ¢ = [¢pm_1—4]iny . We summarize the
=

steps involved in the division algorithm as follows.

Algorithm 1:
Step 1) Determine the coordinates of the supporting elements.
Step 2) Construct Eq. (4).
Step 3) Solve Eq. (4) for b to get the required result.

The essence of computing division over GF(¢™) using the above algorithm is the inversion of
U over GF(q). The computational complexity involved with the inversion of an m x m matrix of
general form like U is O(m?). In the next section, we derive another division algorithm where U is
transformed to a Toeplitz matrix and the later can be inverted by efficient algorithms, for example,
[5] and [7]. We now provide an example to compute division using Algorithm 1.

Ezample 1: Let the irreducible polynomial chosen for the field GF(2%) be g(z) = 1+ 2% 4 23.
It is required to divide a* by a? over GF(2?). The solution would be trivial if both the divisor
and the dividend are given as powers of a in which case the division can be performed by simply
subtracting the power of the divisor from that of the dividend. Unfortunately field elements are
usually represented as polynomials of the powers of o using suitable bases. Here we consider the
canonical and normal bases representations. For the canonical basis representation

2
a4EZciai = 14+a+a? (6)



and for the normal basis representation

042

2 .
Z aot = o
=0
We now follow Algorithm 1 step by step to compute the division.

Case I Canonical basis representation.

Step 1) Here

H=/1{1, a, o? o* o}

and the coordinates of the supporting elements are obtained from the following.

o® = pb’+ %+ pile?

o' = pil+piatphle?

o = pbl+pa+pile?

o = 1+ =pf’ +pila+ pila?

ot = 1+ata?=p +pia +pila?
Thus,

P =g =y =i = pf) =l =i =0

and

R T Y

Step 2) For the canonical basis representation k; = i. So with m = 3, U is given by as follows.



Substituting the values of the coordinates of the supporting elements from Step 1 we obtain

ag+ar+ay ap+ay ag
U= a9 ag ay
ar + ag as ag

Now using the coordinates of the elements ¢(a) and a(«) from (6) and (7), we can write in
the form of Eq. (4) as follows.

1 11 by 1
1 00 b | =11
1 10 bo 1

Step 3) Solving the system of three linear equations in three unknowns we obtain by = 0, by =
0 and by = 1; 50 b(a) = a?.

Case II- Normal basis representation.

Step 1) In this case

H={a, o% o3 o' o°, o}

and

ol = pllatplla? 4 pilat

o = plla+tplla? 4+ pilat

o = atal :pg’]a—l—p[f’]ozz —}—p[23]044

ot = pllatplla? 4+ phlat

o = a?+at= pg5]04—|-p[15]042 +p[25]a4

o = a+a :pEG]Oz-I-p[lG]OzZ +p[26]a4
which give

A= oY = o1 — 2 9 8 =0
and

-1



Step 2) For the normal basis representation in GF(23), k; = 2; so we can write

For the finite field being considered here, a® = a. Using this relationship and substituting
the values of the coordinates of the supporting elements we have

ao ag+ar ay+ ag
U= ap + ay as ag + ag . (10)
a1+ ay ag+ ag ay

Now using Eqs. (4) and (10) and substituting the coordinates of the elements ¢(a) and a()
from (8) and (9) we have the following system of linear equations

0 11 by 1
1 00 by | =10
1 01 bo 0

Step 3) The solution of these equations gives by = 0, by = 1 and by = 0 for the normal basis

representation of b(); consequently b(a) = a?.

4 DTWHE and Division in Finite Fields

Definition [5]: The discrete time Wiener-Hopf equation (DTWHE) is defined as a system of linear

inhomogeneous m equations with m unknowns z; (i = 0, 1, ---, m—1) € GF(q), 2m — 1
constants coefficients y; (: =0, 1, ---, 2m —2) € GF(¢) that are not all zero, and m constants
z (1=0,1, ---, m—1) € GF(q) such that
Ym-1 Ym-2 - N Yo Zo 20
Ym Ym—1 Y2 n T1 — a1 (11)
Yom—2 Y2m-3 ' Ym Ym-1 Tm—1 Zm—-1

Eq. (11) is referred as the DTWHE of degree m over GF(q).



