Look-up Table Based Large Finite Field
Multiplication in Memory Constrained
Cryptosystems

M. A. Hasan

Abstract— Many cryptographic systems use multiplication
in the finite field GF(2") for their underlying computations.
In the recent past, a number of look-up table based algo-
rithms have been proposed for the software implementation
of GF(2") multiplication. Look-up table based algorithms
can provide speed advantages, but they either require a large
memory space or do not fully utilize the resources of the pro-
cessor on which the software is executed. In this work, an
algorithm for GF(2") multiplication is proposed which can
alleviate this problem. In each iteration of the proposed al-
gorithm, a group of bits of one of the input operands are ex-
amined and two look-up tables are accessed. The group size
determines the table sizes but does not affect the utilization
of the processor resources. It can be used for both software
and hardware realizations and is particularly suitable for
implementations in memory constrained environment, such
as, smart cards and embedded cryptosystems.

Keywords— Computer arithmetic, Galois (or finite) field
multiplication, eryptographic systems, polynomial basis and
look-up tables.

I. INTRODUCTION

HE finite field GF(2") of characteristic two is used

in many cryptosystems and has been included in the
cryptographic standards of ANSI and TEEE. Computations
in GF(2") are different from their counterparts in modu-
lar arithmetic, but they can potentially provide advantages
for their implementations in resource constrained systems,
such as, smart cards. In GF(2"), addition and subtraction
are the same and can be as simple as an XOR instruction
of a general purpose processor. However, GF(2") multi-
plication is not so simple; nevertheless, there are cryp-
tographic functions where a large number of multiplica-
tions are needed [2]. For example, using the Diffie-Hellman
key exchange protocol on an elliptic curve defined over
GF(2'°1) as specified in ANSI X9.62, a single key estab-
lishment session may require about one thousand GF(21°?)
multiplications. Thus, there is a need to develop efficient
GF(2") multiplication algorithms which have lower compu-
tation time when implemented using available technologies.
In the literature, a number of GF(2") multiplication al-
gorithms which rely on look-up tables have been proposed,
for example, [3], [4], [5], [6]. The use of the tables, which
are usually precomputed, reduces the number of opera-
tions needed during the execution time and consequently,
reduces the effective computation time for multiplication.

Appeared in IEEE Trans. Computers, pp.749-758, July 2000. A
preliminary version of this article was presented at the 7th IMA Con-
ference on Cryptography and Coding [1].

The author is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON, Canada. Email:
ahasan@ece.uwaterloo.ca.

The sizes of these tables can be 2¢g29 bits or more, where
g corresponds to the number of the operand-bits examined
at a time!. To take full advantage of these algorithms,
the value of ¢ needs to be equal to the width of the inter-
nal datapath (i.e., registers and arithmetic and logic units)
of the processor in which the algorithms are implemented.
These days, processors with 32 bit wide datapath can be
found in many general purpose computing systems and the
corresponding look-up table size would be 2° Gigabytes for
[3], [4], [5] and 237 Gigabytes for [6]. Such large memories
of high speeds which can be used for look-up tables are
however still not a commonplace, and consequently lower
values of g (e.g., 8) have been suggested. This, in turn,
reduces the utilization of the processor’s resources avail-
able. For example, when g = 8, only 8 bits out of the 32
bits of the ALU and bus of the processor are used in the
arithmetic operations.

In this article a look-up table based algorithm for GF(2")
multiplication is presented which can alleviate the above
mentioned problem. For the multiplication of @ and b in
GF(2"), this algorithm considers a group of g bits of b
at a time and provides the product a - b in about n/g it-
erations. The algorithm is different from the other look-
up table based multiplication algorithms in two important
ways. First, it utilizes the full width of the datapath of the
processor in which the algorithm is implemented; secondly,
it uses two tables— one of which is precomputed during
the field initialization process and the other is computed
during the run (or, execution) time of the multiplication
operation. Because of the run time generation of one ta-
ble, it directly affects the multiplication operation and a
mechanism is needed to quickly determine the table en-
tries. Towards this end, a complementary algorithm for
efficiently generating the table is presented, and this has
enabled the multiplication algorithm to be implemented in
memory constrained computing systems with a lower com-
putation time.

The organization of this article is as follows. A brief
discussion on the representation of the field elements and
the basic field multiplication operation using the polyno-
mial basis is given in Section II. A brief description of the
conventional bit-level algorithm for GF(2") multiplication
is also given in this section. Then the new look-up table
based multiplication algorithm is presented in Section III.

!For a digit serial/parallel multiplication algorithm, which groups
g bits into a digit but does not apply look-up tables, the reader is
referred to [7].

An efficient way to generate the look-up tables with fewer
computations is developed in Section IV. Then Section V
provides a numerical example of the overall operation of
a multiplication operation. A comparison of the proposed
algorithm with similar others is given in Section VI. A
hardware architecture that can reduce the multiplication
time using the look-up table based algorithm is presented
in Section VII. Finally, concluding remarks are made in
Section VIII.
II. PRELIMINARIES

A. Field Flement Representation

The finite field GF(2") has 2" elements where n is a non-
zero positive integer. Depending on the applications, the
value of n can vary over a wide range. In cryptosystems, it
can be as large as 1024 or more. Each of the 27 elements
of GF(2") can be uniquely represented with a polynomial
of degree up to n — 1 with coefficients from GF(2). For
example, if @ is an element in GF(2"), then one can have

[l

a A(:b):an_lxn_l+an_2m”_2+---+a1m+ao. ()

This type of representation of the field elements is referred
to as the polynomial or standard basis representation and
has been used in many implementations.