In our forthcoming analyses, the elements of GF(¢™) are represented by the canonical basis
{1, a, @* -+, o™ 1}, In this section we show that if the elements of GF(¢™) are represented
by the canonical basis, then a division over GF(¢™) can be performed by solving a DTWHE of
degree m over GF(¢). The motivation behind obtaining a system of linear equations of the form of
DTWHE is due to the lower computational complexity involved in solving a DTWHE [5] to perform
division and its possible application for the development of a bit-serial multiplication scheme.

Lemma 1: For the canonical basis representation of the elements of GF(¢™) i.e k= Z pl
k .
[k+1] —PEn]_L(Jj modq J=0
p; = (12)

k k .
P =™ g modg 1<j<m-1

m—1 .
where g(z) = Y. ¢iz' + 2™ is the irreducible monic polynomial over GF(q).
=0
Proof:
m—1

(K] it1
E p; .
=0

Substituting j =+ 1,

Zp] 104] Ep] la]+p£rz] 10(

7=1

m—1
Since g(a) =0, ™ = — E g;o’, thus we have
=0

m—1 m— m—1

ZpkH 4 ij 10‘]_pm 129104]

The coefficients of o’ (0 < j < m — 1) on both sides yield the proof.
Using (3), we can also write (12) in vector notation as follows.

[k+1] _pgj]_lgj medg j=0
p; = (13)

k k .
PE’—]I - PLZ]_lgj modg 1<j<m-1



Before presenting Theorem 2 we see that for the canonical basis representation of the elements
of GF(¢™), Eq. (4) can be written as

[m—1] [m—-2] o 1 r 8 r 8

a Py a Py oartPyg bm—l Cm—1
a- pgln_—l] a- pgln_—;] e a. PES]_Z by s €2
= (14)
| a pgm—l] a- pgm—Z] . a- pEO] I bO ] o |

1 [m—1-5]]™~1 , :
= [a “Pn_1-i |.. . Let r; denote the ¢th row of the matrix U.

e
i,j=0 .

over GF(q) with U = [u, ;]
We now present the following theorem.

Theorem 2: Let r: denote the ith row of the new matrix, say U’, obtained after the elementary
row operations of

r, = r;— ng_kgm—k (mod ¢) (i=1,2, -+, m—1). (15)
k=1

The above row operations transform (14) to the DTWHE of

Sm—-1  Sm-2 " S1 50 b1 Wo
Sm Sm—1 82 S1 bm—2 — w1 (16)
So9m—2 S2m-3 " Sm  Sm-1 bO Wm—1
over GF(¢) where
sk = a-pmy (modq) (k=0,1, -, 2m—2) (17)
and
Cm—1 ife=0
= Cm—1—¢ — E Wi—19m—1 (ITlOd Q) if i = 17 27 Tty M— 1 (18)
=1

A proof of the theorem appears in Appendix A. Below is an example to demonstrate the
elementary row operations of (15) giving a DTWHE.

10



Ezample 2: Let the irreducible polynomial chosen for the field GF(3?) be g(z) = 2+ z + 22.
Following the first two steps of Algorithm 1, as we did in Ezample 1, we obtain

ag + 2a1  ay by | _ | a
a1 ag bo N co |

Then applying the elementary row operation (15) we have

ag + 2ay a1 by | c1
—ag —ay  ap+ 2a; bo | | co—a

which is a DTWHE over GF(3) of degree 2.

Theorem 2 has actually established a relationship between the DTWHE and division in finite
fields. If the elements of GF(¢™) are represented by the canonical basis, then a division over
GF(q™) can be performed by simply solving the DTWHE (16) over GF(¢). We summarize the
division algorithm as follows.

Algorithm 2:
Step 1) Determine the coordinates of the supporting elements.
Step 2) Construct the DTWHE (16).
Step 3) Solve the DTWHE.

Like Algorithm 1in Section 3, the essence of computing division over GF(¢™) by using Algorithm
2 is the inversion of an m X m matrix. However, in Algorithm 2, the matrix is a Toeplitz matrix
and the computational complexity for its inversion is O (m log? m) [5].