For the polynomial basis representation as shown in (1),
the addition of two field elements of GF(2") is simply bit-
wise XOR operation of the coefficients of the equal powers
of z, that is, if @ and b are in GF(2"), then

n—1

A(z) + B(x) = > _(a; + b;)a’

=0

at+b =

where the addition in the parenthesis indicates an XOR
or modulo 2 addition operation. On the other hand, the
multiplication of the field elements using the polynomial
basis representation is much more complicated. It can be
performed by first multiplying A(z) with B(z) and then
taking modulo F(z) on A(z)B(z), i.e., if p is the product
of a and b then

p = P(z) = A(z)B(z) mod F(z). (2)

In (2), F(z) is a polynomial over GF(2) of degree n which
defines the representation of the field elements. Such F(z)
has to be an irreducible polynomial which has the following
form:

Flz)=a"4 fac1z" '+ facaz" 2+ -4+ fiz+1 (3)

where the f;’s belong to {0,1}. The choice of F(z) can
play an important role in determining the performance of
the implementation of finite field multipliers. For example,
using irreducible trinomials which have only three non-zero
coefficients, several researchers have proposed multipliers
which provide advantages in terms of both speed and space
[8], [9]. Examples of other special forms of F(z) include all-
one polynomials and equally-spaced polynomials [10], [11].

B. Bit-Level Multiplication Algorithm & Its Complexity

Let F(z) be the irreducible polynomial defining the rep-
resentation of GF(2"), and a, b, and p be any three el-
ements of GF(2") such that p = a - b as defined earlier.
Then

P(z) = A(z)B(z) mod F(z)

= A(z) (bp_12" '+ bp_p2" 2t
-4 biz + bg) mod F(z)

= (e (A1 + A@)ba_)e +
=)z + A(z)b1)x + A(z)bo mod F(z)

= ((---(A(x)bp—12 mod F(z)
+A(2)bp—2)z mod F(z) + ---)z mod F(z)
+A(z)b1)z mod F(z)+ A(z)bo. (4)

In (4), the repeated operations involve multiplying A(z)
with z depending on the coefficients of B(z) and then tak-
ing mod F(z). These operations can be specified in terms
of an algorithm as follows:
Algorithm 1: (Bit-Level Algorithm for GF(2") Multipli-
cation)
Input: A(z), B(z) and F(z)
Output: P(z) = A(z)B(z) mod F(z)
Step 1.1. If b,_1 =1, P(z) := A(z)
else P(z):=0
Step 1.2. Fori=n—2to 0 {

P(z) := P(z) mod F(x)

Ifb; =1, P(z):= P(z) + A(x)

O

After the final iteration, P(z) is the polynomial basis

representation of the required product a-b. In Algorithm
1, a coefficient, i.e., a single bit of B(z) is checked in
each iteration. The loop in Step 1.2 is executed n — 1
times. Its operation P(z) := zP(z) mod F(z) can be re-
alized by left shifting the coefficients of P(z) to obtain
zP(z), and then subtracting/adding F(z) from it if the
nth coefficient of zP(z) is 1. Assuming that 0 and 1 ap-
pear as the coefficients of P(z) with an equal probability,
the operation P(z) := 2 P(z) mod F(z) takes ”T_l polyno-
mial additions on average. Similarly, there are "T_l more
polynomial additions on average for the other operation
P(z) := P(z)+ A(z). Thus, in Algorithm 1, there are ap-
proximately n — 1 polynomial additions on average. If we
assume that the time to add two polynomials is Tpoy_add
and that to multiply a polynomial by z (i.e., to shift the co-
efficients) is To1y_shift, then the average computation time
of a GF(2") multiplication can be approximated as:

Truitizin_aren) R (0= 1) - (Thoty_add + Tpoty _snift)- (5)

For a cryptosystem which uses a large value of n, the above
bit-level algorithm may not be the best solution especially
when speed is of major concern.

C. Multi-Precision Arithmetic and Look-up Tables

In Algorithm 1, the overall computation time of a
GF(2") multiplication can be reduced by reducing both

the polynomial addition time and the total number of it-
erations. In order to reduce the polynomial addition time,
especially when a general purpose processor is used, the co-
efficients of the polynomials can be divided into [2] units
each consisting of w bits, where the latter corresponds to
the word size of the processor. For example, on a 32 bit
processor, six units each of 32 bits are needed for the poly-
nomial basis representation of an element in GF(2'°1). As-
suming that the processor can perform bit-wise exclusive-or
of two 32-bit operands using one single XOR instruction,
the addition of two polynomials of degree up to 190 will
take six such XOR instructions. In general, the number
of XOR instructions needed for adding two polynomials of
degree up to n — 1 with coefficients from GF(2) is

n

#XORpo1y_add = [51 . (6)
If Txor is the time needed for executing an XOR instruc-
tion, then

n
Tpoly_add = #XORpoy_add - Txor = [51 Txor. (7)

Using such multi-precision arithmetic, a number of
GF(2") multiplication algorithms that can be implemented
in a general purpose processor have been proposed [3], [4],
[6]. These algorithms are based on look-up tables of up to
§229 bits which are basically used to multiply two polyno-
mials of degree up to g — 1 [6]. The processor’s resources
are best utilized when g is equal to w (or, a multiple of w).
Thus, for ¢ = w and for a 32 bit processor which has be-
come a commonplace these days, the table size is 23¢ Giga-
bytes which is too large to be implemented in any practical
system with today’s memory technologies. One solution is
to use a smaller value of ¢ which in turn would reduce the
table size. This however may cause a lower utilization of
the processor’s resources, especially a significant portion
of the processor’s datapath may remain unused with each
XOR instruction.

What follows below is a GF(2") multiplication algorithm
which attempts to better utilize the processor’s resources
even when a smaller group size is used. Additionally, un-
like the algorithms of [3] and [4] which have the limitation
that n be multiple of the group size, the algorithm can be
used for any n. Thus, this algorithm could be useful when
a prime n is sought, for example, in the implementation
of high speed elliptic curve cryptosystems using Koblitz
curves [12].

I1I. GrRoUP-LEVEL LoOK-UP TABLE BASED
MULTIPLICATION

Let us divide the n coefficient bits of B(z) into s groups
of g > 2 bits each?. If n is not a multiple of g, then the
number of bits in the most significant group is taken as n

2Unlike [3], [4], [6], the group size g in this work is expected to have
a much smaller value. For the convenience of implementation, the
value of g should divide w.

mod g. Thus,
B(z) = m(s_l)ng_l(m) + I(5_2)ng_2(m) bt
29B1(z) + Bo(z)
where
g—1)
D bigrje’ 0<i<s—2,
Jj=0
(n mod g)-1 '
E big-|—j33‘7 1=s5— 1.
Jj=0
Then
Pz) = A(;,;)B(,) mod F(z)

- (m V9B, () + 2 DIB,_y(x) + -+
:EgBl(l‘) + Bo(z)) mod F(x)

= o (A)Biese) mod £)32 0 ()

+A(2)B;s—2(x) mod F(z))z9 mod F(z)

+A(z)Bi(z) mod F(z)) z? mod F(z)
+A(z)Bo(z) mod F(z). (9)

Based on (9), now we have the following group-level inter-
mediate algorithm for GF(2") multiplication.
Algorithm 2: (Group-Level GF(2") Multiplication)
Input: A(z), B(z) and F(z)
Output: P(z) = A(x)B(z) mod F(zx)
Step 2.1. P(z):= Bs_1(z)A(z) mod F(z)
Step 2.2. Fork=s—21to 0 {
P(z) := z9P(z) mod F(x)
P(z) := P(z) + Bi(z)A(z) mod F(z)
} o
After the final iteration of the above algorithm, the co-
efficients of P(z) correspond to the polynomial basis rep-
resentation of the product a - b. The loop in Step 2.2 is
executed s — 1 times. Since P(z) 2 2?2—01 piz' is a poly-
nomial of degree up to n — 1 with coefficients from GF(2),
the first operation of Step 2.2 can be written as follows:

n—1—g
P(z) :=a? E pixt + 9 Z pix' mod F(z) . (10)
i=n—g
a/_/

n (10), 7 is a g-fold left shift of the least significant
n — g coefficients of P(z) and the other term 7, depends
on the g most significant bits of P(z) as well as the co-
efficients of F(z). In practice, F(z) does not change in a
single cryptographic session, and in many cases, it remains
unchanged as long as the dimension of the field does not
change. In such circumstances, a table which is hereafter
referred to as the M (or, modulo) table can be created
to store z9 E?:_nl_gpimi mod F(z). The table entries are
precomputed as part of the field initialization process.

In a straightforward realization, the M table may have 29
entries each with n bits resulting in a memory requirement
of n29 bits. If F(z) = 2" + 2%+ Y02/ fiz? + 1, with f; €
{0,1} for 0 < 7 < d, i.e., the degree of the second leading
coefficient of F(z) is d, then the effective size of each table
entry is d + ¢g bits. Thus, an irreducible polynomial with
a smaller value of d results in a smaller look-up table. An
example with F(z) = z'9' 4+ 2° 4 1 resulting in a table
width of 16 bits is shown in Table I where the polynomials
are shown in hexadecimal notation, i.e., 0201 of entry 1
corresponds to % + 1. Also, examples of trinomials and
pentanomials with small d which will result in a look-up
table of width 16 bits or less for ¢ = 4 are given in Table
I1. The table lists only polynomials with degree n where n
is a prime in the range [100, 512]. This range covers most of
the current applications that may potentially incorporate
elliptic curve cryptosystems.

TABLE 1
AN EXAMPLE OF TABLE M WITH F(z) = z!%! + 2% + 1 aAND g = 4.

0 z" -0 mod F(z) = 0000
1 z" -1 mod F(z) = 0201
2 z" -z mod F(z) = 0402
3 z" - (z + 1) mod F(x) = 0603
4 z™ - z¥ mod F(z) = 0804
5 z" - (¢ + 1) mod F(z) = 0a05
6 " - (z? + z) mod F(z) = 0c06
7 " - (z? + £ + 1) mod F(z) = 0e07
8 z™ -z mod F(z) = 1008
9 2" - (z° + 1) mod F(z) = 1209
10 z™ - (z7 + z) mod F(z) = 140a
11 " - (2> + z + 1) mod F(z) = 160b
12 z" - (2% 4+ z%) mod F(z) = 180c
13 " (27 + 2% + 1) mod F(z) = la0d
14 z" - (2% + 2% + z) mod F(z) = lc0e
15 | 2" - (z° + 2?2+ 2+ 1) mod F(z) | = 1e0f

TABLE 11
Examples of irreducible polynomials which will require a look-up
table of width of 16 bits or less for g = 4. For each listed
polynomial, the table gives the corresponding non-zero coefficients

excluding the constant term which is always 1.