Algorithm 2 is similar to the approach of [3] in the sense that when the field elements are
represented by the canonical basis, both of them compute division by solving DTWHESs of degree
m. The advantage of Algorithm 2 is that it requires, for the construction of the DTWHE, the
determination of the coordinates of only 2m — 1 supporting elements, whereas the approach of [3]
requires the determination of Tr(Ba') (i = 0, 1, ---, 3m — 3), where 3 € GF(¢™). Moreover,
the relationship between the DTWHE and division in finite field as given in Eq. (16) leads to an
attractive bit-serial multiplication scheme. This is discussed in the following section.

5 Bit-Serial Multiplication

If the coordinates of a(a) and b(a) are known, Eq. (16) can be used to obtain a bit-serial mul-
tiplication circuit. The conceptual diagram for a bit-serial multiplier using Eq. (16) is shown in

Fig. 2. The inputs a¢m—1, @m—2, -+, ag are used to generate sg, S1, -+, Som_2 which are se-
quentially shifted in to the registers Ry, Ry, ---, R;—1. At each clock pulse the contents of these
registers are multiplied by bg, b1, ---, b,_1 respectively. This is equivalent to multiply one row
vector of the square matrix of (16) by the column vector [bg, by, ---, bm_l]T yielding the elements
of the vector [wg, wy, -, 'wm_l]T. The latter is then transformed to get the required results
Cm—1y Cm—2, ***, Co.

11
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Figure 2: Conceptual diagram for bit-serial multiplication.

We now discuss shift register configurations to generate the constants sg, $1, -+, Som_2 and
to transform w to c.

5.1 LFSR Configuration for {sqo, si, -+, Som_2}

Since ¢(z) is an irreducible monic polynomial over GF(¢) and o € GF(¢™) satisfies g(a) = 0, we
have

m—1

a™ = — E g;a’.
=0

Again o™ is an element of the set H and we can write from Eq. (2)

m—1
=S g
=0
Thus
pgm]:_gi 2207 ]-7 27"'7m_]—'

Fig. 3 is a well known configuration for a-multiplication over GF(¢™). In Fig. 3 all the reg-
isters and the connecting lines are assumed to function under g-valued logic. If the coordinates

m—1 .
Tg, T1, **+, Tm—1 Of the element z(a) = Y. z;a" are stored in the registers By, By, -+, Bn_1
=0
respectively, then after one clock pulse the registers contain the coordinates of the product az(a).
Thus if the registers initially contain the coordinates of the supporting element o™~!, then the
contents of the last register B,,_; with successive clock pulses (up to m — 1 pulses) are expressed

as follows:

12



Bi-1 B, B,
T Y
CT’— Gs™ (T)_ g, CT’—gl -G

g-valued « [

shift register
Modulo-q -«
addition 4-?
Modulo-q
multiplication O g
by -g '

Figure 3: LFSR configuration for multiplication by «.

[hbt]
: : 1 for ;=0
m—1+3] _ 5. _ j—1 .
mo1 =4 - ;)gnl_j+ip£::fll+l] (mod q) forj=1,2 -+, m—1 (19)
Corollary 1:
l
St = Y amoi—pidi (1=0,1, -+, m—1). (20)
=0

Eq. (19) in conjunction with Eqgs. (12) and (20) is used to derive the following recursive relationship,
presented as a corollary, which results in a LFSR (linear feed back shift register) configuration for
the generation of sy.

Corollary 2: The constant coefficients s (K =0, 1, ---, 2m — 2) of the DTWHE (16) can be
derived as
Am—1 (k = 0)
k-1
sp = GUm—1—-k — IZ:O S1Gm—k+1 (mOd Q) (]- S k g m— ]-) . (21)
m—1
— Y Sk—1-19m—-1-1 (mod q) (m <k <2m-2)
=0

13



Proofs of the above two corollaries are given in Appendix B.
Combining the three cases of s viz., k = 0, 1 <k < m—1and m < k < 2m — 2 we see

that s (k = 0, 1, ---, m — 1) can be generated sequentially in the register R,,_; of Fig. 4
provided that the LFSR. initially contain zero and the input to the configuration is the sequence
{@m-1, @m—2, -+-, ag, 0, 0, ---, 0} of 2m — 1 elements.