101,76, 103, 9 107,9,7,4 109,542
113,9 127,1 131,8,3,2 139,8,5,3
149,10,9,7 151,3 157,6,5,2 163,7,6,3
167,6 173,8,5,2 179,4,2,1 181,7,6,1
191,9 197,9.4,2 211,11,10,8 227,10,9, 4
229,10,4,1 251,7,4,2 269,7,6,1 293,11,6,1
307,8,4.2 311,7,5,3 317,742 331,10,6,2
347,11,10,3 349,6,5,2 373.8,7,2 379,10,8,5
389,10,9,5 421,5,4,2 443,10,6,1 461,7,6,1
467,11,6,1 491,11,6,1 499,11,6,5 503,3
509,8,7,3

P(z) +

Referring to the second operation P(z) :=

By (z)A(z) mod F(z) in Step 2.2, let

13 = By (z)A(z) mod F(z). (11)

The product By (z)A(z) results in a polynomial of de-
gree < n — g — 2. In order to reduce the degrees of
gnto=2) pnt9=3 ... 2" of By(z)A(z), we need poly-
For reasonable values of g,
the term 73 can however be directly read from a precom-
puted look-up table (hereafter referred to as T) and thus
the above shift and addition operations can be avoided.
Since in practice n >> g, the table can be more conve-
niently built to store By (z)A(z) mod F(z) for all possible
By (z)’s. The size of the table would then be n29 bits.
However, unlike the previous M table, this table needs to
be created on the fly each time a new A(z) is chosen, and
care must be taken to reduce the task to compute the table
entries as it lies in the critical path of the loop in Algorithm
2.

Algorithms for generating the tables are given in Section
IV. We wind up this section by incorporating the M and

T tables into Algorithm 2. In this regard let e 2 Zlg:_ol ;2
be an integer in the range [0,29 — 1] and let the contents
of the e-th entry of the M and T tables be

nomial shifts and additions.

Mle] = (Z eia:i) 2" mod F(z), and
Tle] = (Z eimi) A(z) mod F(z),

respectively, then we have the following algorithm where
Po1(2) = X020 pagri’.
Algorithm 3: (Look-up Table Based Group-Level Multi-
plication)
Input: A(z), B(z), F(z), and the M table
Output: P(z) = A(x)B(z) mod F(z)
Step 3.1. Generate table T
Step 3.2. P(z) := T[Bs-1(z = 2)]
Step 3.3. Fork=s—21to 0 {
= z9 E?:_OI_gpimi
Ty := M[Ps_1(z = 2)]
13 := T[Bg(z = 2)]
Px):=m+m+7s
O
Note that steps 3.2 and 3.3 of Algorithm 3 correspond
to steps 2.1 and 2.2 of Algorithm 2. In Algorithm 3, the
numbers of n-bit word read from the T and M tables are
s and s — 1, respectively. The algorithm requires 2(s — 1)
polynomial additions, or 2(s — 1)[Z] XOR instructions.
For 71, one needs (s — 1)[-] SHIFT instructions. For the
evaluation of the indices of the two tables, one can use
2s — 1 SHIFT and 2s — 1 AND instructions. The cost of
computing T[B;(z = 2)], fori =s—1, ---, 1, 0, is given
in the following section.

IV. TABLE (RENERATION ALGORITHMS

In this section, we consider algorithms for generating the
T table. This table needs to be created with minimum pos-

sible delay to make its use feasible in the GF(2") multipli-
cation operation. This algorithm is equally applicable to
M where the speed of the table generation is however not
that critical.
There are g bits in Bg(z) and table T has 29 entries.
The e-th entry of T is
Tle] = e(z) - A(z) mod F(z) (12)
where e(z) 2 Ef;()l e;x' as assumed earlier. Thus, once the

table has been generated, By (z)A(z) mod F(z) is obtained
by reading the table entry at

g—1
Bk(l‘ = 2) = Zbkg+j2].
j=0

In the sequel, the following g entries of the table, namely,
T[], T[2], T[2%], - - -, and T[2971] are referred to as the base
entries. From (12), the j-th base entry is

T[2] = 2/ A(x) mod F(z),
from which one can write

T[29H = 2T[27] mod F(z). (13)
Thus, given the j-th base entry, the computation of the
(7 + 1)-st base entry takes a maximum of one polynomial
addition®. Thus, if the first base entry T[2°] is initialized
with A(z), then the maximum number of XOR instruc-
tions needed to compute the remaining g — 1 base entries
is (g —1) [%], and the corresponding average number is

slo—-1)[2].

Lemma 1: If A(z) # 0, then all the entries except T[0]
contain non-zero polynomials of degree up to n — 1.
Proof: From (12), T[0]=0 and T[1] = A(z). Each of
the subsequent entry contains the mod F(z) of the product
A(z) - e(z), where both A(z) # 0 and e(z) # 0. Thus the
entry corresponds to the product of two non-zero elements
of GF(2") which is also a non-zero element in the field.
Thus, the lemma holds. |
In order to compute the regular (i.e., non-zero and non-
base) entries of the table, below we present two schemes.
Both assume that the g base entries have already been com-
puted and use these entries to compute the regular entries

of the table.

A. Entry Computation on Demand

When s < 29, only a part of the table is read when Al-
gorithm 3 is executed. In such cases, instead of computing
all the regular entries and storing them, it is advantageous
to compute the entries as they are needed. In this effect,
the following algorithm can be used.

Algorithm 4: (Regular Entry Computation on Demand)

3This is because a multiplication by z in (13) may result in a poly-
nomial of degree n that needs to be reduced modulo F(z).

Input: Index e, and base entries T[2'],i =0, 1, ---, g — 1
Output: The e-th entry Tle]
Step 4.1. If eg =0, tmp:=0
else tmp := T[1]
Step 4.2. For 1tog—1 {
Ife;=1, tmp := tmp + T[21]

Step 4.3. Tle] :==tmp O

The number of polynomial additions needed in Algo-
rithm 4, depends on the Hamming weight of the binary
representation of e. On average, the algorithm requires
(¢ — 1)/2 polynomial additions. Thus, the cost of comput-
ing T[B;(z = 2)], 0 < i < s—1, in Algorithm 3 is ap-
proximated as s(g — 1)/2 polynomial additions. The cost
of creating all the regular entries of T', which will be used
in our forthcoming discussions, is given below.

Corollary 1: The generation of all the regular entries of
the T table using Algorithm j requires 29=(g —2)+1 poly-
nomial additions.

Proof: The binary representation of all the 29 indices
have g29~1 ones; thus the total number of 1’s in the indices
of all regular entries is g(297! — 1). Each index of the
regular entries has two or more 1’s, and an index with j
ones requires j — 1 polynomial additions. Since the total
number of regular entries is 29 — (g + 1), the total number
of polynomial additions needed to compute all the regular
entries is

9297 1) = (27— (g + 1)) =27 (g —-2)+1 (14)

B. Entry Computation in Window Sequence

We now consider the case of s > 29 where each table
entry is expected to be accessed at least once. In this case,
one can create all the table entries. In this regard, the
29 —g—1 regular entries are partitioned into g —1 windows,
namely, Wy, Wy, ---, W,_1, where window W;, 1 < ¢ <
g—1, consists of the following 2* — 1 entries T[2'+1], T[2'+
2], ---, T[20 + 20 —1].

Lemma 2: For window Wy,

T2 +j] =T+ T[], 1<j<2-1. 0 (1)
Proof: In (15), j is an integer in the range [1,2! — 1]. Thus
J can be represented in the binary form with 7 bits, i.e.,
j =120 512" Thus,

T = A(@) (Gice'™" +jisar 2+

-+ + jo) mod F(x)

A(@) (' + jiia™ + jiar' T
-+ + jo) mod F(x)

= T[2'+j] Q.E.D.

Given the entries of windows W;, 1 < j <i—1, the base
entries T[27], 0 < j < i, one can compute an entry of W;
using only one polynomial addition. The entries are com-
puted in the window sequence, i.e., the entries of W; are
computed only after the entries of W;_; have been com-
puted. The entries within W; can however be computed in

T2+ T[j] =

any order. A systemic way to obtain all the regular entries
using the window-by-window updating scheme is given be-
low.

Algorithm 5: (Computation of Regular Entries in Win-
dow Sequence)
Input: Base entries T[2!],i =10, 1, ---, g—1
Output: All regular entries of T

Fori=1tog—1 {
Forj=1to 2i—1 -1 {
T[2" + j] :=T[2] + T[j]
}

} O

In Algorithm 5, the loop with index ¢ corresponds to the
window computing. Since there are 2* —1 entries in window
W;, the cost for generating entries of all the ¢ — 1 windows
is

(2'=1) + (2°=2) +--- +(297' 1) = 2(297' —1)—g+1

(16)
polynomial additions. The ratio of (14) to (16) gives us an
estimate of the speed-up that one can expect in computing
the regular entries of table T. This ratio is a function of g
and is equal to 1, 1.55,2.26 and 3.11for g = 2, 4, 6, and 8§,
respectively.

V. AN EXAMPLE

In this section we apply the proposed algorithms to an
example multiplication operation in the field GF(23). In
this regard, let F(z) be 2% + 2* + 23+ z + 1 and w be 6.
Thus, two words are needed to represent each field element
in multi-precision machine representation. Let us assume
that ¢ = 3. Then the M table* will have eight entries as
shown in Table III.

TABLE IIT
THE M AND T TABLES WITH Fi(z) = 2% + 2! + 2® + z + 1,
A(z) =27 + 2* + 1 AND g = 3. TABLE CONTENTS ARE GIVEN IN THE
BINARY FORM.

The M Table The T Table
0 0000 0000 0 0000 0000
1 0001 1011 1 1001 0001
2 0011 0110 2 0011 1001
3 0010 1101 3 1010 1000
4 0110 1100 4 0111 0010
5 0111 0111 5 1110 0011
6 0101 1010 6 0100 1011
7 0100 0001 7 1101 1010

Suppose that A(z) = 2" +z*+1 and B(z) = 26+ 2° +=.
Thus,

Bo(z) = x=(010)z,

4Since s < 29, we really do not need to create the M and T tables in
this simple example. However, most practical applications have s >
29. So, these tables are used here only to demonstrate the concept.

z? = (100),
1=(01),

Bl(l) =

where (-)2 indicates the binary form of the corresponding
polynomial. Now we can apply Algorithm 3 to compute
A(z)B(z) mod F(z) as follows:
Step 3.1:

Using Algorithm 5, the T table is generated which is
given in Table III.
Step 3.2:

P(z) :=T[Bz(z =2)] =T[1] = (100 1 0001),
Py
Step 3.3: (Below "z << y” indicates a left shift of z by y
bits.?