R Rz R

Figure 4: Generation of day.

5.2 Transformation of w to ¢

From Eq. (18), i.e.,

o if i = 0
Wi = Cm—1—i — E Wi—19m-1 (mOd Q) if 1 = 17 27 Tty Mo— 1
=1
we have
wo lf l = O
Cm—1—1 = S Wi 1Gm_1 (mod q) ife=1,2, -+, m—-1 (22)
=0

A feed forward shift register configuration to transform w’s to ¢’s is shown in Fig. 5. It is as-
sumed that the configuration is of g-valued logic and the registers are initially empty. The
input to the configuration is the sequence {wg, wy, --+, w;,—1} and the corresponding out-
put is {¢m_1, €m—2, **+, co}. After m clock pulses the registers R/ , R/ _,, ---, R contain
Wm—1, Wm_3, -+, Wy respectively.

Fig. 6 shows the complete configuration of ¢-valued logic for the bit-serial multiplication scheme.
All registers are initially empty. The input to the circuit is the sequence {a,—1, @m—_2, -, ag,
0, 0, ---, 0} of 2m elements. As ay,—1, @m_2, -, ag enter into the LESR, sg, sy, -+, Sm_1 are
loaded into Ry, Ry, ---, R;,_1 respectively; and at this point the switch S closes. At the next m
clock cycles ¢,—1, €m—2, -+, co are obtained at the output sequentially as shown in Fig. 6.

m—1

If the irreducible monic polynomial is g(2) = Y. ¢;2' + 2™|g; € GF(q) with g # 0 where k
=0

(1 < k < m) is the least nonzero positive integer, then only m—k+1, instead of m, stages of registers

14
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Figure 5: Transformation of € to ¢
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gm_l.... gz gl

70U
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Figure 6: The bit-serial multiplication circuit.

are required in the feed forward shift register of Fig. 6. Thus by choosing a suitable g(z) with k as
large as possible, if an option exists, the number of registers for the bit-serial multiplication circuit
can be reduced. For example, both 1+ z+ 22 4+ 23 + 231 and 14 228 + 229 + 230 1 23! are irreducible
polynomials over GF(2) of weight five [4]. However, the former requires 31 stages of registers in
the feed forward shift register while the latter requires only 4.

5.3 Comparison

If the irreducible polynomial is a trinomial or a pentanomial of the form of g(z) = 1+ 2k 4 R
K2 4 2m (0 < k < m — 2), then the bit-serial multiplication scheme of [3] for GF(2™) requires
very simple basis transformation. However, irreducible trinomials and pentanomials do not exist
for all m. A computer search for finding suitable basis transformation as suggested in [3] is a case
dependent approach. From that point of view the bit-serial multiplication scheme proposed here
has the advantage of being applicable for all irreducible polynomials.

The bit-serial multiplication scheme presented in this paper and that developed in [6] take the
multiplicand as well as the multiplier represented by the canonical basis and generate the product
which is also represented by the canonical basis. Functionally these two schemes are equivalent;

15



however, a reduction in the number of gates and shift registers is obtained by using the scheme
presented here. This is shown in Table 1 for GF(2™). To determine the number of gates it is
assumed thatif g; =1 (i =0, 1, ---, m — 1) then the feed back (or feed forward) connection with
weight ¢; in Fig. 6 exists and a XOR gate is used.

‘ Components ‘ Circuit of [6] ‘ Circuit presented here ‘
No. of shift registers 5m 3m
No. of 2-input AND gates 2m m
No. of 2-input XOR gates | 2(m — 1)+ 3[Wg(g) — 2] | (m — 1) +2[Wg(g9) — 2]+ 1

Table 1: Comparison of no. of gates and registers of the bit-serial multiplication circuits of [6] and
of this paper.