7=

Tt := (1 0001)2 << 3 = (1000 1000);
r = M[Ps))= M[4] = (0110 1100),
s =T[Bi=T[4] = (0111 0010),
P(z) ==m+7+73 = (@/1 0110),
Py
1=0
Tt :=(10110)2 << 3 = (1011 0000),
r = M[Py) = M[4] = (0110 1100),
rs :=T[Bo]=T[4] = (0011 1001),
P(z) ==m+ 7+ = (1110 0101)4

Thus the final product is P(z) = 27 + 26 + 25 + 22 + 1.
VI. COMPARISON

In this section, we compare a number of related multipli-
ers which were reported in the open literature in the past.
A comparison based on absolute computation time is diffi-
cult since it depends on a number of parameters including
the computing platform used, the level of optimization ap-
plied, efficiency of the code, etc. As a result, we restrict our
basis of comparison to the number of salient instructions
and look-up table accesses usually needed to implement the
multipliers.

Harper et al. in [3] have used two look-up tables for mul-
tiplication in GF(2"). Win et al. in [4] have used a similar
scheme. While Harper et al. have reported their results
using the subfield GF(2%), Win et al. have done it using
GF(2'6). Here we present both the implementations in a
generalized way. They assume a composite n which is a
multiple of g and do underlying computations in the sub-
field GF(29) rather than GF(2). One of the look-up tables
contains logarithms of the polynomial basis representation
of the elements of GF(29). The other table contains the
corresponding anti-logarithms. The size of the two tables
together is approximately® 2¢g - 29 bits. For a’ and ' in
GF(29), the product

a’ - b = anti-log[(log[a’] + log[b']) mod (29 — 1)]

5log[0] is undefined.

(17)

requires three table accesses, assuming that g is less than
or equal to the memory bandwidth. As both log[a’] and
log[b'] are g bit integers and lie in the range [0,29 — 2],
the addition log[a’] + log[b’] results in an integer which is
greater than or equal to 29 — 1 in only (29 — 1)(29 — 2)/2
out of (29 — 1)% cases. Thus, for non-zero a’ and b, the

mod operation in (17) is executed with a probability of
T~ T

Using the above look-up tables for the subfield mul-
tiplication, the remaining steps of GF(2") multiplication
scheme of [3], [4] can be described as follows. For a, b, and
p are in GF(27), and a = Y520 alz’ and b = Y02, blia?,
where a} and b}’s are in GF(29), initialize p to 0, then
compute a, az, ..., ax*~1; after each stage add b’(az?)
mod the irreducible polynomial used to define GF(2") over
the subfield GF(29). Thus, the complexity of a multiplica-
tion in GF(2") is approximately 2s? XOR instructions, and
5?2 GF(29) multiplications. The latter is equivalent to 3s?

table accesses, s? integer additions, and s? (% — m)
integer subtractions (to emulate mod (29 — 1) operations).

Another look-up table based scheme for GF(2") multi-
plication, where n is a multiple of g, has been presented in
[5]. This scheme uses the same two look-up tables for log-
arithms and anti-logarithms as described above. However,
for multiplication of polynomials over the subfield GF(29),
it uses the Karatsuba-Ofman algorithm [13]. Assuming
that s is a power of two, the overall multiplication scheme
requires 6s'°823 — 85 + 2 XOR instructions, s'°823 ADD
instructions and 3s'°823 look-up table accesses.

In [6], extending the Montgomery algorithm for modular
multiplication Koc and Acar have presented an algorithm
for A(z)B(z)x~" mod F(z). They have suggested a look-
up table to store the product A’(z)B’(z) where both A’(z)
and B’(z) are polynomials over GF(2) of degree g—1 or less.
The table has 229(2g — 1) bits and is accessed 252+ s times.
The algorithm also requires 452 XOR instructions. The use
of the algorithm may require certain computational over-
heads since the algorithm outputs A(z)B(z)z~" mod F(z)
rather than A(z)B(z) mod F(z).

With regard to Algorithm 3 presented in this work, if
s < 29 then T[B;(z = 2)], 0 <1< s—1, is computed using
Algorithm 4 and otherwise using Algorithm 5. Referring
to the analyzes of Algorithms 3, 4 and 5, one can deter-
mine the cost of a GF(2") multiplication operation, which
is given in Table IV along with the costs of multiplication
operations of [3] and [6]. In the table, d is the degree of the
second leading coefficient of the field defining polynomial.
In determining the number of look-up table accesses, we
have assumed that the memory bandwidth is equal to the
datapath width of w bits.

As it can seen from the above table, for large values
of ¢ (and hence small s) the multiplication scheme of [5]
requires the least number of instructions. However, the
corresponding look-up table is too large to be implemented
in resource constrained cryptosystems. More importantly,
the scheme of [5] as well as that of [3] cannot be applied to
GF(2") with n being a prime, an important criteria that

is sought to have in many cryptosystems employing such
extension fields [12].

In order to be able to see the usefulness of the proposed
algorithm in memory constrained cryptosystems where ¢
ought to be small, one can apply the cryptographic param-
eters recommended by standard bodies, such as ANSI, to
the above multipliers. In this regards, one can use n = 113
with F(z) = 2 + 2% + 1 for smart cards, or n = 191
with F(z) = 219" + 2 + 1 for applications where much
higher level of security is required. Assuming 16 and 32
bit processors, Tables V and VI, respectively, compare the
multiplication algorithms of [3], [6] and this work for two
different values of g.

It can be seen from the above tables that in memory con-
strained cryptosystems where a small g (say, 4) has to be
used, the proposed multiplication algorithm would provide
computational advantages® over the similar other available
algorithms. Additionally, unlike [3], [4] where a composite
n is assumed, the proposed algorithm can be used for any
n. Also, unlike [6] which outputs A(z)B(z)z~" mod F(z),
the new algorithm directly gives A(z)B(z) mod F(z) re-
quiring no post-processing for a GF(2") multiplication.

VII. HARDWARE ARCHITECTURE

In order to reduce the computation time, the multiplica-
tion scheme described in Algorithm 3 can be mapped on to
a special-purpose hardware. Towards this end, a multiplier
structure which uses n-bit bus is shown in Fig. 1. The
structure mainly consists of two look-up tables (M and T),
a 3-operand mod 2 adder and two n-bit registers (B and
P). Since, the M table contents depend only on the the
irreducible polynomial F(z) which is fixed for many appli-
cations, the table can be implemented simply with a ROM.
On the other hand, the T table contents change each time
a new multiplicand (a) is used; hence the table needs to be
implemented with a RAM. Before presenting a structure to
initialize the T table, an informal description of the over-
all operation of the multiplier structure of Fig. 1 is given
below.

In each iteration of a multiplication process, the T table
is addressed by a group of g bits from the multiplier (b)
stored in register B. The latter is left-shifted g positions in
each iteration so that the correct bits are used to address
T. The output from T is 73 which enters the 3-operand
mod 2 adder. The other operands are 72 and 7. Operand
79 is obtained from the M table which is addressed by the
”most-significant” ¢ bits of the partial product stored in
register P. Operand 77 is derived by a g-bit left-shift of
the ”least-significant” n — g bits of the partial product. A
new partial product is mod 2 addition of 7, 7 and 73. The
alignment of these operands that corresponds to the correct
number of shifts is shown inside the 3-operand adder. After
[n/g] iterations as described above, register P contains the

8For the proposed multiplication scheme, a further reduction in the
number of XOR instructions can be obtained by noting that when
g+d+1 < w, only one XOR instruction (as opposed to [7-] XOR
instructions) is needed to add the term X2 in Step 3.3 of Algorithm
3.

TABLE 1V
COMPARISON OF RELATED MULTIPLICATION ALGORITHMS.

No. of important Instructions Look-up table
XOR ADD/SUB, SHIFT/AND Size in bits No. of accesses
Harper et al. [3] 252 s2 (% - m) 2¢29 352
Guajardo & Paar [5] 651823 — 85 + 2 510823 229 3slo823
Koc & Acar [6] 457 (29 — 1)2% 257 + 5
This work " " o . d
ST G D - ar2] - DET R - | g+ (5= [42]
. (g + d)?g (M table) (8 — 1) |'9I_d‘| (M table)
A TR S R | R AR CEE) N 4
- n29 (T table) (2g+1 +s—g— 2) [%] (T table)

TABLE V
COMPARISON OF MULTIPLICATION ALGORITHMS WITH n = 113, w = 16 AND F(z) = o3 4+ 2 + 1.

n=113, w=16
g=4,1ie,s=29>29 g=2_8,te,s=15<29
Instr. Table Instr. Table
XOR | Others Bytes | Accesses XOR | Others Bytes | Accesses
Harper et al. [3] Not applicable since n is prime
Guajardo & Paar [5] Not applicable since n is prime
Koc & Acar [6] [3,364| - 28 1,711 900 - 217 465
95 .
This work 548 | 362 | 2 ¥l + 222(3“ 2 T 679 | 170 |3 % 28 (reenier | 14 (r sanie
(T table) (T table)
TABLE VI

COMPARISON OF MULTIPLICATION ALGORITHMS WITH n = 191, w = 32 AND F(z) = 2! 4+ 2 + 1.

n =191, w =32
g=4, ie,s=48 > 29 g=2_8,t.e,s=24<29
Instr. Table Instr. Table
XOR | Others Bytes | Accesses XOR | Others Bytes | Accesses
Harper et al. [3] Not applicable since n is prime
Guajardo & Paar [5] Not applicable since n is prime
Koc & Acar [6] | 9,216] - 28 4,656 2.304] - 217 1,176
55
This work 630 | 490 21 ;“24‘1‘;1) 41 o (T“iljr 801 | 232 |3 x 2% (vravie) | 23 (a1 eavie)

product of @ and b. It should be noted that the 3-operand
adder consists of n + d two-input XOR gates and does not
have any registers inside.

A hardware structure that can be used for updating the
T table is shown in Fig. 2. The LFSR of the structure is an
n-stage Fibonacci type linear feedback shift register whose
feedback connection is defined by the irreducible polyno-
mial F(z). If the LFSR is loaded with A(z) then after i
left-shifts the LFSR contains 2’ A(z) mod F(z). The SR
block is a g-bit shift register and the CNT block is a g-bit
up counter. This counter is incremented by one in every
two system clock cycles. Initially, CNT and location 0 of
T are cleared to zero, and SR and LFSR are loaded with 1
and A(z), respectively.

The updating of the T' table using the structure of Fig.
2 proceeds as follows. When CNT=0, the LFSR contents
are written on to T at location specified by SR, which cor-
responds to a base entry writing. When SR=CNT, both
LFSR and SR are shifted one position left, CNT is cleared
to zero and no read/write operation is performed on T'. For
anonzero CNT value, which remains valid for two clock cy-
cles, first the T table entry of the location specified by CNT
is read and stored in the buffer. In the next clock cycle,
the buffered value is added (mod 2) to the LFSR value and
the result is written on to T at location specified by CNT
+ SR (mod 2). This corresponds to the updating of the
non-basis entries of T. The entire updating operation is
coordinated by the control block of Fig. 2 whose details
are omitted here.