6 Conclusion

When the elements of the finite field GF(¢™) are represented by powers of a, computing division
involving two elements can be performed by simply subtracting the power of the divisor from
that of the dividend. For practical reasons, however, the elements are usually represented as a
polynomial using a suitable basis. An algorithm for computing division in finite fields has been
derived in this paper . The algorithm is general in the sense that it can be applied for any basis
chosen for the field; it requires the solution of a system of m linear equations of the general form
over GF(q) to perform a division in GF(¢™). It has been shown that if the field elements are
represented by the canonical basis of the form of {1, «, -+, a™~!}, the division can be performed
with a lesser order of computational complexity by solving a discrete time Wiener-Hopf equation
of degree m. The relationship between the finite field division and the discrete time Wiener-Hopf
equation has lead to the development of a bit-serial multiplication scheme. The attractive feature
of the multiplication scheme is that it can be easily realized for all irreducible polynomials and in
many cases it would require fewer number of gates and shift registers compared to other available
bit-serial multiplication schemes.

Appendix A

Proof of Theorem 2: For the sake of simple notation we denote (16) as U’'b = w with U’ =

m—1
{u;’]}ijzo = [snl_1+i_j]zg;l() and w = [w;]"5'. The transformation from ¢ of (14) to w directly

follows from (15). So it is required to show that the diagonal elements of U’ are equal and u; ; =

Sm—l4i—j = A~ pET__lHi_j] 1,7=0, 1, ---,m — 1. This in shown by induction.

Using (13), it is easy to verify that after the operations (15) on row 1, the latter becomes

ull,j:Sm—j:a'pE:ln__lj] .]207 17 R m — 1.

Similarly, after completion of the operations (15) up to the (i — 1)th row, for 1 <7 < m—1 and
0<j3<m-—1wecan write

16



2
7 / p— P y /
Uy 5 — Wiy Uk, ;9m—k

:

— [m—1-]

= a'Ppo1- Zsm—l-i-i—j—kgm—k
k=1

o m—1— ] m—1+i—j5—k]
- (pm 1—2 me 1 gm—k)

Using (13) repeatedly we obtain

! _ — [m—1+i—j5—k]
Uiy = (pm —1 Z Pr-1 gm—k)

1—2
—j+1 —14i—j—k
= a- (PEZL_,'{H ) - Z PE:Z_1 o ]gm—k)

k=1

[m—1+(i—1)-(5-1)]

Appendix B

Proof of Corollary 1: From Eq. (17),

m—1 [1+K]

+

Sk = E UPr—1-
=0

Substituting [ = m — 1 — k + 7, we obtain

k

m—1+412
Sk = Z am—l—k+ip£n—1 ]
i=k—(m—1)

17

_ !
= a‘'pP,_ = Sm—14(i-1)—(j-1) — Wj—1,5-1"

(24)

(25)



In the canonical basis, for 0 < 7 <m —1

PEI]—1 -

So

Sk

_{ 1 ifj=m—1

0 otherwise.

k
m—1+412
=0

k
> m-1-kridi  Q.E.D.
=0

(26)

Proof of Corollary 2: With k = 0, if we substitute (26) in (17) then we obtain sy = ay,—1. We
then consider s; (1 <k < m — 1). With the help of Eq. (20) we can write the R.H.S. of (21) as

k=1 / 1
RHS = amo1-k— (Z am—l—l+idi) Im—k+1-

Let

X

=0 \i=0

k—1 1
(Z am—l—l-}—idi) Gm—k+
=0 \:=0
k—1
(am—l—ldO + am—l—l—l—ldl + am—l—l—|—2d2 +--+ am—ldl) Im—k+1
=0

Using the fact that a; = 0 when 7 > m or j < 0, we have

JY

am—ldogm—k
+ (@m—2do + @m—1d1) Grm—k+1
+ (am—SdO + am—Zdl + am—ld‘Z) Im—k+2

+ (am—kdO + am—k—l—ldl + -+ am—ldk—l) Im—1
Gm—1 (gm—kdO + gm—k+1d1 + -+ gm—ldk—l)
+am—2 (gm—k—l—ldo + gm—k—l—Zdl + -+ gm—ldk—Q)

FCm—k (gm—ldO)

18
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Substituting (19)

X = _am—ldk - am—Zd‘k—l - am—Sdk—Z - am—kdl

k
= = mo1—kpds
=1

Thus (27) becomes
RHS. = ap1-x—X

k
= Zam—l—k+ldl = s = L.H.S.
=0

Using (13) repeated in (17), it is straight-forward to show that

m—1
Sko= — Y Sk—1-1gm-1—-1 m <k <2m-2.
=0
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