M Table

T Table

Y

(function of F(z))

Y

(function of A(z))

3-operand mod 2 adder

g+d

T3

+7

n—4g

Fig. 1. Datapath for the loop-up table based multiplication in GF(2™).

VIII. CONCLUSIONS

In this work, an algorithm for GF(2") multiplication has
been proposed. The algorithm examines a group of bits
of one operand in each iteration and uses two look-up ta-
bles. One of the tables is dependent on the irreducible
polynomial used for defining the representation of the field
elements. For many practical applications, this polyno-
mial does not change frequently, hence the corresponding
look-up table can be precomputed. The width of the table
depends on the choice of the polynomial, and a list of good
polynomials, which are of practical interest and result in
look-up tables of width of 16 bits or less, has been given.

The second look-up table depends on one input operand
of the multiplication operation. If the input is fixed, the ta-
ble can be precomputed and optimized; otherwise it needs
to be generated during the run time. In this effect, two
algorithms, which are based on the entry computation on
demand and in window sequence, have been presented. For

today’s cryptographic applications, the window sequence
based algorithm is more advantageous.

A special purpose architecture for the hardware imple-
mentation of the multiplication algorithm has been pre-
sented. Also, the related structure for the generation of
the look-up tables has been given. Hardware implementa-
tion can be used for achieving a high speed multiplier.

For a software implementation of the proposed GF(2")
multiplication algorithm with the window sequence table
generation scheme, the operand dependent look-up table
is accessed to read s mn-bit entries. Thus, on average an
entry of the table is read s/29 times. Consequently, to
have computational advantages of the usage of the table,
we should choose g such that 29 < [%] For g = 2,4, 6
and 8, the corresponding cross over values of n are 8, 64,
384 and 2048, respectively.

10

LFSR initialized with A(z)

n n
J Mie——0
U
f—————
X
SR
g g
— -
%%_> Control address T Table
= L
L R/W
CNT n
Buffer
Fig. 2. Structure for the updating of the T table.
ACKNOWLEDGMENT [9] C.Koc and B. Sunar, “Mastrovito Multiplier for All Trinomials,”

This work was done during the author’s sabbatical leave
with the Motorola Labs, Schaumburg, IL, USA. The author
wishes to thank Larry Puhl and Ezzy Dabbish for their
encouragement to pursue this work. Thanks are also due
to Dean Vogler, Tom Messerges and L. Finkelstein, for their
help with the various computing resources of the labs.

REFERENCES
[1] M. A. Hasan, “Look-up Table Based Large Finite Field Multipli-

cation in Memory Constrained Cryptosystems,” in Proceedings
of the Seventh IMA Conf. on Cryptography and Coding, Lecture
Notes in Computer Science, pp. 213-221, Springer-Verlag, 1999.

[2] G.B. Agnew, R. C. Mullin, and S. A. Vanstone, “An Implemen-
tation of Elliptic Curve Cryptosystems over Fyis5,” IEEE J. on
Selected Areas tn Communications, vol. 11, pp. 804-813, June
1993.

[3] G. Harper, A. Menezes, and S. Vanstone, “Public-Key Cryp-
tosystems with Very Small Key Lengths,” in Advances in
Cryptology- EUROCRYPT ’92, Lecture Notes in Computer Sci-
ence, pp. 163-173, Springer-Verlag, 1992.

[4] E. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem, and
J. Vandewalle, “A Fast Software Implementation for Arith-
metic Operations in GF(2"),” in Advances in Cryptology- ASI-
ACRYPT ’96, Lecture Notes in Computer Science, pp. 65-76,
Springer, 1996.

[5] J. Guajardo and C. Paar, “Efficient Algorithms for Elliptic
Curve Cryptosystems,” in Advances in Cryptology- CRYPTO
’97, Lecture Notes in Computer Science, pp. 342—356, Springer-
Verlag, 1997.

[6] C.Koc and T. Acar, “Montgomery Multiplication in GF(2¥),”
Design, Codes and Cryptography, vol. 14(1), pp. 57-69, Apr.
1998.

[7] L. Song and K. K. Parhi, “Low Energy Digit-Serial/Parallel
Finite Field Multipliers,” Journal of VLSI Signal Processing,
vol. 19, pp. 149-166, June 1998.

[8] E.D. Mastrovito, VLSI Architectures for Computations in Ga-
lois Fields. PhD thesis, Dept. Elect. Eng., Linképing University,
Link6ping, Sweden, 1991.

10]

(11]

(12]

(13]

IEEFE Trans. Computers, vol. 48, pp. 522-527, May 1999.

T. Itoh and S. Tsujii, “Structure of parallel multipliers for a class
of fields GF(2™),” Inform. and Comp., vol. 83, pp. 21-40, 1989.
M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “Modular con-
struction of low complexity parallel multipliers for a class of fi-
nite fields GF(2™),” IEEE Trans. Comput., vol. 41, pp. 962-971,
Aug. 1992.

Certicom Research, “GEC1: Recommended Elliptic Curve Do-
main Parameters,” in Standards for Efficient Cryptography
Group, http://www.secg.org, 1999.

C. Paar, “A New Architecture for a Parallel Finite Field Multi-
plier with Low Complexity Based on Composite Fields,” IEEFE
Trans. Computers, vol. 45(7), pp. 856-861, 1996.

